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What'’s in a name?

Particle Filtering, a.k.a:
@ Sequential Monte Carlo (SMC)
@ Bootstrap filtering
@ Condensation
@ Interacting Particle Approximations
@ Survival of the Fittest

@ Genetic Algorithms(?)
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Introduction to Particle Filtering

To the videos...
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Setting Up Particle Filtering

Notations:
@ Hidden Statesx ¢ X
@ Observationsz ¢ Z

Given:
@ Initial state distribution p(xo)
@ Transition distribution f(x;|X;_1)
@ Observation (i.e. scoring) distribution g(z;|x:)

Find:
@ Full trajectory distribution p(xo.n|Z1.n)
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Assuming a Hidden Markov Model

)

Xt 11

@ ® @

@ States (in blue) are hidden
@ Observations (in green) are known
@ Relationships are “roughly” known
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Here comes Bayes Rule...

Remember our goal:

p(XO:n‘zhn)
Apply Bayes Rule:
P(Xo:n; Z1:n)
Xn-nlZq- = — =
p( 0.n| 1.!7) p(z1:n)

The joint probabilities can be written in conditional form:

P(X0:n,Z1:n) =P(X0:n—1,Z1:n—1)F(Xn|Xn_1)9(Zn|Xn)
P(Z1.n) =P(Zn|Z1.0-1)P(21:n-1)
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Bayes Rule just keeps giving

Plugging in known f(-) and g(-):

f(Xn|Xn—1)9(Zn|Xn)
P(2zn|Z1:n-1)P(Z1:n-1)

P(Xo0:n|Z1:n) = P(X0:n—1,2Z1:n-1)
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Bayes Rule just keeps giving

Plugging in known f(-) and g(-):

f(Xn|Xn—1)9(Zn|Xn)
P(2zn|Z1:n-1)P(Z1:n-1)

P(Xo0:n|Z1:n) = P(X0:n—1,2Z1:n-1)

Replace p(Xo.n—1,21.n_1) With it’s conditional:

P(21.n-1)f(Xn|Xn—-1)9(Zn|Xn)
P(Zn|Z1.n—1)P(Z1:n—1)

P(Xo:n|Z1:n) = P(X0:n—11Z1:n—1)

The p(z4.,—1) distributions cancel out...
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Wrapping up Bayes Rule

Thus:
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Wrapping up Bayes Rule

Thus:

f(Xn|Xn_1)9(Zn|Xn)
P(Zn|Z1:n-1)

P(Xo0:n|Z1:n) = P(X0:n—1]Z1:n—1)

We know from normalization rules that:

P(zsl2101) = [ P(Xoi0-1[210-1)7(Xnl%o-1)g(Zalkn) X 1.

Let C, be the integral above. Then...
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Things just got Recursive

...we get:

f(Xn|Xn—1)9(zn|Xn)
Cn

P(Xo:n|Z1:n) = P(X0:n—1]Z1:n-1)

@ Our state distribution is recursive!

@ Recall: we have the base case p(xp)

@ Distributions f(-) and g(-) are also known

@ We have everything we need to solve this problem!
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What'’s stopping us?

In some cases, we can get p(Xo.n|21.n) analytically:

@ e.g. Kalman filters
[ p(xp) is Gaussian, f(x¢|x;_1) and g(z|x;) are linear ]
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What'’s stopping us?

In some cases, we can get p(Xo.n|21.n) analytically:

@ e.g. Kalman filters
[ p(xp) is Gaussian, f(x¢|x;_1) and g(z|x;) are linear ]

In most cases, we can’t:
@ Integration in C, intractable
@ Often, p(xp) not known, estimated with simpler distribution.

The Solution:
@ Estimate p(xo.n|z1.,) from samples (i.e. particles).
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Monte Carlo Estimates

Traditional Monte Carlo:
@ Generate N i.i.d. samples {xJ .-+, x} } from p(Xo.n|Z1.n)
@ Obtain discrete approximation of p(Xo.n|Z1.5):

N
R 1 -
p(Xo:nlz1:n) = N Z 5(X6:n)
i=1

@ As N — oo, p(-) — p(+)

Issues:
@ p(Xo.n|Z1.n) only known “recursively”
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Monte Carlo Estimates

Traditional Monte Carlo:
@ Generate N i.i.d. samples {xJ .-+, x} } from p(Xo.n|Z1.n)
@ Obtain discrete approximation of p(Xo.n|Z1.5):

N
N 1 i
p(XO:n‘zhn) = N Z 5(X6:n)
i=1

@ As N — oo, p(+) = p(+)

Issues:
@ p(Xo.n|Z1.n) only known “recursively”
@ Base case p(xp) may not be exactly known
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Sampling p(Xp) indirectly:
@ Sample from a simple distribution 7(Xp)
(e.g. Uniform, Gaussian)

@ Weight each sample by sampling error:

p(Xp)
m(Xp)

@ Obtain weighted discrete approximation of p(xo):

Zwé

w(Xg) =

p(xo) =
ZI 1 w'{
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Sampling p(Xp) indirectly:
@ Sample from a simple distribution 7(Xp)
(e.g. Uniform, Gaussian)

@ Weight each sample by sampling error:

p(Xp)
m(Xp)

@ Obtain weighted discrete approximation of p(xo):

ZI 1WIZW5

@ Known as Importance Sampling (IS)

w(Xg) =

P(Xo) =
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Sampling p(Xp) indirectly:
@ Sample from a simple distribution 7(Xp)
(e.g. Uniform, Gaussian)

@ Weight each sample by sampling error:

p(Xp)
m(Xp)

@ Obtain weighted discrete approximation of p(xo):

ZI 1WIZW5

@ Known as Importance Sampling (IS)

w(Xp) =

P(Xo) =

How do we know the sampling error in our case?
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Sequential Importance Sampling (SIS)

How do we know sampling error in our case?
@ We have our observations! {z;,--- ,zn}

@ As our sampled states x} change across time, measure
sampling error using

Wti = 9(zt/x¢)

@ Obtain weighted discrete approximation of p(Xo.n|Z1.n):

l/\)(XO:n|Z1:n) Z w 5 XO :n
ZI 1 i=1

@ Known as Sequential Importance Sampling (SIS)
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SIS in Image Form

states (t-1)

Transition
Distribution

states (t)

Observation
Distribution

.

weights (t)
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Particle Filtering in 6 Basic Steps:
@ Generate N i.i.d. “particles” {x{,--- , x}} from p(xo)

e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w) = J, for all particles.

© Propagate particles to new state using f(x;|x;_1)

© Given observation z;, determine particles’ weight
Wti = 9(z4[x¢)

© Update weight w' = w/_,w}.

©@ Repeat steps 2-4 ntimes.
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Particle Filtering using SIS

Particle Filtering in 6 Basic Steps:
@ Generate N i.i.d. “particles” {x{,--- , x}} from p(xo)

e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w) = J, for all particles.

© Propagate particles to new state using f(x;|x;_1)

© Given observation z;, determine particles’ weight
Wti = 9(z4[x¢)

© Update weight w' = w/_,w}.

©@ Repeat steps 2-4 ntimes.

© Obtain weighted discrete approximation p(Xg.n|z1.p)-
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The “gotchas”:
@ Doesn’t work well in high-dimensions (need large N).
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Use SIS with Caution

The “gotchas”:
@ Doesn’t work well in high-dimensions (need large N).

@ Degeneracy: After a few timesteps, all but one particle will
have negligible weight

500
400
300
4

200
100

0
10 20 30 40 50 0 100 200 300 400 500
Particle k

Figure 2: (A) The weights of all 50 particles (J,L;in\') at each time step k (_u—uxi\] Hotter colors represent

larger weights. (B) The effective sample size N,y as a function of time step k.
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Addressing Degeneracy

Detecting degeneracy:
@ At each timestep t, measure effective sample size

1
Nett = =v——

S (W)

B

50

40

s~ 30
S
0

Z 20

10

0
10 20 30 40 50 0 100 200 300 400 500
Particle

Figure 2: (A) The weights of all 50 particles (‘xf‘\xi\-) at each time step k (1/—;in<). Hotter colors represent
larger weights. (B) The effective sample size N,y as a function of time step k.
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Resampling Particles

If Ngit < 7 at timestep t:

@ Sample N new particles {xt1 S ,x,’V} from p(Xo.¢|Z1.¢)

iqhts: Wi — 1
@ Reset weights: w' = g

A

500

400

300
)

200

100

0
10 20 30 40 50 0 100 200 300 400 500
Particle

Figure 2: (A) The weights of all 50 particles (z-axis) at each time step k (y-axis). Hotter colors represent

larger weights. (B) The effective sample size N, sy as a function of time step k.
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Sequential Importance Resampling (SIR)

i=1,...,} =10 particles
= (i) pp-l
Ol LN, i {Xl]- 1 N7}

© ¢ ©00

unweighted measure

compute importance R
weights = p(X.,|Z,.1.1) i lT b o' L L guan
resampling L O R R
move particdes AR SR R N4 S S A D
| | |
N

i

Ty Ty o
si) & ()
e

W'}

predict p(x|z;.t.1) e 0B ® i



Re-sampling
000080

Pros and Cons of SIR Particle Filtering

Pros:

o Estimation of full state
PDFs

@ No assumptions on
distributions

o Parallelizable
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Pros and Cons of SIR Particle Filtering

Pros: Cons:
e Estimation of full state @ Degeneracy possible
PDFs

e Good estimates may
@ No assumptions on need large N

distributions _
e Computationally

e Parallelizable expensive
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More General Particle Filtering

Consider optimization problems:
x* = arg mxin E(x)
Often solved with Euler-Lagrange
@ Introduce artificial timestep t

e Compute %
@ Update using gradient descent x; = x;_1 — 6t%

Looks similar...
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:
@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
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@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xg) may be very simple (e.g. Uniform, Gaussian)
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:

@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w} = 1, for all solutions.
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:

@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w} = 1, for all solutions.

© Propagate solutions using gradient descent
f(Xt‘Xt_1) = X1 — (St%
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:

@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w} = 1, for all solutions.

© Propagate solutions using gradient descent
f(Xt‘Xt_1) = X1 — (St%

@ Given observation E(x]), determine solutions’ weight
Wti = e—E(Xri)
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:

@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w} = 1, for all solutions.

© Propagate solutions using gradient descent
f(Xt‘Xt_1) = X1 — (St%

@ Given observation E(x]), determine solutions’ weight
w = e Ex)

Q Update weight w' = w_,w].
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:

@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w} = 1, for all solutions.

© Propagate solutions using gradient descent
f(X¢|Xe_1) = Xp_1 — 5t%%

@ Given observation E(x]), determine solutions’ weight
w = e Ex)

Q Update weight w' = w_,w].

© Check for degeneracy.
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:

@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w} = 1, for all solutions.

© Propagate solutions using gradient descent
f(X¢|Xe_1) = Xp_1 — 5t%%

@ Given observation E(x]), determine solutions’ weight
wi = e E(D)

Q Update weight w' = w_,w].

© Check for degeneracy.

© Repeat steps 2-5 until convergence.
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:

@ Generate N i.i.d. solutions {x{,---, x)V} from p(xo)
e p(xo) may be very simple (e.g. Unlform Gaussian)
o Letw' = w} = 1, for all solutions.

© Propagate solutions using gradient descent
f(X¢|Xe_1) = Xp_1 — 5t%%

@ Given observation E(x]), determine solutions’ weight
wi = e E(D)

Q Update weight w' = w_,w].

© Check for degeneracy.

© Repeat steps 2-5 until convergence.

@ Select x! with largest weight w' as x*.
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Particle Filtering = Genetic Algorithms?

So what’s going on?
@ Generating a PDF of e~ E() using particle filtering.
@ Largest-weighted particle is estimate of MLE of PDF.
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Particle Filtering = Genetic Algorithms?

So what’s going on?
@ Generating a PDF of e~ E() using particle filtering.
@ Largest-weighted particle is estimate of MLE of PDF.

But this is what genetic algorithms does...
@ Generate sample solutions (i.e. population)
@ Score the solutions using E(x) (i.e. fitness rating)
@ Resample based on those scores
(i.e. survival of the fittest)
@ Repeat until scores no longer improve
(i.e. population stabilizes)
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Particle Filtering = Genetic Algorithms?

So what’s going on?
@ Generating a PDF of e~ E() using particle filtering.
@ Largest-weighted particle is estimate of MLE of PDF.

But this is what genetic algorithms does...
@ Generate sample solutions (i.e. population)
@ Score the solutions using E(x) (i.e. fitness rating)

@ Resample based on those scores
(i.e. survival of the fittest)

@ Repeat until scores no longer improve
(i.e. population stabilizes)

Particle filtering is for more than HMM problems.
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