Chapter 10: Color Paper: Representing Colors as Three Numbers

Tamara Munzner

Department of Computer Science University of British Columbia

UBC CPSC 547: Information Visualization

Mon Oct 202014

Colors as Three Numbers

- trichromacy
- different cone responses: area function of wavelength
- for a given spectrum
- multiply by response curve
- integrate to get response

Metamerism

- brain sees only cone response
- different spectra appear the same

[Representing Colors as Three Numbers, Stone, IEEE Computer Graphics and Applications, 25(4), July 2005, pp. 78-85]

Color Matching Experiments

Color Matching Functions

Stiles-Burch, negative lobe

Wavelength (nm)

CIE standard, all positive

Wavelength (nm)

Spectral Sensitivity

IR

Visible Spectrum

Color Spaces

- RGB: convenient for machines
-these three channels *not* separable
- CIE XYZ: from color matching functions
- perceptually based
- L*a*b*: from XYZ + reference whitepoint
- perceptually linear, so safe to interpolate
- HLS: simple transformation of RGB
-good: separates out lightness from hue and saturation
- bad: lightness not true luminance
- careful: only pseudo-perceptual

Color：Luminance，saturation，hue
－ 3 channels
－identity for categorical
－hue
－magnitude for ordered
－luminance
－saturation

Luminance

Saturation

Hue
\square

\square

\square
\square
\square
\square
－other common color spaces
－RGB：poor choice for visual encoding
－HSL：better，but beware
－lightness $=$ luminance
－transparency

Corners of the RGB
color cube
L from HLS
All the same

Luminance values
\square
\square
\square \square
 \square
\square
\square
－useful for creating visual layers
－but cannot combine with luminance or saturation

Colormaps

\rightarrow Categorical
Binary

\rightarrow Diverging

\rightarrow Sequential

\rightarrow Bivariate

\rightarrow Ordered

Categorical

Sequential

- categorical limits: noncontiguous
-6-I2 bins hue/color
- far fewer if colorblind

$-10+1$

- 3-4 bins luminance, saturation
- size heavily affects salience
after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edulfaculty/c/a/cab38/ColorSch/Schemes.html]
- use high saturation for small regions, low saturation for large

Categorical color: Discriminability constraints

- noncontiguous small regions of color: only 6-12 bins

[^0]
Ordered color: Rainbow is poor default

- problems
- perceptually unordered
- perceptually nonlinear
- benefits
- fine-grained structure visible and nameable
- alternatives
- fewer hues for large-scale structure
- multiple hues with monotonically increasing luminance for fine-grained
- segmented rainbows good for categorical, ok for binned

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/lllloydt/color/color.HTM]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and.Treinish. Proc. IEEE Visualization (Vis), pp. I I 8-I 25, I995.]

Map other channels

- size
- length accurate, 2D area ok, 3D volume poor
- angle
- nonlinear accuracy
- horizontal, vertical, exact diagonal
- shape
- complex combination of lower-level primitives
- many bins
- motion
- highly separable against static
- binary: great for highlighting
- use with care to avoid irritation
Θ Size, Angle, Curvature, ...
\rightarrow Length
\rightarrow Angle
\rightarrow Area
\rightarrow Curvature
\rightarrow Volume
Θ Shape
$+\square \square \Delta$
Θ Motion
\rightarrow Motion
\quad Direction, Rate,

Frequency, ...

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
- Chap I0: Map Color and Other Channels
- ColorBrewer, Brewer.
-http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006.
-http://www.stonesc.com/Vis06
- A Field Guide to Digital Color. Stone.AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), I4-I7.
- Visual Thinking for Design.Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition.Ware. Morgan Kaufmann /Academic Press, 2004.

[^0]: [Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

