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Votivation

Compressive sensing:
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Votivation

e Hierarchical MKL:

Many kernels can be decomposed as a sum of many “small” kernels

indexed by a certain set V: | k(z,2") = Z ky(z,x')




Outline

 Formulation
» Different types of structured sparsity

* Application: dictionary learning



Formulation

Giveﬂ data {(Xn_«.)/n)}l,y 1 CXxY

Goal: Learn the model parameter

= arg m“IIn —ZL (W; Xp, ¥n) + Q2(w)

n—=1 :
regularizer

empirical risk



Formulation

Given data  {(xn,yn)}V, C X x Y

n=1 =

Goal: Learn the model parameter

w A

regularizer

N
~ .1 |
w = argmin ,,Ezl L(w; xp, ¥n) + Q2(w)

empirical risk

e Sparsity hypothesis: not all dimensions of x are needed (many features
are irrelevant)

e Setting the corresponding weights to zero leads to a sparse w



Why Sparsity”

 Easier to interpret
e (Generalize better

e Fast to run



Structured regularization

 Non-overlapping groups
* L1-norm
* Group Lasso

* Overlapping groups
e [ree-structured groups
« Contiguous groups

* Directed-Acyclic-Graph groups



Structured regularization

* Non-overlapping groups
* L1-norm
* Group Lasso

* Overlapping groups
e [ree-structured groups
« Contiguous groups

* Directed-Acyclic-Graph groups



Norms: a quick review

lp-norms (p > 1): | ||wl[, = (D_; |W'.|P)1/P
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* L1-regularization naturally leads to sparse solution



| 1-norm

= arg m“ln —ZL (W; Xp, Yn) + Q2(w)

regularizer

empirical risk

Q(W) — Zi lw;|
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* L1-regularization naturally leads to sparse solution:
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Sparsity on a grid

input features

dense sparse

e Sparse solution is not very useful, and we still need
all the input features



Sparsity on a grid

input features

dense Sparse group sparse

e Sparse solution is not very useful, and we still need
all the input features



Group sparsity

e D features

M groups,Gi.....Gm; G, C{1....,D}
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Regularization: L1-norm of L2-norms Q(w) = Zﬂzl Am||Wml|2
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Group sparsity

e D features

M groups,Gi.....Gm; G, C{1....,D}

[ I e | i)

Regularization: L1-norm of L2-norms Q(w) = Zﬂzl Am||Wml|2
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Observation: In L1-norm each feature belongs to exactly one group



Structured sparsity

e Structured sparsity cares about the structure of the feature space
e Group-Lasso regularization generalizes well and it's still convex

e Choice of groups: problem dependent, opportunity to use prior
knowledge to tavour certain structural patterns



Structured regularization

 Non-overlapping groups
* L1-norm
* Group Lasso

* Overlapping groups
* [ree-structured groups
e Contiguous patterns

* Directed-Acyclic-Graph groups



Tree structured groups

Assumption: if two groups overlap, one contains the other

&

It a group Is discarded, all its descendants are also discarded



Contiguous patterns

Sets of possible zero patterns and possible non-zero patterns
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Contiguous patterns
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G is the set of blue groups.

Any union of blue groups set to zero leads to the
selection of a contiguous pattern (red).



Arpitrary groups

In general: groups can be represented as a directed acyclic graph
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Hierarchical MKL:

Many kernels can be decomposed as a sum of many “small” kernels

indexed by a certain set V: | k(z,2") = Z ky(z,z")

veV

e Graph-based structured regularization

— D(v) is the set of descendants of v € V:
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e Main property: If v is selected, so are all its ancestors




Application: dictionary
learning

e Given data matrix X = (z,...,z,))" € R™ P, principal component

analysis (PCA) may be seen from two perspectives:

— Analysis view: find the projection v € RP of maximum variance
(with deflation to obtain more components)

— Synthesis view: find the basis vy, ..., vg such that all z; have low
reconstruction error when decomposed on this basis

e For regular PCA, the two views are equivalent

e Sparse extensions

— Interpretability
— High-dimensional inference
— Two views are differents



Application: dictionary
learning

Sparse PCA:

AcRkxn 4
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Sparse structured PCA

n k
Jmin D lxi—Dailz+ A3 Q(d) st V. fleylz < 1
DeRexk "= /= )(d) = 2_geg |ldgll2

In signal processing X' = V u' = D«

dictionary D decomposition coefficients a



Application: dictionary
learning

° Q(d) =) _,c¢ |dg||2: Selection of “convex” patterns on a 2-D

grids.




Application: dictionary
learning
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o AR Face database

@ 100 individuals (50 W/50 M)

@ For each

o 14 non-occluded

o 12 occluded

o lateral illuminations

e reduced resolution to 38 x 27
pixels




Application: dictionary
learning
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K-NN classication based on decompositions
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Thank you!



