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What’s in a name?

Particle Filtering, a.k.a:

Sequential Monte Carlo (SMC)

Bootstrap filtering

Condensation

Interacting Particle Approximations

Survival of the Fittest

Genetic Algorithms(?)
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Introduction to Particle Filtering

To the videos...
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Setting Up Particle Filtering

Notations:
Hidden States x ∈ X
Observations z ∈ Z

Given:
Initial state distribution p(x0)

Transition distribution f (xt |xt−1)

Observation (i.e. scoring) distribution g(zt |xt)

Find:
Full trajectory distribution p(x0:n|z1:n)
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Assuming a Hidden Markov Model

xt−1 xt xt+1

zt−1 zt zt+1

f (xt |xt−1)

g(zt |xt)

States (in blue) are hidden
Observations (in green) are known
Relationships are “roughly” known
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Here comes Bayes Rule...

Remember our goal:
p(x0:n|z1:n)

Apply Bayes Rule:

p(x0:n|z1:n) =
p(x0:n, z1:n)

p(z1:n)

The joint probabilities can be written in conditional form:

p(x0:n, z1:n) =p(x0:n−1, z1:n−1)f (xn|xn−1)g(zn|xn)

p(z1:n) =p(zn|z1:n−1)p(z1:n−1)
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Bayes Rule just keeps giving

Plugging in known f (·) and g(·):

p(x0:n|z1:n) = p(x0:n−1, z1:n−1)
f (xn|xn−1)g(zn|xn)

p(zn|z1:n−1)p(z1:n−1)

Replace p(x0:n−1, z1:n−1) with it’s conditional:

p(x0:n|z1:n) = p(x0:n−1|z1:n−1)
p(z1:n−1)f (xn|xn−1)g(zn|xn)

p(zn|z1:n−1)p(z1:n−1)

The p(z1:n−1) distributions cancel out...
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Wrapping up Bayes Rule

Thus:

p(x0:n|z1:n) = p(x0:n−1|z1:n−1)
f (xn|xn−1)g(zn|xn)

p(zn|z1:n−1)

We know from normalization rules that:

p(zn|z1:n−1) =

∫
p(x0:n−1|z1:n−1)f (xn|xn−1)g(zn|xn)dxn−1:n

Let Cn be the integral above. Then...
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Things just got Recursive

...we get:

p(x0:n|z1:n) = p(x0:n−1|z1:n−1)
f (xn|xn−1)g(zn|xn)

Cn

Our state distribution is recursive!
Recall: we have the base case p(x0)

Distributions f (·) and g(·) are also known
We have everything we need to solve this problem!
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What’s stopping us?

In some cases, we can get p(x0:n|z1:n) analytically:
e.g. Kalman filters
[ p(x0) is Gaussian, f (xt |xt−1) and g(zt |xt) are linear ]

In most cases, we can’t:
Integration in Cn intractable
Often, p(x0) not known, estimated with simpler distribution.

The Solution:
Estimate p(x0:n|z1:n) from samples (i.e. particles).
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Monte Carlo Estimates

Traditional Monte Carlo:
Generate N i.i.d. samples {x1

0:n, · · · , xN
0:n} from p(x0:n|z1:n)

Obtain discrete approximation of p(x0:n|z1:n):

p̂(x0:n|z1:n) =
1
N

N∑
i=1

δ(x i
0:n)

As N →∞, p̂(·)→ p(·)

Issues:
p(x0:n|z1:n) only known “recursively”

Base case p(x0) may not be exactly known
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Importance Sampling (IS)

Sampling p(x0) indirectly:
Sample from a simple distribution π(x0)
(e.g. Uniform, Gaussian)

Weight each sample by sampling error:

w(xi
0) =

p(xi
0)

π(xi
0)

Obtain weighted discrete approximation of p(x0):

p̂(x0) =
1∑N

i=1 w i

N∑
i=1

w iδ(x i
0)

Known as Importance Sampling (IS)

How do we know the sampling error in our case?
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Sequential Importance Sampling (SIS)

How do we know sampling error in our case?
We have our observations! {z1, · · · , zn}

As our sampled states xi
t change across time, measure

sampling error using

w i
t = g(zt |xt)

Obtain weighted discrete approximation of p(x0:n|z1:n):

p̂(x0:n|z1:n) =
1∑N

i=1 w i

N∑
i=1

w iδ(x i
0:n)

Known as Sequential Importance Sampling (SIS)
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SIS in Image Form
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Particle Filtering using SIS

Particle Filtering in 6 Basic Steps:
1 Generate N i.i.d. “particles” {x1

0 , · · · , xN
0 } from p̂(x0)

p̂(x0) may be very simple (e.g. Uniform, Gaussian)
Let w i = w i

0 = 1
N , for all particles.

2 Propagate particles to new state using f (xt |xt−1)

3 Given observation zt , determine particles’ weight
w i

t = g(zt |xt)

4 Update weight w i = w i
t−1w i

t .
5 Repeat steps 2-4 n times.
6 Obtain weighted discrete approximation p̂(x0:n|z1:n).
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w i

t = g(zt |xt)

4 Update weight w i = w i
t−1w i

t .
5 Repeat steps 2-4 n times.
6 Obtain weighted discrete approximation p̂(x0:n|z1:n).
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The “gotchas”:
Doesn’t work well in high-dimensions (need large N).

Degeneracy: After a few timesteps, all but one particle will
have negligible weight
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Addressing Degeneracy

Detecting degeneracy:
At each timestep t , measure effective sample size

Neff =
1∑N

i=1(w i)2
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Resampling Particles

If Neff < τ at timestep t :
Sample N new particles {x1

t , · · · , xN
t } from p̂(x0:t |z1:t)

Reset weights: w i = 1
N
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Sequential Importance Resampling (SIR)
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More General Particle Filtering

Consider optimization problems:

x∗ = arg min
x

E(x)

Often solved with Euler-Lagrange
Introduce artificial timestep t
Compute ∂x

∂t

Update using gradient descent xt = xt−1 − δt ∂x
∂t

Looks similar...
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Particle Filtering Optimization

Particle Filtering Optimization in 7 Basic Steps:
1 Generate N i.i.d. solutions {x1

0 , · · · , xN
0 } from p̂(x0)

p̂(x0) may be very simple (e.g. Uniform, Gaussian)
Let w i = w i

0 = 1
N , for all solutions.

2 Propagate solutions using gradient descent
f (xt |xt−1) = xt−1 − δt ∂x

∂t
3 Given observation E(x i

t ), determine solutions’ weight
w i

t = e−E(x i
t )

4 Update weight w i = w i
t−1w i

t .
5 Check for degeneracy.
6 Repeat steps 2-5 until convergence.
7 Select x i

n with largest weight w i as x∗.
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Particle Filtering = Genetic Algorithms?

So what’s going on?
Generating a PDF of e−E(x) using particle filtering.
Largest-weighted particle is estimate of MLE of PDF.

But this is what genetic algorithms does...

Generate sample solutions (i.e. population)
Score the solutions using E(x) (i.e. fitness rating)
Resample based on those scores
(i.e. survival of the fittest)
Repeat until scores no longer improve
(i.e. population stabilizes)

Particle filtering is for more than HMM problems.
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