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ABSTRACT
The exploding growth of digital data in the information era
and its immensurable potential value has called for different
types of data-driven techniques to exploit its value for fur-
ther applications. Information visualization and data min-
ing are two research field with such goal. While the two com-
munities advocates different approaches of problem solving,
the vision of combining the sophisticated algorithmic tech-
niques from data mining as well as the intuitivity and inter-
activity of information visualization is tempting. In this pa-
per, we attempt to survery recent researches and real world
systems integrating the wisdom in two fields towards more
effective and efficient data analytics. More specifically, we
study the intersection from a data mining point of view, ex-
plore how information vis can be used to complement and
improve different stages of data mining through established
theories for optimized visual presentation as well as practi-
cal toolsets for rapid development. We organize the survey
by identifying three main stages of typical process of data
mining, the preliminery analysis of data, the model con-
struction, as well as the model evaluation, and study how
each stage can benefit from information visualization.

1. INTRODUCTION
The exploding growth of digital datasets in the informa-

tion era and its immensurable potential value has called for
different types of techniques to extract its value for further
data-driven applications. Most analytical techniques such
as is commonly defined as neural networks, association rule,
numerous clustering and classification methods are covered
in the field of Data Mining, ”the extraction of implicit, pre-
viously unknown, and potentially useful information from
data.”[119] On the other hand, the field of Information Visu-
alization(InfoVis) focuses on visual reproduction of the data.
The rationale is that ”visual representations and interaction
techniques take advantage of the human eye’s broad band-
width pathway into the mind to allow users to see, explore,
and understand large amounts of information at once.” [108]
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Both fields hold the aim of processing real world data to
facilitate further application.However there is a sharp differ-
ence between the two subject. InfoVis primarily focus on
producing output of graphic format based on original struc-
ture of data which usually involves human sense making[90]
to further the analysis. Data mining, on the other hand, use
automatic algorithmic techniques in such analysis process,
to discover derived structure of data or directly provide off
the shelf prediction for the objective of interest[119].

While the two communities advocates different approaches
of problem solving and partly represent contrary side of the
long term phylosophical debate of Hypothesis testing vs. ex-
ploratory data analysis[55], the noticecable overlap of ulti-
mate goal as well as application scenario has lead to possible
light of collaboration. The vision of combining the sophis-
cated algorithmic techniques from data mining as well as
the intuitivity and interactivity of information vis is tempt-
ing. In this paper, we attempt to survery recent researches
and real world systems integrating the wisdom in two fields
towards more effective and efficient data analytics. More
specifically, we study the intersection from a data mining
point of view, explore how information vis can be used to
complement and improve different stages of data mining
through established theories for optimized visual presenta-
tion as well as practical toolsets for rapid development. Pre-
vious

We organize the survey by identifying three main stages of
typical process of data mining and study how each stage can
benefit from information visualization.Data mining research
usually come with the stage of preliminery analysis of
data to show the basic characterstic of data before heavy
data mining algorithm is applied, followed by the stage of
model construction, then finally the model evaluation.
We devote section 2 to investigate how InfoVis can be of use
in this context. More specifically, we explore in the task usu-
ally termed as preliminery analysis of data, how InfoVis
can help human discover patterns by browse and navigation
through the raw data. Then we devote section 3 to survey
how InfoVis can help interactive model construction in
which visualization is provided for partial results of the cur-
rent construction of model while user can provide feedback
to change the behavior of the process. We investigate visu-
alization of model evaluation in section 4 to study how
to use the InfoVis to convey the result intuitively to facili-
tate the process of understanding and further adjusting the
model, and finally conclude in section 6.

2. RELATED WORK



There exist several previous survey that have overlaps
with our work includes []. Keim’s survey [] on Visual An-
alytics focuses on the different graphical visualization tech-
nique and how they are used in real visualization systems.
Oliveira’s survey [] on Visual Data Mining gives an exten-
sive discussion on basic terminologies in data analysis and
data mining. Different visualization technique as well as
Formal Models of Visualization are discussed. They also
talked about maching learning model based visualization,
where several example system are introduced. In contrast
to above, our work take a data mining point of view, sur-
veyed different how different information vis can be used to
complement and improve the preliminery analysis of data,
model construction, model evaluation by providing compre-
hensive review with well organized taxonomy.

3. VISUALIZATION FOR PRELIMINARY DATA
ANALYSIS

The task of data mining typically come with the a light
weight stage of preliminery analysis of data before main
data mining algorithm is applied. The goal is to show the
basic characterstic of data and help form a quick grasp of in-
tuitive understanding of the data to gather information. The
insight formed in this stage can greatly help data miners to
formulate the strategy of further heavy weighted analysis
inspire and facilitate further data mining approach. The vi-
sualization preliminery analysis of data, involves techniques
for visual represention, arrangement and simple manipula-
tion the data.

Here we provide an overview for the off-the-shelf visual-
ization techniques both from recent data mining and visual
data analytics research or classical statistical plot technique,
grouped by different type of data to be visualized.

3.1 Scalar value data visualization
In this section we review some basic visualization tech-

niques for visualizing single numbers, which serve the foun-
dation for more complex patterns. Here the important ques-
tions include how big the value is, or how big compared
to other single values, or how the groups of values are dis-
tributed, or how it is changing according to external dimen-
sion such as the time. Here we allow the scalar value to be
index by one or more attribues as the time in time-series
data [44]. The visualization technique can be classified ac-
cording to these different purposes.

For a small number of values, graphically rendering may
help to intepret how each individual value means by showing
how big the values are and performing comparison across
multiple values. To serve these purpose, the technique of bar
chart[85] display values using horizontal aligned bars with
length corresponding to the scale of value. It is is good for
letting users focus on distinct scores indexed by a distinctive
feature, such as nomial attributes. To further group the
data, Stacked bar charts to aggregate each group of values
into one bar, using the length of bar as well as subcomponent
to show the aggregation in addition to lookup individual
values.

3.1.1 Scalar value distribution
For a large group of values, one may be interested in the

overall trend and aggregation of these values instead of ob-
serving individual ones. More specifically, here we are inter-
ested in visualizing the distribution of scalar values.

A straightforward way is to plot the corresponding prob-
ability against different range of values. When the range is
discretly partitioned into bins, the plot with each bar de-
noting different frequencies are called histograms [85], alter-
natively we can render the graph of probability distribution
function(p.d.f.) using standard function plot [25].

Figure 1: showing the same distribution with box-
plot and probability density function

The the box and whiskers plot is concise idiom of plots for
showing distribution using a box with emphasis on some im-
portant quantitive attribute including the median, the first
and third quartiles and the chosen threshold for outliers [80].
Outliers are shown as individual dots. The boxplot is good
for showing the attributes of a distribution such as spread,
skewness, as well as comparing across multiple distribution.

There are many variants of boxplots that augment the ba-
sic visual encoding with more information. Variable width
box plots illustrate the size of each group whose data is be-
ing plotted by making the width of the box proportional
to the size of the group. A popular convention is to make
the box width proportional to the square root of the size of
the group. Important variants using different density esiti-
mation methods and preprocessing include the vase plot and
voilin plot. [80] A bagplot, or starburst plot [95] is a method
in robust statistics for visualizing two-dimensional statisti-
cal data, analogous to the one-dimensional box plot. It uses
shapes of different enclosing polygons to visualize the loca-
tion, spread, skewness, and outliers for a two dimensional
distribution. In statistical graphics, the functional boxplot
is an informative exploratory tool that has been proposed
for visualizing functional data.[105] Again analogous to the
classical boxplot, it uses of the envelope of the 50% central
region, the median curve and the maximum non-outlying
envelope to visualize the distribution of function.

3.1.2 visualizing scalar value along other dimensions
Scalar values usually come along with other attributes of

the data, one particular interest is to study the relation be-
tween the scalar value and other dimensions of data, for



example time series analysis for stock price. To serve the
purpose of how the scalar value is changing according to
the external dimensions, we describe the family of scatter-
plots for one dimension index as well as techniques for two
dimension index or spatial index.

Figure 2: a 2d scatterplot with contour and a calcu-
lated regression line

The idiom of scatterplots [65] encodes two index dimen-
sion using both the vertical and horizontal spatial position,
and the each data is represented with a point mark. Scatter-
plots are effective for the abstract tasks of providing overviews
and characterizing distributions, and specifically for finding
outliers and extreme values. Scatterplots are also highly
effective for the abstract task of judging the correlation be-
tween two attributes. On the scatterplots, the derived data
of a calculated regression line is often superimposed on the
raw scatterplot of points. Additional transformations such
as log-plot are useful for better comparing the relationship.
More generally, the idiom of banking to 45 degree computes
the best aspect ratio, i.e. the the ratio of width to height,
for a chart in order to maximize the number of line segments
that fall close to the diagonal. When the external dimen-
sion serves as index for the scalar value, it is also called dot
chart[85]. If we further incorporate line connection marks
running between the points to emphasize the trend through
the dimension of index, it’s called line charts. One impor-
tant difference between these two is that dot chart is more
applied to nominal index while line charts is for ordered in-
dex.

For the case that two dimension index, we encode the
each index dimension as different axes in a matrix, with the
value encoded using color channel. An important compo-
nent is the how to map values into color. There are many
different such techniques color schemes that can be used to
illustrate the heatmap, with perceptual advantages and dis-
advantages for each [46, 41]. Another special case is the
spatial data index, where the external dimensions map to
specific 2 dimensional or 3 dimensional geographic locations.
For spatial data, the external dimension naturally lend it-
self to the coordinates for rendering. For the value itself, one
way of handling is to map it to a non-spatial visual channel,
e.g. the color in Choropleth Maps. Alternative way to in-
troducing a new channel but to visualize the level set [103]
for each specific level of the value along the dimensions, such
as topographic terrain map in geometry in for the case of 2
dimensional index [32]. In 3 dimensional, however, occlusion
becomes a major problem. Interactive method is commonly

introduced to let user observe different level set at different
time, or we can carefully choose a subset of level sets with
little occlusion to be shown at once [68].

3.2 Multi-dimensional data visualization
The analysis of Multi-dimensional data requires inspection

of multiple attributes at the same time to investigating joint
semantics meaning, or specific types of relations between dif-
ferent dimensions. One natural idea is to treat the problem
as visualizing vector value indexed by different other dimen-
sion as opposed to visualizing scalar value, use the similar
encodings techniques of coordinate but the specific types of
encoding for vectors, of which the major technique is glyph.
Alternatively, we take a wholistic view of all the columns
of values to be shown and visual each columns with het-
erogenous encoding to facilitate comparison and cognition
across every column of the value. In addition to the general
purpose techniques above, we also investigate visualization
technique for the specific relation of bipartite flow.

3.2.1 glyph based vector visualization
The glyph is a general term for visualization of a mul-

tidimensional data record which can be placed in a specific
location in the plot. [115] It has the ability to encode a set of
values in contrast to a simple point mark that only encodes
the location and therefore is a general way of augmenting
typical point mark based visualization. That is, instead of
visualizing a scalar field, here we are visualizing a vector
field or even a tensor field. A glyph can be designed by as-
sociate the element of vector with position (1, 2, or 3-D),
size (length, area, or volume), shape, orientation, material
(hue, saturation, intensity, texture, or opacity), line style
(width, dashes, or tapers), and dynamics (speed of motion,
direction of motion, rate of flashing).[115, 14]

The using of glyph is ubiquitous. In the scatterplot, if
we use glyph at Each point to incorporate additional visual
channels such as the size, we will have bubble chart[85]. For
the task of showing 2 dimension vector field, we can render
each vector using the technique of flow glyph[120], which
usually encodes magnitude with the length of the stem, di-
rection with arrow orientation, or more complex patterns
such as radial axes [57]. More generally, we can also visual-
ize a tensor field by encoding a matrix as a glyph[67]. Tensor
fields typically contain a matrix at each cell in the field, cap-
turing more complex structure such as stress, conductivity,
curvature, and diffusivity. To augment the vector we can
use a geometric shape to encode the the eigenvalues of the
tensor matrix from the eigenvectors with shape, orientation,
and further visual channels. Glyph can also be incorporated
with icons for better expressiveness. The Chernoff face [23]
is a famous example for encoding multivariate attribute as a
cartoon face, where different parts of the face including eyes,
ears and nose are used to encode values of the variables by
their shape, size and orientation.

3.2.2 similarly encoding each dimension
Instead of vector value index by different dimensions, we

can treat the whole data as a multivariate table to visual
each columns with heterogenous encoding to assist compar-
ison and cognition across every column of the value.

A scatterplot matrix (SPLOM) is a matrix of scatterplot
showing pairwise relation for the attributes. The key is a
simple derived attribute that is the same for both the rows



Figure 3: Several example of glyphs (a) Stick figures form textural patterns [PG88]. (b) Dense glyph packing
for diffusion tensor data [KW06]. (c) Helix glyphs on maps for analyzing cyclic temporal patterns for two
diseases [TSWS05]. (d) The local flow probe can simultaneously depict a multitude of different variables
[dLvW93]

and the columns: an index listing all the attributes in the
original dataset. SPLOMs are heavily used for the abstract
tasks of finding correlations, trends, and outliers, in keeping
with the usage of their constituent scatterplot components.
Certain systems, such as [37], allow the rows and columns
of a SPLOM to be reordered, for added flexibility .

In addition to each off-diagonal plot mapping a pair of
non-identical dimensions, [29] study the use of diagonal plots.
In their work, histograms, 1D plots and 2D plots are drawn
in the diagonal plots of the scatterplots matrix. In 1D plots,
the data are assumed to have order, and they are projected
in this order. In 2D plots, the data are assumed to have spa-
tial information, and they are projected onto locations based
on these spatial attributes using color to represent the di-
mension value. The plots and the scatterplots are linked
together by brushing. Brushing is applied on the diagonal
plots and regular scatterplots, together with other further
visualizations in the system, including parallel coordinates
and glyphs.

In [112] they develop several additive elements of the a
scatterplot matrix (SPLOM). Their first variant of the SPLOM
can order scatterplots according to some ranking or metric
of interest. Secondly, they described a novel arrangement of
scatterplots called the Scatterplot Staircase (SPLOS) that
requires less space than a traditional scatterplot matrix. It
works by showing only the scatterplots of consecutive pairs
of dimensions, arranged in a staircase pattern, such that ad-
jacent scatterplots share an axis along their common edge.
Lastly, they provide a hybrid technique for a scatterplot ma-
trix (SPLOM) and parallel coordinates called the Parallel
Scatterplot Matrix (PSPLOM) based on the idea that ro-
tation around the vertical axes causes the visualization to
transition from a sequence of scatterplots to a PCP.

Another major family of high dimensional data visualiza-
tion is the Parallel Coordinates techniques, in particular for
data mining purposes [1]. Parallel Coordinates encode di-
mensions as vertical axes Parallel to each other, rather than
perpendicularly at right angles. For each data instance is
encodes as a polygonal line which intersects vertical axes
at corresponding locations, rather than a point at specific
horizontal and vertical positions. Parallel coordinates are
more often used for other tasks, including overview over all
attributes, finding the range of individual attributes, select-
ing a range of items, and outlier detection. For example,
one can observe the correlation across multiple attributes
by checking the directions and angles of different polygonal
lines of the data instances. In Parallel Coordinates, the or-

der of the axes is critical for finding features, and in typical
data analysis many reorderings will need to be tried. Some
authors have come up with ordering heuristics which may
create illuminating orderings.[114].

Instead of a polygonal line, a smooth parallel coordinate
plot is encode each data item with splines [83]. In the
smooth plot, every observation is mapped into a parametric
line (or curve), which is smooth, continuous on the axes, and
orthogonal to each parallel axis using shape manipulation.
This design emphasizes the quantization level for each data
attribute [82].

To conquer the major challenge is the ordering of axes in
parallel coordinate plot, as any axis can have at most two
neighbors when placed in parallel on a 2D plane, [1] extend
this concept to a 3D visualization space so they can place
several axes next to each other. They provide a system
to explore complex data sets using 3D-parallel-coordinate-
trees, along with a number of approaches to arrange the
axes.

Figure 4: illustration of 3D-Parallel-Coordinate-
Trees

As an application on visual exploration of large and high-
dimensional real world datasets, the authors of [35] applied
parallel coordinate plot based Visual Analytics on multidi-
mensional gene expression datasets. Their approach is to
visualize the gene expression conjoined with statistical data
together in the parallel coordinate plot. They present a new
application, SpRay, designed for the visual exploration of
gene expression data. They investigate the visual analysis



Figure 5: SpRay analysis on Yeast cell cycle dataset

of gene expression data as generated by microarray exper-
iments, combine refined visual exploration with statistical
methods to a visual analytics approach that proved to be
particularly successful in this application domain. Figure
5 The first 18 dimensions of this parallel coordinate plot
(PCP) correspond to the gene expression values at the 18
time points for the a factor arrested cells. The last three
dimensions correspond to the values obtained by the har-
monic regression analysis (HRA): the coefficient of deter-
mination, the zero-phase angle, and the amplitude of the
estimated curve. The polylines of the PCP are colored by
the zero-phase dimension, so that the periodic changes of
the transcript levels of groups of genes can be very easily
identified. They demonstrate the usefulness on several mul-
tidimensional gene expression datasets from different bioin-
formatics applications such as finding periodic patterns in
microarray data, emphasizing relevant expression patterns,
outlier detection.

3.2.3 3D Visual Data Mining

(a) Scatterplots (b) Equalized Density Sur-
faces

Figure 6: Equalized Density Surfaces technique for
3DVDM

The 3D Visual Data Mining (3DVDM) is a promising re-
search area that map data records into a 3D place and use
geometric method for analysis.

[78] introduce and evaluate nested surfaces for the pur-
pose of 3D visual data mining. Nested surfaces enclose the
data at various density levels and facilitates the detection
of multiple structures, which is important for data mining
where the less obvious relationships are often the most inter-

esting ones. They give a topology-based definition of nested
surfaces and establish a relationship to the density of the
data. Algorithms are given that compute surface grids and
surface contours based on an estimated PDF which makes
our method independent of the data. Real time interaction
can be achieved by precomputing and storing small density
estimates.

[12] investigated the different 3D Visual Data Mining tech-
nique and illustrate the use with clickstream data analysis.
They try to leap the step from statistical charts to com-
prehensive information about customer behavior by propos-
ing a density surface based analysis of 3D data that uses
state-of-the-art interaction techniques for interpretation of
the data at the conceptual level. Animation, conditional
analyzes, equalization, and windowing are crucial interac-
tion techniques in their system, making it possible to ex-
plore the data at different granularity levels, which leads
to a robust interpretation. Fig. 3.2.3 illustrates the use of
equalize the structures in support of the exploration of not
equally pronounced structures, which clearly shows that the
Equalization of Structures helps to identify structures in the
data.

3.3 Bipartite flow visualization
In this section we investigate the visualization technique

for a specific type of relation between datas, the flow inten-
sity for two bipartite dimensions, to show how visual idiom
can be developed based on the nature of specific type of
relations.

(a) Computed Lattice for a bipartite relationship

(b) 3D visualization for binary heavy hitters

Figure 7: Hierarchical heavy hitters visualization

Hierarchical heavy hitters on for two-dimensional data is
a widely adopted technique for identification of significant
relationship between a large set of bipartite relationships,



Figure 8: Nflowvis for network traffic analysis

developed from the concept of hierarchical heavy hitters
(HHHs) from database theory [28]. [79] provide a visual-
ization tool to compute and investigate hierarchical heavy
hitters for two-dimensional data. Given a two-dimensional
categorical dataset with hierarchical attribute values and a
threshold, the task is to visualize the HHHs in the three di-
mensional space. They first perform aggregation to reduce
the large set of binary relationships into a lattice through
grouping, filtering and balance, and encode each hierarchy
of attributes with different Level Planes for each of the two
part of the entities where conceptual inclusion in indicated
by one covering another in 3D spaces.

[77] developed a visual analytics system of NFlowVis to
investigate the network flow between different local hosts
and external IPs, with application in real world network
attack detect tion in computer network. They introduced
the home centric flow visualization where the local hosts that
are related to attacking hosts are visualised in a TreeMap
and attacker hosts are placed at the borders. Flows between
attackers and local hosts are visualised using splines. The
colour of the local hosts and their size and the colour of
the splines can be used to represent various properties, such
as packets or bytes transferred. Thresholds can be used
to hide splines with a low traffic and highlight splines with
a high traffic to the attackers as shown in the screenshot
of NFlowVis in Figure 8. They also proposed graph-based
flow visualisation. The main advantage of the graph view is
that it emphasizes structural properties of the connectivity
between hosts, such as groups of interconnected hosts.

3.4 Network Data
Network Data arises in many important applications, such

as from online social media, and physical or biological inter-
action network, and more generally a set of entities with
interdependencies among others , underscored by the surge
of social media over the recent years, such as Twitter and
Facebook [26]. Due to its sheer importance, tons of work

has been done for visualizating such kind of data. There
are many widely used graph visualizing systems including
UCINet, JUNG, and GUESS, GraphViz, Pajek, Visone [13,
88, 63], used by different communities. Two main family of
Network Data encoding techniques are node-link diagrams
and adjacency matrix views.

3.4.1 Node-link diagrams

Figure 9: Vizster for attribute search enhanced
node–link diagrams

A straightforward way of encoding nodes and edges in net-
work data is with nodeâĂŞlink diagrams, where nodes are
drawn as point marks and the links connecting them are
drawn as line marks. One important choice of visualization
is the how to arrange the layout of nodes and links in the
plot, which is crucial for revealing connection patterns such
as densely connected communities structure in the network.
Common layout techniques for networks include simple grid
method such as Orthogonal layout, Arc diagrams, Circular
layout graph structure based method such as Layered graph
drawing, Spectral layout methods and Dominance drawing,
physical computation driven methods such as force based
layout and Annealed layout[15, 31, 113, 107]. Since many
visualization task need to deal with very large network, how
to effectively present such amount of data becomes an essen-
tial challenge. reducing technique becomes necessary. It is
typically done by aggregating nodes into communities, and
treat these as supernodes to form a reduced graph upon.
Multilevel hierarchy can be incorporated through techniques
such as FM3, TopoLayout, sfdp [61, 43, 7].

There are a large number of network visualization sys-
tems incorporating the node-link diagram together with fur-
ther visualization module for nodes and links incorporating
richer meta attributes. One good example is Vizster [50].
They have designed a complex view builds upon familiar
node-link network layouts to contribute customized tech-
niques. Important techniques include exploring connectivity
in large graph structures with graded color scale encoding
on the path, supporting visual search and analysis with key-
word search and attribute filtering, and automatically iden-
tifying and visualizing community structures. Fig. 9 shows
a screen shot of the main interface Vizster visualization sys-
tem. The left side is the main network display with controls
for community analysis and keyword search. The right side
consists of a profile panel showing a selected node’s meta



information. Words in the profile panel that occur in more
than one profile will highlight on mouse-over; clicking these
words will initiate searches for those terms. The checkboxes
in the profile panel will initiate an ”X-ray” view of that par-
ticular profile dimension.

Special effort has been on using different link view tech-
nique on real world social network exploration for specific
analytic purpose. [99] demonstrated the reflection of the an-
alytical process in real world case study for social network
analysis on link view More specifically, the case illustrates
the use of visual discovery for identifying fraudulent activity
in terms of the profile of the network patterns between at-
tributes in the data set. The input of the brief from the com-
pany was essentially open-ended and without specification,
making the case in the realm of âĂŸdiscovery’ as there is lit-
tle or no preliminary knowledge of what are fraudulent pat-
terns. They use the link view technique of overview, close-
up, graphical irregularity discovery, attribute visualization,
detail information panel, link navigation to illustrate the dis-
covery process of Visual Models Generation, Cognition and
sense-making and Discovery. Similar link view analytics is
done by [62]. They visualize the network trading pattern in
stock market, analyze suspected behavior of domination of
the stock price on the network, and pull out historical graph
to identify frauds by patterns matching.

3.4.2 Adjacency matrix view
Social networks usually display a locally dense pattern,

which makes node-link displays less effective on these re-
gions. An alternate way of visualizing network is or adja-
cency matrix view, where the connection pattern is treated
as an adjacency matrix. The visualization then arrange
nodes as rows and columns of a matrix and visualize different
cell of the matrix according to the corresponding adjacency
matrix element. One important design choice in the visual-
ization is the the ordering of such columns, which is usually
achieved through ranking by attributes, ranking by cluster,
by the sequence of a traversal algorithm such as TSP [52].

Figure 10: MatLink for links and highlight enhanced
matrix view

Figure 11: NodeTrix using matrix view for local
communities analysis

[53] presents a comprehensive adjacency matrix view based
visualization system incorporating several further augmen-
tation. Their system MatLink , a matrix representation with
links overlaid on its borders and interactive drawing of ad-
ditional links and highlighting of the cells included in a path
from the cell under the mouse pointer. Many common anal-
ysis tasks require following paths throughout the network,
which is difficult on matrices. They propose the module of
link augmentation. MatLink displays the full graph using
a linearized node-link representation called the full linear
graph. Its links are curved lines drawn interior to the vertex
displays at the top and left edges of the matrix. Links are
drawn over the matrix cells, using transparency to avoid hid-
ing them. Longer links are drawn above shorter ones. The
linear graph conveys detailed and long-range structure to-
gether without hiding any detail of the matrix: a feeling for
link densities and sub-graphs, but also paths and cut points.
In addition they also introduce the heavy interaction to the
matrix view. When the user has selected a vertex in the rows
or columns, it is highlighted in red, and the shortest path
between this vertex and the one currently under the mouse
pointer is drawn in green on the vertex area, mirror-imaged
to the links drawn in the matrix border.

Another interesting direction is the hybrid representation
for networks that combines the advantages of both represen-
tations: node-link diagrams are used to show the global link-
age pattern, adjacency matrices to better reveal connection
pattern in local communities. The system of NodeTrix [51]
present such a technique to partially import the the matrix
view of network to resolve the basic dilemma of being read-
able both for the link view for global structure of the network
and also for matrix view analysis of local communities. they
also allow user to create a NodeTrix visualization by drag-
ging selections to and from node-link and matrix forms. Fig.
11 shows a case study on InfoVis 2004 coauthorship dataset
to identity three types of different inner community struc-
ture, the Cross pattern between Shneiderman and his col-
laborators, Block pattern between Researchers at Berkeley,
Intermediate pattern between Roth and his collaborators at
CMU.

3.5 Text Data
The booming of the World Wide Web comes with enor-

mous amount of unstructured data beyond the multidimen-
sional framework described above. One important type of
such data is text. Most text analysis method involved a vec-
torization approach with a ”bag of words” assumption which
typically involve tokenization of the raw text, normalization
or standardization of the tokens, and finally selection of the
final features from the results. However, the sequence of



words and the natural context is also important for aiding
such analysis. We organize the text analysis method into
two clusters. First we study the visualization for text analy-
sis techniques on high dimensional space. Next we focus on
visualization for analysis techniques with dimension reduc-
tion.

3.5.1 Analysis on high dimensional space
A documenht can be thought of a sequence formed by

elements from a huge vocabulary. In this section we dis-
ciss some text analysis techniques that keep the high space
nature as is.

Figure 12: ThemeRiver system using the word fre-
quency vector to analyze the text

The word frequency vector for a document is a straitfor-
ward and effective way of capture information from text,
especially when the feature set is carefully chosen. The
ThemeRiver [48] system is an example of using the for text
analysis. They captures the document using a frequency
vector for a well chosen vocabulary, each indicating a spe-
cific ”theme”. They then visualize the changes in these ”the-
matic” words in the context of a time line and corresponding
external events to allows a user to discern patterns that sug-
gest relationships or trends. They use a river metaphor to
convey several key notions. The document collection’s time
line, selected thematic content, and thematic strength are in-
dicated by the river’s directed flow, composition, and chang-
ing width, respectively. Colored currents flowing within the
river represent individual themes. A current’s vertical width
narrows or broadens to indicate decreases or increases in the
strength of the individual theme.

Some visualization took advantage of semantic analysis
technique. For example, the TAKMI text mining system[87],
in which text from call center complaints were analyzed to
help staff members determine which problems with a prod-
uct receive increasing numbers of complaints over time. The
interface shows the distribution of entity mentions over time,
using the brushing-and-linking technique to connect selected
topics to bar charts. The BETA system [81] used entity

Figure 13: The BETA system using entity based
analysis to help the search query visualization

based analysis to help the search query visualization. Fig-
ure 13 shows the results of a query on ibm webfountain. The
search results list on the right hand side was augmented with
a TileBars display [49] showing the location of term hits in
color and the relative lengths of the documents. Along the
left hand side was shown a 3D bar chart of occurrences of en-
tity names plotted against Web domains, as well as a sorted
bar chart showing frequency of entity names across domains.

Figure 14: TextArc system for concordance visual-
ization

In the field of literature analysis it is commonplace to
analyze a text or a collection of texts by extracting con-
cordance: an alphabetical index of all the words in a text,
showing those words in the contexts in which they appear.
The Word Tree [117] display the concordence relation using
a tree structure, allowing the user to view words or phrases
which precede or follow a given word, thus showing the con-
texts in which the words appear. The TextArc [89] visu-
alization arranged the lines of text in a spiral and placed



frequently occurring words within the center of the spiral.
Selecting one of the central words drew lines radiating out
to connect to every line of text that contain that word, as
shown in Fig. 14. Clicking on the word showed the contexts
in which it occurred within the document, so it acts as a
kind of visual concordance tool.

3.5.2 Analysis with dimension reduction
Many text analysis techniques treat the text as a word

frequency vector and exploit numeric dimension reduction
on the word vector for projection to low dimension space
either to extract latent semantics or to prepare for 2D space
display.

Figure 16: one topics from a dynamic topic model
fit to Science from 1880 to 2002

The LDA topic model [10] is a popular data mining method
for analyzing documents in which the latent low dimensional
space is interpreted as topic space. More concretely, the
method learns a representation of document in terms of ”top-
ics”, which in turn are defined as distribution over a fixed
vocabulary. Sophisticated visualization based on interactive
methods has been proposed. [22] creates a navigator of the
documents, allowing users to explore the hidden structure
exploration for the topic model by navigating through the
dataset through the mapping of document to topics, topic
to words as well as topic based similarities. Fig. 15 shows
the flow of Navigating Wikipedia with a topic model. Begin-
ning in the upper left, the users see a set of topics, each of
which is a theme discovered by a topic modeling algorithm,
then click on a topic about film and television, choose arti-
cle about film director Stanley Kubrick which is associated
with this topic, explore a related topic about philosophy
and psychology, and finally view a related article about Ex-
istentialism. There have been numerous extensions for topic
models framework. One specific example is the dynamic
topic model [9] which allows the topic distribution to drift
across time. Fig. 16 shows two topics from a dynamic topic
model fit to Science from 1880 to 2002. The topics at each
decade are illustrated with the top words. Rather than a
static summerization, we can use the dynamic topic model
to track the topic’s changes over time.

For text analysis system built primarily for visualization,
techniques that project the document from high feature space
into 2 dimensional space is heavily used such as self-organizing
map (SOM), Multidimensional scaling (MDS) as well as

Figure 17: WEBSOM text visualization system with
SOM dimension reduction

Figure 18: Starlight’s text visualization system us-
ing TRUST for dimension reduction

other specifically created projection algorithm Lin’s system
[74] in early 1990s demonstrate the use of self-organizing
maps for organizing text documents, where they used key
index terms to extract vector space model for the docu-
ments, and train a SOM feature map. WEBSOM [60] was a
later example for the SOM visualization. They used a two-
stage process that involved using an initial SOM to gen-
erate reduced dimensionality text vectors that were then
mapped with a second SOM for visualization purposes. .
In a later work [69] they extend teh system with the aim
of scaling up the SOM algorithm to be able to deal with
large amounts of high-dimensional data. In a practical ex-
periment we mapped 6 840 568 patent abstracts onto a 1



Figure 15: Navigating flow based on the topic model fit to Wikipedia

002 240-node SOM. As the feature vectors we used 500-
dimensional vectors of stochastic figures obtained as ran-
dom projections of weighted word histograms. For MDS
dimensional reducetion, an early example is the Bead sys-
tem [21] developed during the early 1990’s, which used doc-
ument keywords and a hybrid MDS algorithm based on an
optimized form of simulated annealing to construct a vec-
tor space model. IN-SPIRETM [118] used multidimensional
scaling, then anchored least stress, and finally a hybrid clus-
tering/principal components analysis projection scheme to
map documents to a 2D space. The text visualization sys-
tem of Starlight’s [94] uses the Boeing Text Representation
Using Subspace Transformation (TRUST) algorithm for di-
mension reduction and semantic labeling. Text vectors gen-
erated by TRUST are clustered and the cluster centroids
are down-projected to 2D and 3D using a nonlinear mani-
fold learning algorithm, as shown in Fig. 18.

4. VISUALIZATION FOR MODEL CONSTRUC-
TION

Data mining is usually known as the highly automated
model where the algorithm are designed with algorithmic
or statistics techniques to do off the scene job. In recent
years, however, marrying the classical techniques with the
idea of info vis has stimulated the research on Interactive
model construction, where visualization is provided for
partial results of the current construction of model while
a user can provide feedback to change the behavior of the
process. The resulted approach will incorporate the com-
putation power of the automatic analysis with the human
wisdom from the user input, while at the same time greatly
increase interpretability of the model.

4.1 Progressive construction
There is a large family of machine learning models that

are built progressively. At each step, a ”building block” is
greedy selected to be a permanent part of the model. There
are visualization techniques for these type of models to allow
user to interfere with each step of the progressive construc-
tion.

A standard technique from machine learning community
is the Visual decision tree construction. from the machine
learning platform of Weka [116]. The system enables the
user to construct a decision tree graphically using the split
method of bivariate splits. As shown in [75], this split
method can generally achieve better performance and more-
over it allow data to be interpreted visually in plots and
tables. Each bivariate split is represented as set of 2D poly-
gons. Polygons are easy to draw and can approximate ar-
bitrarily complex two-dimensional shapes. In conjunction
with the standard recursive divide and conquer decision tree
procedure, they enable users to approximate the target con-
cept to any degree of accuracy while minimizing the number
of splits that must be generated to identify pure regions of
the instance space. They use two main module for the visu-
alization, tree visualizers and data detail visualizers. At any
stage the data at any given node in the tree can be visualized
by left-clicking on that node. The process of interactively
drawing polygons in instance space, defining splits and ap-
pending them to the tree continues until the user is satisfied
with the resulting classifier.

Another contribution of [116] is the experiment they con-
duct comparing the automatic constructed model and user
constructed model.They show that appropriate techniques
can empower users to create models that compete with clas-
sifiers built by state-of-the-art learning algorithms. They
also found that success hinges on the domain: if a few at-
tributes can support good predictions, users generate accu-
rate classifiers, whereas domains with many high-order at-
tribute interactions favour standard machine learning tech-
niques.

In [6] a more heavy weight interactive decision tree mecha-
nism is introduced. They proposed PBC – Perception Based
Classification, where different styles of cooperation - rang-
ing from completely manual over combined to completely
automatic classification are supported. They propose two
kind of encoding technique for the decision tree data where
each attribute of the training data is visualized in a sepa-
rate area of the plot, and different class labels of the training
objects are represented by different colors. The first is bar
visualization. Within a bar, the sorted attribute values are



mapped to points line-by-line. Each attribute is visualized
independently from the other attributes in a separate bar,
facilitatling the visualization of the hierarchical structure of
decision tree nodes. The second is the tree visualization
technique, each node is represented by the data visualiza-
tion of the chosen splitting attribute of that node. For each
level of the tree, a bar is drawn representing all nodes of this
level, which is then stacked together according to the hierar-
chical structure of the tree. Fig. 19 shows the main interface
of the model. main window visualizes the bar visualization
for data of the active node and depicts the whole decision
tree in standard representation. The additional window in
the foreground depicts the same decision tree using the new
technique of visualization.

Figure 19: the PBC system for interactive decision
tree constructing.

Figure 20: the HDEye system for visual clustering.

Such step-by-step construction paradigm is suitable for
many kinds of progressive machine learning algorithms. An-
other type work that illustrates this tight coupling of visual-
ization resources into a mining technique is by Hinneburg et
al. [56]. They describe an effective approach for clustering
high-dimensional data combining an advanced clustering al-
gorithm, called OptiGrid, with visualization methods that
support the interactive clustering process. The approach is
a recursive one: In each step, the actual data set is parti-
tioned into a number of subsets, if possible, and then the
subsets containing at least one cluster are dealt with recur-
sively. The partitioning in the framework of OptiGrid uses

a generalized multidimensional grid defined by a number
of separators chosen in regions with minimal point density.
The recursion stops for a subset when no good separators
can be found. Choosing the contracting projections and
specifying the separators for building the multidimensional
grid, however, are two difficult problems that cannot be done
fully automatically because of the diverse cluster character-
istics of different data sets. Visualization technology can
help in performing these tasks. Therefore, they developed
a number of new visualization techniques that represent the
important features of a large number of projections. Finally
they integrated all visualization techniques by using a tree-
like visualization of the projection and separator hierarchy.

4.2 Iterative prototyping
Apart from machine learning models with explicit pro-

gressive structure, many models come with a more wholistic
construction. Correspondingly, an alternative visualization
strategy will be allowing user to give feedback to a visual
prototype of the trained model, with emphasis on the the
performance measure of the prototype, and effectively in-
corporate such user feedback to retrain the model. To fully
exploit the advantage of interactiveness, such visualization
system usually supports a iterative process where user keep
reconstructing the model until satisfiable.

Figure 21: The system by Seifert et.al. The clas-
sification probability view allows users to select a
falsely classified item to the right class and retrain
the classifier.

The [97] present a visualization system to investigate and
give feedback to all classifiers whose predictions can be in-
terpreted as probability distribution over classes. Users can
give feedback to classifiers directly in the visualization by
drag and drop items to retrain the classifier with simple in-
teraction techniques like drag and drop. Figure 21 shows the
analysis scenario where the user is moving the item towards
the correct class âĂIJcatâĂİ . This item then serves as new
training example for the particular class and the classifier is
re-trained and re-evaluated.

Such iterative refinement techinique can also be applied to
regression models. In [72] they propose a new approach to
rapidly draft, fit and quantify model prototypes in visualiza-
tion space and demonstrate that these models can provide
important insights and accurate metrics about the original
data. They conduct the visualization similarly to the statis-
tical concept of de-trending. Data that behaves according to
the model is de-emphasized, leaving outliers and potential



model flaws which are critical for refining regression model.
They also proposed a workflow for the refining process: vi-
sualize and observe, sketch and fit, externalize and subtract,
then iterate. A key step is the externalization, that transfers
quantitative information back from visualization space into
model space. The system is evaluated on streaming pro-
cess data from the Norwegian oil and gas industry, and on
weather data, investigating the distribution of temperatures
over the course of a year.

Figure 22: The EnsembleMatrix system

Another interesting aspect is in ensemble model construc-
tion. Ensemble is a common strategy that combine several
different sub-model to reduce bias and improve precision
[34]. Such kind of meta strategy provide the oppurtunity
for interaction technique to rearrange the combination of
sub components. The goal here is to select the best sub-
sets of sub components that has good invidual performance
while at the same time boost each other when performed
jointly. In [106] they propose EnsembleMatrix, an interac-
tive visualization system that presents a graphical view of
confusion matrices to help users understand relative merits
of various classifiers by supplying a visual sum- mary that
spans multiple classifiers.

As shown in Fig. 22, the EnsembleMatrix interface con-
sists of three basic sections: the Component Classifier view
on the lower right, which contains an entry for each classifier
that the user has imported to explore, the Linear Combi-
nation widget on the upper right, and the main Ensemble
Classifier view on the left. Confusion matrices of component
classifiers are shown in thumbnails on the right. The matrix
on the left shows the confusion matrix of the current ensem-
ble classifier built by the user. EnsembleMatrix provides
two basic mechanisms for users to explore combinations of
the classifiers. The first is a partitioning operation, which
divides the class space into multiple partitions. The second
is arbitrary linear combinations of the Component Classi-
fiers for each of these partitions Experiment results show
that users are able to quickly combine multiple classifiers
operating on multiple feature sets to produce an ensemble
classifier with accuracy that approaches best-reported per-
formance classifying images in the CalTech-101 dataset.

4.3 Interactive pipeline construction
A even more algorithm agnostic approach for such interac-

tion is treat each submodule of individual algorithm as black
box with certain type of input and output and provide vi-
sualization system for users to assemble these submodules
into a whole data mining pipeline.

Weka [59] is a open source software for data mining pur-
poses. The KnowledgeFlow panel presents a data-flow in-

Figure 23: The Overview Panel in Rapidminer sys-
tem shows the entire data mining pipeline.

spired interface allowing the user to create pipelines in or-
der to perform data pre-processing,classification, regression,
clustering, association rules, and visualisation. The interac-
tive pipeline construction system provide users a intuitive
data flow style layout that can process data in batches or
incrementally, process multiple batches or streams in par-
allel where each separate flow executes in its own thread,
chain filters together, view models produced by classifiers
for each fold in a cross validation, visualize performance of
incremental classifiers during processing by scrolling plots
of classification accuracy, RMS error, predictions etc., and
plugin facility to allow easy addition of new components to
the Knowl- edgeFlow. RapidMiner [92] is an enterprise soft-
ware providing solutions for a wide range of analytic tasks
including banking, insurance, retail, manufacturing, oil and
scientific research. allows the user to create data flows, in-
cluding data import, pre-processing, execution process and
visualisation. Similar approach is also adopted by KNIME
[8], STATISTICA [101], Orange [33], as well as many other
practical data mining systems[66, 40].

5. VISUALIZATION FOR MODEL EVALU-
ATION

The end product of data mining usually involves a very
large set of complex decision rules, together with sophis-
ticated performance measure on the benchmark test data.
Different families of techniques are widely applied for visu-
alization of model evaluation. By visually conveying the
results of a mining task, such as classification, clustering or
other form of data mining, these visualization approaches
will better answer the question of what the conclusions are,
why a model makes such conclusions, and how good they
perform, which is very critical for human decision makers to
analyze the behavior of model, apply the model output, and
reflect on the results.

5.1 Classification
The task of classification refers to the problem of identify-

ing category membership for new observation , on the basis
of a training set of data containing observations whose cat-
egory membership is known. Visualization for such form of
model typically takes the input of data with various features,
the predicted classes of each item as well as the ground truth.
The visualization may also include model specific structures,
such as the decision boundary for classifiers.

5.1.1 Test oriented visualization



A number of measurements have been developed to ad-
dress the question of how well the model performs on the
benchmark test data and compare the prediction of model
with ground truth. Although simple statistics of such mea-
surements like precision, recall, specificity, F-measure and
confusion matrix[91] has been proposed, the ”behind the
scene” performance for different part of data as well as the
confidence for each prediction are usually left unexamined by
such measure. Visualization of such measurements aims to
overcome these challenges and provide deeper understanding
of model conclusions for both right and wrong predictions.

Common way of graphically tuning, assessing, and com-
paring the performance of classifiers within the community
of classical machine learning and statistics include the family
of receiver operating characteristic (ROC) curves [38]. In-
stead of simply looking at the prediction label, these mod-
els will in addition inspect the confidence by plotting the
true positive rate against the false positive rate at various
probability threshold. The extensions including such as cost
curve that incorporates misclassification costs [36], three-
way ROC and Multi-class ROC for classification with mul-
tiple classes [47], and regression error characteristic (REC)
Curves and the Regression ROC (RROC) curves for regres-
sion problems [54].

As the field field of machine learning and data mining be-
come eminent, more heavy weighted visualization system for
such purpose has been introduced. [5] propose a comprehen-
sive visualization system for posterori classification results
analysis to provide insight into different aspects of the clas-
sification results for a large number of samples. One visual-
ization emphasizes at which probabilities these samples were
classified and how these probabilities correlate with classifi-
cation error in terms of false positives and false negatives. As
shown in Fig. 24, they employ the visual layout of Contin-
gency Wheel++ [4] which places these histograms in a ring
chart whose sectors represent different classes. In contrast to
the matrix, this layout emphasizes the classes as primary vi-
sual objects with all information related to a class grouped in
one place. For each class, the samples S are divided into four
sets according to their classification results:TP, FP, TN, and
FN, further divided by confidence. The chords between the
sectors encode the confusion wheel depicts class confusions
. A chord between two classes is depicted with a varying
thickness denoting the confusion rate for each corresponding
pair. The feature view on the right emphasizes the features
of these samples and ranks them by their separation power
between selected true and false classifications where they
use techniques such as Boxplots, stacked histogram, separa-
tion measures, recall-precision graph for analyzing how the
data features are distributed among the affected samples.
The system also allow interactively defining and evaluating
post-classification rules.

Ensembles for different classifiers are a common way to
boost the performance for weaker classifiers. It is widely
adopted because its superior performance in comparison to
single classifiers methods both in theory and practise. Vi-
sualizing the performance of different sub classifiers as well
as the ensemble classifier is a key component for inteprating
the structure of ensemble methods. [104] provide a simple
tool to display different sub decision trees as well as the
ensemble one with graphical intepretation and concrete de-
cision rules, basic zooming and navigation is provided. In
[110] they describes different views and methods to analyze

decision forests including fluctuation diagram, parallel coor-
dinates plots where the deviance gain for specific variable in
different sub-tree is emphasized.

5.1.2 Instance space based visualization
A common approach to visually characterize a classifer

is to focus on input data instance and how the model be-
have on different region of the instance space. Since the
dimensionality of instance of data are usually high, visu-
alization of such data usually take different dimensionality
reduction approach to navigate the viewer through the high-
dimensional spaces and characterize the data instance and
classification results. In addition, for models that based its
conclusion from clues in the instance space, such as maximal
margin separating hyperplane for SVM, we can also further
incorporate these specific structure into the instance space
visualization.

Figure 25: Byklov et. al’s tool showing showing the
scatterplot matrix for an iteration

One way to deal with high dimensional data instance is to
comprehensively show the pairwise feature projection for the
data using techniques such as SPLOM. Bykov et.al [17] cre-
ate a SPLOM based visualization tool for analyzing machine
learning classification algorithms by providing the user with
per-iteration performance information for the algorithm. This
is done through two main views. The first view contains a
scatterplot matrix of the data projected into multiple di-
mension pairs. Each point is labeled with its actual and
predicted labels to highlight where in the dataset errors oc-
cur at each dimension. The second view provides summary
statistics (classification accuracy, number of errors, etc.) at
each iteration and an interface to scroll through every it-
eration of the algorithm. Fig. 25 shows the main screen
of the visualization. where user move the slider on the x-
axis of the bottom chart to switch the scatterplot matrix to
a specific different iteration in which the number of errors
sharply increased. . The scatterplot on the top shows dif-
ferent features plotted against each other, with each kind
classification outcome encoded with different point glyph.
The sudden increase in errors can easily be seen by the sud-
den increase in orange and blue marks representing different
kind of classification errors.

A very common way to deal with high dimensionity is
non linear dimension reduction. Such dimension reduction
techniques capture the feature of data item using a spe-
cific location, revealing the spatial relation of both positive
and negative prediction. More importantly, it facilitates the
visualization of classifier stucture such as decision bound-



Figure 24: Alsallakh et.al’s tool, showing (a) the confusion wheel (b) the feature analysis view (c, d) histograms
and scatterplots for the separability of the selected features

Figure 26: Rheingans et.al’s tool, showing SOM
probability map with test instances

ary. Rheingans et.al introduce the [93] techniques for high-
dimensional data space projection, display of probabilistic
predictions, variable/class correlation, and instance map-
ping. They used a set of projection techniques based on
self-organizing maps (SOM) . Figure 26 shows a representa-
tion of the model where the data space has been projected
to two dimensions using a SOM. The decision boundary, i.e.
the boundary between positive and negative predictions pro-
jected on the 2D plane is shown by a white line. Glyph size
indicates the number of instances at a given point. A contin-
uous color map is used to show the proportion of class labels
in the set of collocated instances. Yellow shows predom-
inantly positive instances, red shows predominantly nega-
tive instances. Test instances is encoded as a small sphere-
shaped glyph, with size indicating the density of instances
and a continuous color indicating the proportion of class la-
bels in the set of collocated, yellow positive for and red for
negative. Notice that in the plot many of the misclassified
instances are located in the vicinity of decision boundary,
showing they are not too far from ”right”. Frank et.al[39]
provid similar technique for instance space projection to vi-
sualize class probability estimates for different regions of
the instance space. They discuss different choices for ker-
nel density estimator and sampling strategy for visualizing

the expected class probabilities in the projected space and
render the class probabilities using RGB color encoding. In
[20] they explore the use of the projection methods of tours
[37, 27] to exam- ine results from SVM, where they use the
grand tour for generally exploring sup- port vectors and clas-
sification boundaries, manually controlled tours for studying
variable importance, and correlation tour for examining pre-
dicted values in relation to explanatory variables.

5.1.3 Factor analysis
The process of generating conclusions for classifer usually

involve different factors from the feature of data instance.
Visualizing the relationship between the different factors and
the final conclusions for different data instance will shed light
on the question of why a model makes such conclusions.

Figure 27: Nomograph showing the nonlinearities in
the ionosphere data set for SVM with RBF basis

Nomograms are an established model visualization tech-
nique that can graphically encode the complete model on
a single page. The dimensionality of the visualization does
not depend on the number of attributes, but merely on the
properties of the kernel. By providing an easy-to-interpret
visualization the analysts can gain insight and study the



effects of predictive factors. has also been applied to vari-
ous models including logistic regression [76], Nayes Bayesian
Classifier [84] and support vector machines [64] to reveal the
structure of the model and the relative influences of the at-
tribute values to the class probability. As an example, [64]
propose a simple yet potentially very effective way of visu-
alizing trained support vector machines. To represent the
effect of each predictive feature on the log odds ratio scale
as required for the nomograms, we employ logistic regression
to convert the distance from the separating hyperplane into
a probability. similar technique

The CViz[45] system provide an alternative approach of
extending the static parrellel coordinate view for multivari-
ate data visualization. They describe an interactive system
for visualizing the process of classification rule induction, en-
coding the data preprocessing and classification rules upon
the parrellel coordinate platform. The original data is vi-
sualized using parallel coordinates and the user can see the
results of data reduction and attribute discretization on the
parallel coordinate representation. The discovered classifica-
tion rules are also displayed on the parallel coordinates plots
as rule polygons, colored strips as depicted in Fig. 11, where
a polygon covers the area that connects the (discretized) at-
tribute values that define particular rules. Rule accuracy
and quality may be coded by coloring the rule polygon and
user interaction is supported to allow focusing on subsets of
interesting rules.

5.2 Clustering
Other than classification, there are a number of unsu-

pervised learning method widely used to discover hidden
structure of the data to gain insight and facilitate decision
making. Clustering is a specifically useful technique of re-
arranging the dataset and grouping similar items together,
resulting in different clusters which are easier to analyze.
Visualization technique for clustering usually directly take
the instance based approach, explicitly rendering invidual
instance or aggregate of some instance as well as the inclu-
sion relation between cluster and instances.

Figure 28: The H-BLOB visualizes the clusters by
computing a hierarchy of implicit surfaces

One good example for the rendering of feature space, the
instance and the inclusion relation as well as the internal

hierarchical structure across the different clusters is is the
BLOB and H-BLOB clustering visualization [100] , which
use implicit surfaces for visualizing data clusters. BLOB[42]
explicitly represent clusters by exhibiting them in an enclos-
ing surface that approximates the outline of their included
data objects as closely as possible. This is done by super-
imposing all field functions in space and accordingly run a
marching cube algorithm [11] to extract the implicit surface
at a given isovalue. The later work H-BLOB further develop
computation method for a hierarchy of implicit surfaces to
visualize the hierarchical structure clustering of cluster tree,
using the idea of computing higher level cluster based on
child clusters in the cluster tree.

Figure 29: Bicluster visualization, showing the over-
lapping, similarity and separation for clusters and
entities.

There are method tailored for different variation of clus-
tering method. BicOverlapper[96] is a framework to visu-
alize biclustering, which group the items under a certain
subgroup of conditions and allow overlapping between clus-
ters. In order to improve the visualisation of biclusters, a
visualisation technique (Overlapper) is proposed to simulta-
neously represent all biclusters from one or more biclustering
algorithms by means of intersecting hulls, based on a force
directed layout. The use of glyphs on gene and conditions
nodes improves our understanding of instances of overlap-
ping when the representation becomes complex.

Fig. 29 shows the bicluster analysis of a microarray data
matrix containing two types of Diffuse Large B-Cell Lym-
phomas [3] achieve by the OPSM biclustering method. Bi-
clusters grouping mainly conditions or genes are easily iden-
tified, revealing asymmetry in OPSM method. The relaxed
condition of order preservation searched by OPSM produces
very large biclusters in some cases. Conditions grouped in
all the biclusters of OPSM have a strong influence in order
preserving of gene expression levels. Most of them corre-
spond to activated B-like lymphomas.

Instead of rendering the instance space, some visualiza-



Figure 30: HCE

tion show the instance in aggreate abstract from. The sys-
tem of HCE(Hierarchical Clustering Explorer) [98] focuses
on hierarchy structure across different clusters and together
with the interplay between other hierarchy structures. Fig.
30 shows a screenshot of the interface. Each cluster is eas-
ily identified by the alternating colored lines and the white
gaps between clusters. The detail information of a selected
cluster yellow highlight in upper left is provided below the
overview together with the gene names and the other cluster
dendrogram. It also allows interactive visual feedback (den-
drogram and colour mosaic) and dynamic query controls for
users to refine the natural grouping.

Clustering can be further combined with domain knowl-
edge for specific analytics application. As an example, Cadez
et al.[19] describe an clustering based approach for analysis
and visualization of the dynamic behavior of visitors of a
particular Web site. They focus on clustering users with
similar behavior and then perform analysis on users behav-
ior for each cluster. Their visualization tool uses multiple
windows to display user data regarding the multiple clus-
ters. Sequences of rows within a window show the paths of
single users through the site, each path being color coded
by category reflect the different types of service provided by
the site . summary information about clusters are also pro-
vided. The tool can help site administrators in identifying
navigation patterns that may actually suggest actions to be
taken to improve the site.

5.3 Association Rules
The Association Rules (AR) is another fundamentally dif-

ferent data mining technique. It takes the input of a large
database, and provide rules describing interdependence be-
tween different items, each composed of the antecedent and
the consequence with adequate amount of support and confi-
dence. [2] Association Rules are one of the most widespread
data mining tools because they can be easily mined, even
from very huge database. However, the results of mining
are usually large quantities of rules, which require a massive
effort in order to make actionable the retained knowledge.
A main challenge for these visualization system is how to
concisely encode each rule to accomodate hundreds of even
more rules in one plot.

Double-Decker plots [58] provide a visualization for single
association rules but also for all its the related rules. They

(a) Double-Decker plots (b) Parallel Coordinates

(c) Network (d) TwoKey plot

Figure 31: Different ways of Association Rules visu-
alization

were introduced to visualize each element of a multivariate
contingency table as a tile in the plot and they have been
adapted to visualize all the attributes involved in a rule by
drawing a bar chart for the consequence item and using link-
ing highlighting for the antecedent items.

Different approaches has been developed for encoding as-
sociation rules as a network [18, 102]. In [102], a network
representation of AR is provided where item and rules are
encoded as nodes and each rule node is linked to correspond-
ing items in antecedent and consequence by edges. . The
support values for the antecedent and consequence of each
association rule are indicated by the sizes and colours of
each circle. The thickness of each line indicates the confi-
dence value while the sizes and colours of the circles in the
center, above the Implies label, indicate the support of each
rule.

The TwoKey plot [109] is a 2D plot approach for AR vi-
sualization that represents the rules according to their con-
fidence and support values. In such a plot, each rule is a
point in a 2-D space where the xaxis and the y-axis ranges
respectively from the minimum to the maximum values of
the supports and of the confidences and different colors are
used to highlight the order of the rules.

Parallel coordinates have also been used for AR visualize
to deal with the high dimensionality of the rules [16, 70,
121]. For example, the approach proposed by [121] starts
from arranging items by groups on a number of parallel axes.
A rule is represented as a polyline joining the items in the
antecedent followed by an arrow connecting another polyline
for the items in the consequence.

5.4 Neuron Network
Neuron Network are specific form of computing model in-

spired by biological neural networks that can be used for
classification, regression or unsupervised learning. Being the
state of the art approach on many pattern recognition or ma-
chine learning image classification problems, it has drawn
specific attention from visualization community [71]. The
model of Neuron Network is composed of one or more layers
of interconnected ”neurons” which can compute values from
inputs.

The SOM is a neural network algorithm for vector quan-



Figure 32: Different techniques for showing cluster
structure among SOM cells.

tization and projection that implements an ordered dimen-
sionality reducing mapping which follows the probability
density function of the training data. The SOM works by
iteratively At each iteration in the training, the algorithm
select a data sample, find the its best matching unit (BMU),
and move the prototype vectors of the BMU as well as its
neighbors in the grid towards the sample. The resulted neu-
rons grid can be easily arranged in 2D, with neighboring
locations in the display space correspond to neighboring lo-
cations in the data space. [111] provide a comprehensive sur-
vey of visualization techniques for SOM, where they identify
three main categories, the methods for revealing the shape
and structure, the methods for analyzing prototype vectors,
and the methods examining new data samples. Fig. 32
shows several common ways to visualize the cluster struc-
ture using distance matrix techniques. Figure (a) shows the
U-matrix visualziation, where white dots represents the neu-
rons and hexagon represents the values of U-matrix. The
gray scale encodes the distance to the neighboring unit.
Darker color means bigger distance. Clusters in the plot
can be observed as light areas enclosed by darker borders.
Figure (b) use size of map unit to encode the average dis-
tance to its neighbors. Figure (c) takes yet another approach
by encoding the closeness in input space by similarity in the
hue of colors for each hexagon area.

The latent semantic of neurons in multilayer network is
usually captured by the input image with the strongest ac-
tivation, either through numerical observation or selecting
from training examples, which is the crucial component for
visualizing multilayer complex neuron network. [123, 30] is
an example of using such neuron visualization technique to
give insight into the function of intermediate feature lay-
ers and the operation of the classifier. Fig. 33 visualizes
the progression during training of the strongest activation
across all training examples within a given feature map pro-
jected back to pixel space. Sudden jumps in appearance
result from a change in the image from which the strongest
activation originates. The lower layers of the model can be
seen to converge within a few epochs. However, the upper
layers only develop develop after a considerable number of
epochs (40-50), demonstrating the need to let the models
train until fully converged. Used in a diagnostic role, these
visualizations allow us to find model architectures that out-
perform Krizhevsky et al. on the ImageNet classification
benchmark.

[73] extend this approach to sematic conceptual features.
uses Deep learning to address the problem of building high-
level, class-specific feature detectors from only unlabeled
data. They present two visual techniques to verify if the
optimal stimulus of the neuron is indeed a face. The first

Figure 34: Deep learning for Building High-level
Features

method is visualizing the most responsive stimuli in the test
set. Since the test set is large, this method can reliably de-
tect near optimal stimuli of the tested neuron. The second
approach is to perform numerical optimization to find the
optimal stimulus They train a 9- layered locally connected
sparse autoencoder with pooling and local contrast normal-
ization on a large dataset of images for Building High-level
Features. Fig. 34 show top 48 stimuli of the best neuron
from the test set as well as The optimal stimulus according
to numerical constraint optimization

5.5 Graphical Probabilistic Models
The formalism of probabilistic graphical models provides

a unifying framework for capturing complex dependencies
among random variables, and building large-scale multivari-
ate statistical models. As the names implies,they come with
a natural graphical characterization where each nodes en-
codes a variable, link encodes correlation. Visualization for
these graphs in [24, 122] usually provide direct rendering
to the graph, highlighting the model architecture, transi-
tion probabilities, and emission probabilities. These visu-
alization systems are widely employed in different graphi-
cal model inference software, including Bayes Net Toolbox,
Hugin Expert, BayesBuilder, WinMine, BayesianLab, Net-
ica, MSBNx, Analytica, GeNIe/SMILE surveyed in [86].

Graphical Model usually relies on latent variable to cap-
ture hidden structure behind the data and increase expres-
sive power. Techniques for visualizing the latent variable



Figure 33: Visualization of neurons shows evolution of a randomly chosen neurons in different layers through
the training process. Each layer’s features are displayed in a different horizontal block.

Figure 35: The FluxFlow system visualizes the hidden states inside the probabilistic model

usually exploits its relation between class labels and instance
features as well as its transition pattern. The Fluxflow [124]
is a good example. The hidden state transitions shown as
the background of thread timeline views in Fig. 35 (j) can
reveal the internal stage of OCCRF. By comparing the state
transition patterns across threads, the user is able to obtain
more knowledge about how the model relies on these states,
i.e., user community sub-structures, to perform anomaly de-
tection. To further look into the state variables, the analyst
can leverage the features view which summarizes the tempo-
ral variations of feature vectors described with a heatmap-
like visualization as shown in Fig. 35 (d). From a different
perspective of viewing these abstract state variables , the
states view indicates how states are tied to tweet users by
displaying the MDS projections of all users from the highdi-
mensional feature space as in Fig. 35 (e). The distributions
of users in these charts can be viewed as signatures of the
states characterizing the features, which helps the analyst
understand what each of the abstract variables might mean.

6. DISCUSSION AND CONCLUSION
In this paper, we attempt to survery recent researches and

real world systeams integrating the wisdom in two fields to-
wards more effective and efficient data analytics. We provide
a taxonomy of Integrating Information Visualization tech-
niques into Data Mining by identifying three main stages of
typical process of data mining, the preliminery analysis of

data, the model construction, and the model evaluation and
study how each stage can benefit from information visual-
ization. In reflection, we would say we are satisfied with the
amount and scope of literature covered as well as the taxon-
omy we proposed for the field. If given more time, we would
develop a more comprehensive framework for applying such
InfoVis method to data mining and systematically discuss
the impact of integration.

Future work will involve the providing a more general-
izable visualization technique to capture the some unify-
ing concept of data mining and information to facilitate
tighter and deeper integration for the two fields. To facilitate
the application of these techniques to real world problems,
method emphasize on the some challenges posed real world
data such as scalability, sparsity, data noise is another im-
portant research direction. Concrete integrated systems to
incorporate the visualization for different types of data min-
ing approach that can efficiently assist the data management
and mining for both relational data as well as unstructed
data are also very important for practical uses.
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[88] J. OâĂŹMadadhain, D. Fisher, P. Smyth, S. White,
and Y.-B. Boey. Analysis and visualization of
network data using jung. Journal of Statistical
Software, 10(2):1–35, 2005.

[89] W. B. Paley. Textarc: Showing word frequency and
distribution in text. In Poster presented at IEEE
Symposium on Information Visualization, volume
2002, 2002.

[90] P. Pirolli and S. Card. The sensemaking process and
leverage points for analyst technology as identified
through cognitive task analysis. In Proceedings of
International Conference on Intelligence Analysis,
volume 5, pages 2–4. Mitre McLean, VA, 2005.

[91] D. M. Powers. Evaluation: from precision, recall and
f-measure to roc, informedness, markedness and
correlation. 2011.

[92] D.-A. Rapidminer. Rapidminer user guide, 2008.

[93] P. Rheingans and M. Desjardins. Visualizing
high-dimensional predicitive model quality. In
Proceedings of the conference on Visualization’00,
pages 493–496. IEEE Computer Society Press, 2000.

[94] J. Risch, D. Rex, S. Dowson, T. Walters, R. May,
and B. Moon. The starlight information visualization
system. In Information Visualization, 1997.
Proceedings., 1997 IEEE Conference on, pages 42–49.
IEEE, 1997.

[95] P. J. Rousseeuw, I. Ruts, and J. W. Tukey. The
bagplot: a bivariate boxplot. The American
Statistician, 53(4):382–387, 1999.
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