

Information Visualization Intro Tamara Munzner Department of Computer Science University of British Columbia 3 September 2014 http://www.cs.ubc.ca/~tmm/courses/547-14	Audience • no prerequisites - many areas helpful but not required • human-computer interaction, computer graphics, cognitive psychology, graphic design, algorithms, machine learning, statistics, • open to non-CS people - if no programming background, can do analysis or survey project • open to advanced undergrads - talk to me • open to informal auditors - some or all days of readings/discussion, as you like • you'll get out of it what you put into it	Class time • week I —I lecture • weeks 2-3, 5-10 —before class: you read chapter+paper, write questions/comments —during class: we discuss • week 4 —guest lectures (Ben Shneiderman, Michelle Borkin, Matt Brehmer) • week I I —no class (annual VIS conference) • weeks 12-13 —before class: you each read paper on topic of your choice —during class: you present it to everybody else (~10 min)	Readings • new textbook - Tamara Munzner. Visualization Analysis and Design. A K Peters Visualization Series. CRC Press. Oct 2014, to appear. - advance electronic copy through early October • password protected - can buy bundled ebook+hardcopy from CRC (less than Amazon hardcopy price) • http://www.cs.ubc.ca/~tmm/vadbook/ • papers - links posted on course page - if DL links, use library EZproxy from off campus • readings posted by one week before class • usually one chapter + one paper per class session
Participation • written questions on reading in advance (18% of total mark) - due 12pm (30 min before class) - 2 on chapter, I on paper - bring printout or laptop with you, springboard for discussion • discussion in class (12% of total mark) • attendance expected - tell me in advance if you'll miss class (and why) - question credit still possible if submitted in advance - tell when you recover if you were ill	 Questions questions or comments fine to be less formal than written report correct grammar and spelling still expected be concise: a few sentences is good, one paragraph max! should be thoughtful, show you've read and reflected poor to ask something trivial to look up ok to ask for clarification of genuinely confusing section examples on http://www.cs.ubc.ca/~tmm/courses/547-14/structure.html 	Marking • 50% Project - 1% Pitches - 10% Proposal - 4% Status Updates - 15% Final Presentation - 20% Final Report - 50% Content • 20% Presentations - 75% Content: Summary 50%, Analysis 25%, Critique 25% - 25% Delivery: Presentation Style 50%, Slide Quality 50% • 30% Participation - 60% Written Questions - 40% In-Class Discussion	Projects • solo, or group of 2, or group of 3 - amount of work commensurate with group size • stages - pitches (in class), 5%: Oct 15 - meetings (individual, outside class): Oct 20-30 - proposals (written): Oct 31, 5pm - status updates (written): Nov 14, 5pm - final presentations (oral): Dec 12, noon-TBD - final reports (written): Dec 15, 5pm • resources - software, data - project ideas - guest lecture: Brehmer on toolkits/resources
Projects • programming - common case - I will only consider supervising students who do programming projects - three types • problem-driven design studies (target specific task/data) • technique-driven (explore design choice space for encoding or interaction idiom) • algorithm implementation (as described in previous paper) • analysis - use existing tools on dataset - detailed domain survey - particularly suitable for non-CS students • survey - very detailed domain survey - particularly suitable for non-CS students	Projects • BYOD (Bring Your Own Data) —you have your own data to analyze —your thesis/research topic (very common case) —dovetail with another course (sometime possible but timing can be difficult) • project possibilities will be posted on resource page soon —http://www.cs.ubc.ca/~tmm/courses/547-14/resources.html	Presentations • last two weeks of class • present, analyze, and critique one paper — send me topic choices by Oct 24, I will assign papers accordingly • expectations — slides required — summary/description important, but also your own thoughts • analysis according to book framework • critique of strengths and weaknesses • timing — exact times TBD depending on enrollment — likely around 10 minutes each • topics at http://www.cs.ubc.ca/~tmm/courses/547-14/presentations.html	 Course Goals twofold goal specific: teach you some infovis generic: teach you how to be a better researcher feedback through detailed written comments on writing and presenting both content and style at level of paper review for your final project goal: within a week or so fast marking for reading questions great/good/ok/poor/zero goal: turn around before next class one week at most
 Finding me email is the best way to reach me: tmm@cs.ubc.ca office hours Mon right after class (2-3pm) – or by appointment X661 (X-Wing of ICICS/CS bldg) course page is font of all information – don't forget to refresh, frequent updates – http://www.cs.ubc.ca/~tmm/courses/547-14 	Chapters/Topics - What's Vis and Why Do It? - What: Data Abstractions - Why: Task Abstractions - Analysis: Four Levels for Validation - Marks and Channels - Rules of Thumb - Arrange Tables - Arrange Spatial Data - Arrange Networks - Map Color and Other Channels - Manipulate View - Facet Into Multiple Views - Reduce Items and Attributes - Analysis Case Studies	Topics Preview	Defining visualization (vis) Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively. Why?

Analysis Case Studies

Embed: Focus+Context

- combine information within single view
- elide
- selectively filter and aggregate
- superimpose layer
- -local lens
- distortion design choices
- region shape: radial, rectilinear, complex
- -how many regions: one, many
- region extent: local, global
- -interaction metaphor

→ Embed

→ Elide Data

→ Superimpose Layer

→ Distort Geometry

49

