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Introduction

Formulation of binary SVM problem:
Given training data set

D= {(Xf7YI)|Xf € Rnayi € {_171}7i: 1727“'7m} (1)

N
2 %

We're trying to find the maximal-margin hyperplane,
906 _ which can be described by its normal vector w which
°°  satisfies (b is some offset):

minimize  ||w||2
subject to yi(wx; —b)>1 i=1,2,..m

(2)

Comment

We encounter a lot of constraint minimization problems in Machine
Learning.
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Why We Want Convex Problems?
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Convex Optimization Problems

General form of convex optimization problem is like following:

minimize  fy(x)
subject to fi(x) <0, i=1,2..,m (3)
hi(x) =0, j=1,2,..,n

where fy, f; are convex functions, h; are linear functions.

Property

The feasible set of a convex optimization problem is also convex. J

In other words, convex optimization problem is solving a convex function
over a convex space.
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General Constraint Problem with Lagrange Duality

However, most constraint problems we optimize are not convex:

minimize  fy(x)

subject to fi(x) <0, i=1,2,..m (4)
hi(x) =0, j=1,2,...n
Lagrangian:
Lo A w) = B(x) + SO + 3 () (5)
i=1 j=1

Ai(>0),v; are called Lagrangian multipliers or dual variables; the
Lagrangian dual function is defined as:

g(Avu) = ir)](f L(X,A,l/) (6)
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Geometric Explanation — Primal Problem
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Geometric Explanation — Dual Problem
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Geometric Explanation — Two Observations

Observation (1)

Dual function g(\) is concave.

mazximize g(\)
subject to A >0 (12)

is a convex optimization problem.

Observation (1)
Let p* be the optimal value of the primal problem, then

g(A) < px, VA (13)

v

Mengliu Zhao SFU-MLRG March 12, 2014 9/25



Economic Explanation

Company production cost fy, with certain limits f; below a; (rules,
resources):

minimize  fy(x)

subject to fi(x) —a; <0, i=1,2,..m (14)

However, if , the company can pay a fund rate of A\; > 0 to violate certain
rules, which adds back to the total cost:

g(\) = inf{H(x) + 3 Ai(fi - a)} (15)

In this case, the optimal value d* for the company is the cost under the
least favorable set of prices A — max g(\).
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-
Strong & Weak Duality

How well does the dual problem approximate the original problem?
@ Weak Duality: optimal duality gap is always non-negative.

p*—d* >0 (16)

@ Strong Duality: duality gap is zero.
pr=d" (17)

Q: When does strong duality hold?

Theorem (Slater’s Theorem)

D is feasible set. Assume the primal problem is convex:

minimize fo(x)
subject to  fi(x) <0, i
h.I(X) = 07 ./

If 3x € relint D, and fi(x) < 0,i = 0,1,...,m, then strong duality holds.
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N
KKT Condition

For constrained problem:

minimize  fy(x)
subject to fi(x) <0, i=1,2,...m (19)
hi(x) =0, j=1,2,..,n

If x* is the primal minimum, then it satisfies the following necessary
condition:

Vfo(x Z)\ V(X)) + > vVhi(x) =0 (20)
j=1
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R
Dual Form, Then What?

Once we get the dual problem, it's easy to solve, e.g., by gradient
approach (dual ascent).

Property

If g(\) is a convex (concave) function, then Vf(\*) = 0 iff \* is the
global minimizer (maximizer).

Comment
A lot of conditions need to be satisfied for a stable gradient method.
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|
Dual Ascent for Solving Dual Problem

Let's look at a simplified version of the constrained problem:

minimize  f(x)

subject to Ax=0b (1)
Its dual form:
maxg(A) = m)?x{mxin L(x,\)} (22)
L(A\,x) = f(x)+ A(Ax —b) (23)
Update x, A\ at each iteration:
Xkl = min L(x, ! (24)
AL = 2K g gk Iy gkt \Ky (25)
Question
What if we have a much more complex situation? J
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Dual Decomposition

Suppose the problem is of high dimension, X = (x, z), and f(X) is
separable:

f(X) = fi(x)+f(2) (26)

AR —b = (Aix—b1)+ (Axz — by) (27)
Then we can do dual ascent on each dimension separately:

Ll(X) = fl(X) + )\1(A1X — bl) (28)
L2(X) = fQ(X) + )\2(A2X — b2) (29)
XK = min L1 (x, Z¥, \F) (30)
2K = min Ly(x¥*1, 2, \K) (31)
MNAL = Nk ok Ly g(xktl 2k 2K (32)

Comment

@ Simple dual ascent is usually slow;
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Alternative to Dual Ascent — Augmented Lagrangian

Primal problem:
minimize  f(x)

subject to Ax=0b (33)
Dual problem:
L(x, )\, 0) = f(x) + AT (Ax — b) + gHAX — bl|3 (34)
Update by method of multipliers (fixed step):
XK+ = min L(x, XK, 0) (35)
ML= 2K 1 g(AxETL — b) (36)
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N
Method of Multipliers

Comparing to dual ascent:
@ Good news: convergence under more relaxed conditions;

@ Bad news: dual decomposition no longer works (now we have
quadratic terms)!

Comment
ADMM can help! J
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-
ADMM

Alternating Direction Method of Multipliers

minimize  f(x) + g(z)

subject to Ax+ Bz=0>b (37)

Its Lagrangian is:
0
Lo(x,\, z) = f(x) + g(z) + AT (Ax + Bz — b) + 5llAx+ Bz — bl|3 (38)

ADMM scheme:

xKH1 = min Lp(x, 25, \K)
Zktl .= mzin Lo(xKt1, z, yk) (39)
MNAL = XK 4 g(AxKHL 4 BZKL — p)
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N
A Closer Look at ADMM

Comment
We need more convincing evidence that the scheme will work!

The thing unnatual here is the new variable z. We'll check the KKT
condition with the constraint problem above:

Vg(z)+B™A=0 (40)

We'll check if this could be satisfied by the ADMM scheme. Since zK*1
minimized Lg(x*T1, z, AK), then

0 = Vg 4+ BTX 1 BT (Ax* 1 + B! — b)) (41)
= Vg(zk+1 + BT )k (42)

Which means the KKT condition is satisfied.
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N
Dual Form of SVM

Now let's come back to the constrained version of SVM model:

minimize ||w||2 (43)
subject to yj(wx; —b)>1 i=1,2,....m

It's easy to convert it to Lagrangian dual form as following:

mfx{wlg{HWH% + Z Ai[l = yi(wx; — b)]}} (44)

Comment

The formulation is too complex! We can do further to simplify it! J
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N
Dual Form of SVM

Check KKT condition, taking 1-order derivative of w and b on Lagrangian
function [|w|[3 + > Ni[1 — yi(wx; — b)]:

wo= ZAM’X" (45)
0 = > A (46)

Replace them back in (44), we have:

max g(\) = mfx{z A = 5 yviyididi (i) T}
st A\ > 0,i=1,2,...m (47)
YAiyi =0
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Summary

© Lagrangian Duality, KKT condition
@ Dual Decomposition, Augmented Lagrangian, ADMM
© Example using Lagrangian Duality on SVM
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Thank You!
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