Chapter 10: Color Paper: Representing Colors as Three Numbers

Tamara Munzner

Department of Computer Science University of British Columbia

UBC CPSC 547: Information Visualization Mon Oct 20 2014

http://www.cs.ubc.ca/~tmm/courses/547-14#chap10

Colors as Three Numbers

- trichromacy
 - different cone responses: area function of wavelength
 - -for a given spectrum
 - multiply by response curve
 - integrate to get response

[Representing Colors as Three Numbers, Stone, IEEE Computer Graphics and Applications, 25(4), July 2005, pp. 78-85]

Metamerism

- brain sees only cone response
 - different spectra appear the same

Color Matching Experiments

Color Matching Functions

Spectral Sensitivity

Color Spaces

- RGB: convenient for machines
 - -these three channels *not* separable
- CIE XYZ: from color matching functions
 - -perceptually based
- L*a*b*: from XYZ + reference whitepoint
 - -perceptually linear, so safe to interpolate
- HLS: simple transformation of RGB
 - -good: separates out lightness from hue and saturation
 - -bad: lightness not true luminance
 - careful: only pseudo-perceptual

Color: Luminance, saturation, hue

- 3 channels
 - identity for categorical
 - hue
 - magnitude for ordered
 - luminance
 - saturation

- Luminance
- Saturation
- Hue

- other common color spaces
 - -RGB: poor choice for visual encoding
 - HSL: better, but beware
 - lightness ≠ luminance
- transparency
 - -useful for creating visual layers
 - but cannot combine with luminance or saturation

L from HLS All the same

Luminance values

Colormaps

- categorical limits: noncontiguous
 - -6-12 bins hue/color
 - far fewer if colorblind
 - 3-4 bins luminance, saturation
 - size heavily affects salience
 - use high saturation for small regions, low saturation for large

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Categorical color: Discriminability constraints

• noncontiguous small regions of color: only 6-12 bins

[Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. Sinha and Meller. BMC Bioinformatics, 8:82, 2007.]

Ordered color: Rainbow is poor default

problems

- perceptually unordered
- perceptually nonlinear

benefits

fine-grained structure visible and nameable

alternatives

- fewer hues for large-scale structure
- multiple hues with monotonically increasing luminance for fine-grained
- segmented rainbows good for categorical, ok for binned

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/I/lloydt/color/color.HTM]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

Map other channels

- size
 - -length accurate, 2D area ok, 3D volume poor
- angle
 - nonlinear accuracy
 - horizontal, vertical, exact diagonal
- shape
 - complex combination of lower-level primitives
 - -many bins
- motion
 - -highly separable against static
 - binary: great for highlighting
 - -use with care to avoid irritation

→ Volume

- Motion
 - → Motion

 Direction, Rate,

 Frequency, ...

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
 - -http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006.
 - -http://www.stonesc.com/Vis06
- A Field Guide to Digital Color. Stone. AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14–17.
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann / Academic Press, 2004.