Introduction	HMM	Sampling	Re-sampling	Genetic Algs.

Particle Filtering: An Overview

Brian G. Booth

SFU Machine Learning Reading Group

March 5, 2014

Introduction ●○○	HMM 00000000	Sampling 0000000	Re-sampling	Genetic Algs.
What's in a	name?			

Particle Filtering, a.k.a:

- Sequential Monte Carlo (SMC)
- Bootstrap filtering
- Condensation
- Interacting Particle Approximations
- Survival of the Fittest
- Genetic Algorithms(?)

 Introduction
 HMM
 Sampling
 Re-sampling
 Genetic Algs.

 0 • 0
 00000000
 00000000
 0000000
 000000

Introduction to Particle Filtering

To the videos...

Introduction ○○●	HMM 00000000	Sampling 0000000	Re-sampling	Genetic Algs.
Outline				

Introduction: What is particle filtering?

Introduction ○○●	HMM 00000000	Sampling 00000000	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models

Introduction ○○●	HMM 000000000	Sampling 0000000	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles

Introduction ○○●	HMM 00000000	Sampling 0000000	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles

Introduction ○○●	HMM 00000000	Sampling 00000000	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Introduction	HMM ●00000000	Sampling 00000000	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Introduction 000	HMM ○●○○○○○○○	Sampling 0000000	Re-sampling	Genetic Algs.
Setting Up I	Particle Filter	ring		

Notations:

- Hidden States $\boldsymbol{x} \in \mathcal{X}$
- Observations $\mathbf{z} \in \mathcal{Z}$

Introduction	HMM ⊙●○○○○○○○	Sampling 00000000	Re-sampling	Genetic Algs.
Setting I	In Particle Fi	lterina		

 \mathbf{z}

Notations:

- Hidden States $\mathbf{x} \in \mathcal{X}$
- Observations $\mathbf{z} \in \mathcal{Z}$

Given:

- Initial state distribution $p(\mathbf{x}_0)$
- Transition distribution $f(\mathbf{x}_t | \mathbf{x}_{t-1})$
- Observation (i.e. scoring) distribution g(z_t|x_t)

Introduction	HMM ⊙●○○○○○○○	Sampling 00000000	Re-sampling	Genetic Algs.
Setting I	In Particle Fi	Iterina		

Notations:

- Hidden States $\mathbf{x} \in \mathcal{X}$
- Observations $\mathbf{z} \in \mathcal{Z}$

Given:

- Initial state distribution $p(\mathbf{x}_0)$
- Transition distribution $f(\mathbf{x}_t | \mathbf{x}_{t-1})$
- Observation (i.e. scoring) distribution $g(\mathbf{z}_t | \mathbf{x}_t)$

Find:

• Full trajectory distribution $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$

Assuming a Hidden Markov Model

- States (in blue) are hidden
- Observations (in green) are known
- Relationships are "roughly" known

Introduction	HMM 00000000	Sampling 0000000	Re-sampling	Genetic Algs.	
Here comes Bayes Rule					

Remember our goal:

 $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$

Introduction	HMM ०००●०००००	Sampling 00000000	Re-sampling	Genetic Algs.
Here cor	nes Baves R	ule		

Remember our goal:

 $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$

Apply Bayes Rule:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = rac{p(\mathbf{x}_{0:n},\mathbf{z}_{1:n})}{p(\mathbf{z}_{1:n})}$$

Introduction	HMM ०००●०००००	Sampling 0000000	Re-sampling	Genetic Algs.
Here come	s Bayes R	ule		

Remember our goal:

 $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$

Apply Bayes Rule:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = rac{p(\mathbf{x}_{0:n},\mathbf{z}_{1:n})}{p(\mathbf{z}_{1:n})}$$

The joint probabilities can be written in conditional form:

$$p(\mathbf{x}_{0:n}, \mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}, \mathbf{z}_{1:n-1}) f(\mathbf{x}_n | \mathbf{x}_{n-1}) g(\mathbf{z}_n | \mathbf{x}_n)$$
$$p(\mathbf{z}_{1:n}) = p(\mathbf{z}_n | \mathbf{z}_{1:n-1}) p(\mathbf{z}_{1:n-1})$$

Introduction	HMM 00000000	Sampling 0000000	Re-sampling	Genetic Algs.
Bayes Rule	just keeps g	iving		

Plugging in known $f(\cdot)$ and $g(\cdot)$:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}, \mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{p(\mathbf{z}_n|\mathbf{z}_{1:n-1})p(\mathbf{z}_{1:n-1})}$$

Introduction	HMM ००००●००००	Sampling 0000000	Re-sampling	Genetic Algs.
Bayes Ru	ule just keep	s giving		

Plugging in known $f(\cdot)$ and $g(\cdot)$:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}, \mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{p(\mathbf{z}_n|\mathbf{z}_{1:n-1})p(\mathbf{z}_{1:n-1})}$$

Replace $p(\mathbf{x}_{0:n-1}, \mathbf{z}_{1:n-1})$ with it's conditional:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{p(\mathbf{z}_{1:n-1})f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{p(\mathbf{z}_n|\mathbf{z}_{1:n-1})p(\mathbf{z}_{1:n-1})}$$

Introduction	HMM ००००●००००	Sampling 0000000	Re-sampling	Genetic Algs.
Bayes Ru	ule just keep	s giving		

Plugging in known $f(\cdot)$ and $g(\cdot)$:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}, \mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{p(\mathbf{z}_n|\mathbf{z}_{1:n-1})p(\mathbf{z}_{1:n-1})}$$

Replace $p(\mathbf{x}_{0:n-1}, \mathbf{z}_{1:n-1})$ with it's conditional:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{p(\mathbf{z}_{1:n-1})f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{p(\mathbf{z}_n|\mathbf{z}_{1:n-1})p(\mathbf{z}_{1:n-1})}$$

The $p(\mathbf{z}_{1:n-1})$ distributions cancel out...

Introduction	HMM 000000000	Sampling 0000000	Re-sampling	Genetic Algs.
Wrapping	g up Bayes F	Rule		

Thus:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_{n}|\mathbf{x}_{n-1})g(\mathbf{z}_{n}|\mathbf{x}_{n})}{p(\mathbf{z}_{n}|\mathbf{z}_{1:n-1})}$$

Introduction	HMM ०००००●०००	Sampling 00000000	Re-sampling	Genetic Algs.
Wrapping	g up Bayes F	Rule		

Thus:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{p(\mathbf{z}_n|\mathbf{z}_{1:n-1})}$$

We know from normalization rules that:

$$p(\mathbf{z}_n|\mathbf{z}_{1:n-1}) = \int p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1})f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)d\mathbf{x}_{n-1:n}$$

Introduction	HMM ०००००●०००	Sampling 00000000	Re-sampling	Genetic Algs.
Wrapping	g up Bayes F	Rule		

Thus:

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{p(\mathbf{z}_n|\mathbf{z}_{1:n-1})}$$

We know from normalization rules that:

$$p(\mathbf{z}_n|\mathbf{z}_{1:n-1}) = \int p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1})f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)d\mathbf{x}_{n-1:n}$$

Let C_n be the integral above. Then...

Introduction	HMM ००००००●००	Sampling 00000000	Re-sampling	Genetic Algs.
Things just	got Recursiv	ve		

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{C_n}$$

Introduction	HMM ००००००●००	Sampling 00000000	Re-sampling	Genetic Algs.
Things just	got Recursiv	ve		

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{C_n}$$

• Our state distribution is recursive!

Introduction	HMM ००००००●००	Sampling 00000000	Re-sampling	Genetic Algs.		
Things just got Recursive						

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{C_n}$$

- Our state distribution is recursive!
- Recall: we have the base case $p(\mathbf{x}_0)$

Introduction	HMM ∞∞∞∞∞∞∞∞∞	Sampling 00000000	Re-sampling	Genetic Algs.
Things in	ist oot Recur	sive		

$$p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = p(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{C_n}$$

- Our state distribution is recursive!
- Recall: we have the base case $p(\mathbf{x}_0)$
- Distributions $f(\cdot)$ and $g(\cdot)$ are also known

Introduction	HMM ००००००●००	Sampling 00000000	Re-sampling	Genetic Algs.		
Things just got Recursive						

$$\rho(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = \rho(\mathbf{x}_{0:n-1}|\mathbf{z}_{1:n-1}) \frac{f(\mathbf{x}_n|\mathbf{x}_{n-1})g(\mathbf{z}_n|\mathbf{x}_n)}{C_n}$$

- Our state distribution is recursive!
- Recall: we have the base case $p(\mathbf{x}_0)$
- Distributions $f(\cdot)$ and $g(\cdot)$ are also known
- We have everything we need to solve this problem!

In some cases, we can get $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$ analytically:

e.g. Kalman filters
 [p(x₀) is Gaussian, f(x_t|x_{t-1}) and g(z_t|x_t) are linear]

In some cases, we can get $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$ analytically:

e.g. Kalman filters
 [p(x₀) is Gaussian, f(x_t|x_{t-1}) and g(z_t|x_t) are linear]

In most cases, we can't:

- Integration in C_n intractable
- Often, $p(\mathbf{x}_0)$ not known, estimated with simpler distribution.

In some cases, we can get $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$ analytically:

e.g. Kalman filters
 [p(x₀) is Gaussian, f(x_t|x_{t-1}) and g(z_t|x_t) are linear]

In most cases, we can't:

- Integration in *C_n* intractable
- Often, $p(\mathbf{x}_0)$ not known, estimated with simpler distribution.

The Solution:

• Estimate $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$ from samples (i.e. particles).

Introduction	HMM ००००००००●	Sampling oooooooo	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Introduction	HMM 000000000	Sampling ●ooooooo	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Introduction	HMM 00000000	Sampling o●oooooo	Re-sampling	Genetic Algs.
Monte Ca	arlo Estimate	es		

Traditional Monte Carlo:

• Generate N i.i.d. samples $\{x_{0:n}^1, \cdots, x_{0:n}^N\}$ from $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$

Traditional Monte Carlo:

- Generate N i.i.d. samples $\{x_{0:n}^1, \cdots, x_{0:n}^N\}$ from $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$
- Obtain discrete approximation of p(x_{0:n}|z_{1:n}):

$$\hat{p}(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = \frac{1}{N}\sum_{i=1}^{N}\delta(x_{0:n}^{i})$$

Traditional Monte Carlo:

- Generate N i.i.d. samples $\{x_{0:n}^1, \cdots, x_{0:n}^N\}$ from $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$
- Obtain discrete approximation of p(x_{0:n}|z_{1:n}):

$$\hat{p}(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = \frac{1}{N}\sum_{i=1}^{N}\delta(x_{0:n}^{i})$$

• As $N \to \infty$, $\hat{p}(\cdot) \to p(\cdot)$

Traditional Monte Carlo:

- Generate N i.i.d. samples $\{x_{0:n}^1, \cdots, x_{0:n}^N\}$ from $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$
- Obtain discrete approximation of $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$:

$$\hat{p}(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = \frac{1}{N}\sum_{i=1}^{N}\delta(x_{0:n}^{i})$$

• As
$$N \to \infty$$
, $\hat{p}(\cdot) \to p(\cdot)$

Issues:

• p(x_{0:n}|z_{1:n}) only known "recursively"

Traditional Monte Carlo:

- Generate N i.i.d. samples $\{x_{0:n}^1, \cdots, x_{0:n}^N\}$ from $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$
- Obtain discrete approximation of $p(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$:

$$\hat{p}(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = \frac{1}{N}\sum_{i=1}^{N}\delta(x_{0:n}^{i})$$

• As
$$N \to \infty$$
, $\hat{p}(\cdot) \to p(\cdot)$

Issues:

- *p*(**x**_{0:n}|**z**_{1:n}) only known "recursively"
- Base case p(x₀) may not be exactly known

Introduction	HMM 00000000	Sampling oo●ooooo	Re-sampling	Genetic Algs.
Importance	Sampling (I	S)		

- Sample from a simple distribution $\pi(\mathbf{x}_0)$
 - (e.g. Uniform, Gaussian)

Introduction	HMM 00000000	Sampling oo●ooooo	Re-sampling 000000	Genetic Algs.
Importance	Sampling (I	S)		

- Sample from a simple distribution π(x₀) (e.g. Uniform, Gaussian)
- Weight each sample by sampling error:

$$w(\mathbf{x}_0^i) = rac{p(\mathbf{x}_0^i)}{\pi(\mathbf{x}_0^i)}$$

Introduction	HMM 00000000	Sampling oo●ooooo	Re-sampling 000000	Genetic Algs.
Importance	Sampling (I	S)		

- Sample from a simple distribution π(x₀) (e.g. Uniform, Gaussian)
- Weight each sample by sampling error:

$$w(\mathbf{x}_0^i) = rac{oldsymbol{\rho}(\mathbf{x}_0^i)}{\pi(\mathbf{x}_0^i)}$$

Obtain weighted discrete approximation of p(x₀):

$$\hat{p}(\mathbf{x}_0) = \frac{1}{\sum_{i=1}^N w^i} \sum_{i=1}^N w^i \delta(x_0^i)$$

Introduction	HMM 00000000	Sampling oo●ooooo	Re-sampling 000000	Genetic Algs.
Importance	Sampling (I	S)		

- Sample from a simple distribution π(x₀) (e.g. Uniform, Gaussian)
- Weight each sample by sampling error:

$$w(\mathbf{x}_0^i) = rac{p(\mathbf{x}_0^i)}{\pi(\mathbf{x}_0^i)}$$

Obtain weighted discrete approximation of p(x₀):

$$\hat{p}(\mathbf{x}_0) = \frac{1}{\sum_{i=1}^N w^i} \sum_{i=1}^N w^i \delta(x_0^i)$$

• Known as Importance Sampling (IS)

Introduction	HMM 00000000	Sampling oo●ooooo	Re-sampling 000000	Genetic Algs.
Importance	Sampling (I	S)		

- Sample from a simple distribution π(x₀) (e.g. Uniform, Gaussian)
- Weight each sample by sampling error:

$$w(\mathbf{x}_0^i) = rac{p(\mathbf{x}_0^i)}{\pi(\mathbf{x}_0^i)}$$

Obtain weighted discrete approximation of p(x₀):

$$\hat{p}(\mathbf{x}_0) = \frac{1}{\sum_{i=1}^N w^i} \sum_{i=1}^N w^i \delta(x_0^i)$$

• Known as Importance Sampling (IS)

How do we know the sampling error in our case?

Introduction	HMM 00000000	Sampling ooo●oooo	Re-sampling	Genetic Algs.
Sequential	Importance S	Sampling (S	IS)	

How do we know sampling error in our case?

• We have our observations! $\{z_1, \cdots, z_n\}$

Sequential Importance Sampling (SIS)

How do we know sampling error in our case?

- We have our observations! $\{z_1, \dots, z_n\}$
- As our sampled states xⁱ_t change across time, measure sampling error using

$$w_t^i = g(\mathbf{z}_t | \mathbf{x}_t)$$

Sequential Importance Sampling (SIS)

How do we know sampling error in our case?

- We have our observations! $\{z_1, \dots, z_n\}$
- As our sampled states xⁱ_t change across time, measure sampling error using

$$w_t^i = g(\mathbf{z}_t | \mathbf{x}_t)$$

Obtain weighted discrete approximation of p(x_{0:n}|z_{1:n}):

$$\hat{p}(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = \frac{1}{\sum_{i=1}^{N} w^{i}} \sum_{i=1}^{N} w^{i} \delta(x_{0:n}^{i})$$

Sequential Importance Sampling (SIS)

How do we know sampling error in our case?

- We have our observations! $\{z_1, \dots, z_n\}$
- As our sampled states xⁱ_t change across time, measure sampling error using

$$w_t^i = g(\mathbf{z}_t | \mathbf{x}_t)$$

Obtain weighted discrete approximation of p(x_{0:n}|z_{1:n}):

$$\hat{p}(\mathbf{x}_{0:n}|\mathbf{z}_{1:n}) = \frac{1}{\sum_{i=1}^{N} w^{i}} \sum_{i=1}^{N} w^{i} \delta(x_{0:n}^{i})$$

• Known as Sequential Importance Sampling (SIS)

Introduction	HMM 000000000	Sampling ooooo●oo	Re-sampling	Genetic Algs.
Particle F	iltering usin	a SIS		

• Generate *N* i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$

Introduction	HMM 00000000	Sampling ○○○○○●○○	Re-sampling	Genetic Algs.
Particle F	iltering usin	g SIS		

- Generate *N* i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)

- Generate N i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all particles.

- Generate *N* i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all particles.
- 2 Propagate particles to new state using $f(\mathbf{x}_t | \mathbf{x}_{t-1})$

- Generate *N* i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all particles.
- 2 Propagate particles to new state using $f(\mathbf{x}_t | \mathbf{x}_{t-1})$
- Siven observation \mathbf{z}_t , determine particles' weight $w_t^i = g(\mathbf{z}_t | \mathbf{x}_t)$

- Generate N i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all particles.
- 2 Propagate particles to new state using $f(\mathbf{x}_t | \mathbf{x}_{t-1})$
- Siven observation \mathbf{z}_t , determine particles' weight $w_t^i = g(\mathbf{z}_t | \mathbf{x}_t)$
- Update weight $w^i = w_{t-1}^i w_t^i$.

- Generate N i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all particles.
- 2 Propagate particles to new state using $f(\mathbf{x}_t | \mathbf{x}_{t-1})$
- Siven observation \mathbf{z}_t , determine particles' weight $w_t^i = g(\mathbf{z}_t | \mathbf{x}_t)$
- Update weight $w^i = w_{t-1}^i w_t^i$.
- Sepeat steps 2-4 *n* times.

- Generate N i.i.d. "particles" $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all particles.
- 2 Propagate particles to new state using $f(\mathbf{x}_t | \mathbf{x}_{t-1})$
- 3 Given observation \mathbf{z}_t , determine particles' weight $w_t^i = g(\mathbf{z}_t | \mathbf{x}_t)$
- Update weight $w^i = w_{t-1}^i w_t^i$.
- Sepeat steps 2-4 *n* times.
- **(b)** Obtain *weighted* discrete approximation $\hat{p}(\mathbf{x}_{0:n}|\mathbf{z}_{1:n})$.

Introduction	HMM 00000000	Sampling ○○○○○○●○	Re-sampling	Genetic Algs.
Use SIS with Caution				

The "gotchas":

• Doesn't work well in high-dimensions (need large *N*).

The "gotchas":

- Doesn't work well in high-dimensions (need large *N*).
- Degeneracy: After a few timesteps, all but one particle will have negligible weight

Figure 2: (A) The weights of all 50 particles (x-axis) at each time step k (y-axis). Hotter colors represent larger weights. (B) The effective sample size N_{eff} as a function of time step k.

Introduction	HMM 00000000	Sampling ○○○○○○●	Re-sampling	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Introduction	HMM 00000000	Sampling 00000000	Re-sampling ●ooooo	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Introduction	HMM	Sampling	Re-sampling	Genetic Algs.
	00000000	0000000	o●oooo	0000
Addressing	Degeneracy			

Detecting degeneracy:

• At each timestep t, measure effective sample size

$$N_{eff} = \frac{1}{\sum_{i=1}^{N} (w^i)^2}$$

Figure 2: (A) The weights of all 50 particles (x-axis) at each time step k (y-axis). Hotter colors represent larger weights. (B) The effective sample size N_{eff} as a function of time step k.

If $N_{eff} < \tau$ at timestep *t*:

- Sample *N* new particles $\{x_t^1, \dots, x_t^N\}$ from $\hat{p}(\mathbf{x}_{0:t}|\mathbf{z}_{1:t})$
- Reset weights: $w^i = \frac{1}{N}$

Figure 2: (A) The weights of all 50 particles (x-axis) at each time step k (y-axis). Hotter colors represent larger weights. (B) The effective sample size N_{eff} as a function of time step k.

Sequential Importance Resampling (SIR)

Introduction	HMM	Sampling	Re-sampling	Genetic Algs.
			000000	

Pros and Cons of SIR Particle Filtering

Pros:

- Estimation of full state PDFs
- No assumptions on distributions
- Parallelizable

 Introduction
 HMM
 Sampling
 Re-sampling
 Genetic Algs.

 000
 00000000
 0000000
 0000000
 0000000

Pros and Cons of SIR Particle Filtering

Pros:

- Estimation of full state PDFs
- No assumptions on distributions
- Parallelizable

Cons:

- Degeneracy possible
- Good estimates may need large *N*
- Computationally expensive

Introduction	HMM 00000000	Sampling 0000000	Re-sampling oooooo●	Genetic Algs.
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Introduction	HMM 00000000	Sampling 00000000	Re-sampling	Genetic Algs. ●000
Outline				

- Introduction: What is particle filtering?
- Particle Filters and Hidden Markov Models
- Sampling Particles
- Re-sampling Particles
- Particle Filters & Genetic Algorithms

Mara Canaval Dartiala Filtaring						
		00000000	000000	0000		
Introduction	HMM	Sampling	Re-sampling	Genetic Alas		

More General Particle Filtering

Consider optimization problems:

$$x^* = \arg\min_x E(x)$$

Often solved with Euler-Lagrange

- Introduce artificial timestep t
- Compute $\frac{\partial x}{\partial t}$
- Update using gradient descent $x_t = x_{t-1} \delta t \frac{\partial x}{\partial t}$

Looks similar...

Introduction	HMM 00000000	Sampling 00000000	Re-sampling	Genetic Algs. oo●o
Particle Filte	ering Optimiz	zation		

• Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$

Introduction	HMM 00000000	Sampling 00000000	Re-sampling	Genetic Algs. ○○●○
Particle F	ilterina Opti	mization		

- Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)

Introduction	HMM	Sampling	Re-sampling	Genetic Algs.
000	00000000	00000000		oo●o
Particle Filte	ering Optimiz	zation		

- Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all solutions.

• Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$

p(**x**₀) may be very simple (e.g. Uniform, Gaussian)

• Let
$$w^i = w_0^i = \frac{1}{N}$$
, for all solutions.

Propagate solutions using gradient descent $f(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathbf{x}_{t-1} - \delta t \frac{\partial \mathbf{x}}{\partial t}$

- Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)

• Let
$$w^i = w_0^i = \frac{1}{N}$$
, for all solutions.

- Propagate solutions using gradient descent $f(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathbf{x}_{t-1} \delta t \frac{\partial \mathbf{x}}{\partial t}$
- Siven observation $E(x_t^i)$, determine solutions' weight $w_t^i = e^{-E(x_t^i)}$

- Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all solutions.
- Propagate solutions using gradient descent $f(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathbf{x}_{t-1} \delta t \frac{\partial \mathbf{x}}{\partial t}$
- Siven observation $E(x_t^i)$, determine solutions' weight $w_t^i = e^{-E(x_t^i)}$
- Update weight $w^i = w^i_{t-1} w^i_t$.

Particle Filtering Optimization

- Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all solutions.
- Propagate solutions using gradient descent $f(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathbf{x}_{t-1} \delta t \frac{\partial \mathbf{x}}{\partial t}$
- Siven observation $E(x_t^i)$, determine solutions' weight $w_t^i = e^{-E(x_t^i)}$
- Update weight $w^i = w_{t-1}^i w_t^i$.
- Scheck for degeneracy.

- Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all solutions.
- Propagate solutions using gradient descent $f(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathbf{x}_{t-1} \delta t \frac{\partial \mathbf{x}}{\partial t}$
- Siven observation $E(x_t^i)$, determine solutions' weight $w_t^i = e^{-E(x_t^i)}$
- Update weight $w^i = w^i_{t-1} w^i_t$.
- Scheck for degeneracy.
- Repeat steps 2-5 until convergence.

Particle Filtering Optimization

- Generate *N* i.i.d. solutions $\{x_0^1, \dots, x_0^N\}$ from $\hat{p}(\mathbf{x}_0)$
 - $\hat{p}(\mathbf{x}_0)$ may be very simple (e.g. Uniform, Gaussian)
 - Let $w^i = w_0^i = \frac{1}{N}$, for all solutions.
- Propagate solutions using gradient descent $f(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathbf{x}_{t-1} \delta t \frac{\partial \mathbf{x}}{\partial t}$
- Siven observation $E(x_t^i)$, determine solutions' weight $w_t^i = e^{-E(x_t^i)}$
- Update weight $w^i = w_{t-1}^i w_t^i$.
- Scheck for degeneracy.
- Repeat steps 2-5 until convergence.
- Select x_n^i with largest weight w^i as x^* .

Introduction	HMM	Sampling	Re-sampling	Genetic Algs.				
000	00000000	00000000	000000	000●				
Particle Filtering = Genetic Algorithms?								

So what's going on?

- Generating a PDF of $e^{-E(x)}$ using particle filtering.
- Largest-weighted particle is estimate of MLE of PDF.

Introduction	HMM 00000000	Sampling 0000000	Re-sampling	Genetic Algs. 000●			
Particle Filtering = Genetic Algorithms?							

So what's going on?

- Generating a PDF of $e^{-E(x)}$ using particle filtering.
- Largest-weighted particle is estimate of MLE of PDF.

But this is what genetic algorithms does...

Particle Filtering = Genetic Algorithms?

So what's going on?

- Generating a PDF of $e^{-E(x)}$ using particle filtering.
- Largest-weighted particle is estimate of MLE of PDF.

But this is what genetic algorithms does...

- Generate sample solutions (i.e. population)
- Score the solutions using E(x) (i.e. fitness rating)
- Resample based on those scores (i.e. survival of the fittest)
- Repeat until scores no longer improve (i.e. population stabilizes)

Particle Filtering = Genetic Algorithms?

So what's going on?

- Generating a PDF of $e^{-E(x)}$ using particle filtering.
- Largest-weighted particle is estimate of MLE of PDF.

But this is what genetic algorithms does...

- Generate sample solutions (i.e. population)
- Score the solutions using E(x) (i.e. fitness rating)
- Resample based on those scores (i.e. survival of the fittest)
- Repeat until scores no longer improve (i.e. population stabilizes)

Particle filtering is for more than HMM problems.