Convex Optimization and Machine Learning

Mengliu Zhao

Machine Learning Reading Group School of Computing Science Simon Fraser University

March 12, 2014

Introduction

Formulation of binary SVM problem: Given training data set

$$D = \{(x_i, y_i) | x_i \in \mathbb{R}^n, y_i \in \{-1, 1\}, i = 1, 2, ..., m\} (1)$$

We're trying to find the maximal-margin hyperplane, which can be described by its normal vector w which satisfies (*b* is some offset):

$$\begin{array}{ll} \text{minimize} & ||w||_2\\ \text{subject to} & y_i(wx_i-b) \ge 1 \quad i=1,2,...,m \end{array} \tag{2}$$

Comment

We encounter a lot of constraint minimization problems in Machine Learning.

Μ	eng	liu	Zhad
	- 0		

Why We Want Convex Problems?

Least Sqaure

Analytical

Linear Programming

Interior Point Method Complexity Upper Bound

Non-Linear Convex Problems

Interior Point Method Active Research Area, Promising on-Convex Problems

Mengliu Zhao

March 12, 2014 3 / 25

500

Outline

Lagrange Dual Form

- ② Dual Decomposition, Augmented Lagrangian and ADMM
- **3** SVM and Convex Optimization

< 日 > < 同 > < 三 > < 三 >

3

Convex Optimization Problems

General form of convex optimization problem is like following:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, 2, ..., m$
 $h_j(x) = 0$, $j = 1, 2, ..., n$ (3)

where f_0 , f_i are convex functions, h_j are linear functions.

Property

The feasible set of a convex optimization problem is also convex.

In other words, convex optimization problem is solving a convex function over a convex space.

イロト 不得 とうせい かほとう ほ

General Constraint Problem with Lagrange Duality

However, most constraint problems we optimize are not convex:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, 2, ..., m$ (4)
 $h_j(x) = 0$, $j = 1, 2, ..., n$

Lagrangian:

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^n \nu_j h_j(x)$$
(5)

 $\lambda_i(>0), \nu_j$ are called Lagrangian multipliers or dual variables; the Lagrangian dual function is defined as:

$$g(\lambda,\mu) = \inf_{x} L(x,\lambda,\nu)$$
(6)

Geometric Explanation – Primal Problem

minimize
$$-x^2 + 15^2$$

subject to $x^2 - 15^2 \le 0$ (7)

$$(x^2 - 15^2)$$
 (8)

.⊒ . ►

< 17 > <

Mengliu Zhao

SFU-MLRG

March 12, 2014 7 / 25

э

- ∢ ⊒ →

Geometric Explanation – Dual Problem

$$-x^{2} + 15^{2} + \lambda(x^{2} - 15^{2}) \quad (9)$$
$$\lambda = .1:.1:2 \qquad (10)$$

$$g(\lambda) = \inf_{x} \{-x^{2} + 15^{2} + \lambda(x^{2} - 15^{2}) \\ \lambda = .1 : .1 : 2$$
(11)

17 ▶

Mengliu Zhao

SFU-MLRG

March 12, 2014 8 / 25

-

э

Geometric Explanation – Two Observations

Observation (I)

Dual function $g(\lambda)$ is concave.

 $\begin{array}{ll} maximize & g(\lambda) \\ subject \ to & \lambda > 0 \end{array}$

(12)

is a convex optimization problem.

Observation (II)

Let p^* be the optimal value of the primal problem, then

$$g(\lambda) \le p*, \forall \lambda$$
 (13)

N / 1	0.00	~	 2.20
	เษก		
	_		_

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Company production cost f_0 , with certain limits f_i below a_i (rules, resources):

minimize
$$f_0(x)$$

subject to $f_i(x) - a_i \le 0, \quad i = 1, 2, ..., m$ (14)

However, if , the company can pay a fund rate of $\lambda_i > 0$ to violate certain rules, which adds back to the total cost:

$$g(\lambda) = \inf_{\lambda} \{ f_0(x) + \sum_i \lambda_i (f_i - a_i) \}$$
(15)

In this case, the optimal value d^* for the company is the cost under the least favorable set of prices $\lambda \longrightarrow \max g(\lambda)$.

Strong & Weak Duality

How well does the dual problem approximate the original problem?Weak Duality: optimal duality gap is always non-negative.

$$p^* - d^* \ge 0 \tag{16}$$

Strong Duality: duality gap is zero.

$$p^* = d^* \tag{17}$$

Q: When does strong duality hold?

Theorem (Slater's Theorem)

D is feasible set. Assume the primal problem is convex:

$$\begin{array}{ll} minimize & f_0(x) \\ subject \ to & f_i(x) \le 0, \quad i = 1, 2, ..., m \\ & h_j(x) = 0, \quad j = 1, 2, ..., n \end{array} \tag{18}$$

If $\exists x \in \text{relint } D$, and $f_i(x) < 0, i = 0, 1, ..., m$, then strong duality holds.

For constrained problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, 2, ..., m$ (19)
 $h_j(x) = 0, \quad j = 1, 2, ..., n$

If x^* is the primal minimum, then it satisfies the following necessary condition:

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i \nabla f_i(x^*) + \sum_{j=1}^n \nu_j \nabla h_j(x^*) = 0$$
(20)

3

<ロ> <同> <同> < 同> < 同>

- Lagrange Dual Form
- ② Dual Decomposition, Augmented Lagrangian and ADMM
- SVM and Convex Optimization

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Once we get the dual problem, it's easy to solve, e.g., by gradient approach (dual ascent).

Property

If $g(\lambda)$ is a convex (concave) function, then $\nabla f(\lambda^*) = 0$ iff λ^* is the global minimizer (maximizer).

Comment

A lot of conditions need to be satisfied for a stable gradient method.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Dual Ascent for Solving Dual Problem

Let's look at a simplified version of the constrained problem:

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$$
(21)

Its dual form:

$$\max g(\lambda) = \max_{\lambda} \{\min_{x} L(x, \lambda)\}$$
(22)
$$L(\lambda, x) = f(x) + \lambda(Ax - b)$$
(23)

Update x, λ at each iteration:

$$x^{k+1} = \min_{x} L(x, \lambda^k) \tag{24}$$

$$\lambda^{k+1} = \lambda^k + \alpha^{k+1} \nabla g(x^{k+1}, \lambda^k)$$
(25)

Question

What if we have a much more complex situation?

Mengliu Zhao

SFU-MLRG

March 12, 2014 15 / 25

Dual Decomposition

Suppose the problem is of high dimension, $\hat{x} = (x, z)$, and $f(\hat{x})$ is separable:

$$f(\hat{x}) = f_1(x) + f_2(z)$$
 (26)

$$A\hat{x} - b = (A_1x - b_1) + (A_2z - b_2)$$
 (27)

Then we can do dual ascent on each dimension separately:

$$L_1(x) = f_1(x) + \lambda_1(A_1 x - b_1)$$
(28)

$$L_2(x) = f_2(x) + \lambda_2(A_2 x - b_2)$$
(29)

$$x^{k+1} = \min_{x} L_1(x, z^k, \lambda^k)$$
 (30)

$$z^{k+1} = \min_{z} L_2(x^{k+1}, z, \lambda^k)$$
(31)

$$\lambda^{k+1} = \lambda^k + \alpha^{k+1} \nabla g(x^{k+1}, z^{k+1}, \lambda^k)$$
(32)

Comment

Simple dual ascent is usually slow;

Mengliu Zhao

SFU-MLRG

March 12, 2014 16 / 25

Alternative to Dual Ascent – Augmented Lagrangian

Primal problem:

minimize
$$f(x)$$

subject to $Ax = b$ (33)

Dual problem:

$$L(x,\lambda,\theta) = f(x) + \lambda^{T}(Ax - b) + \frac{\theta}{2} ||Ax - b||_{2}^{2}$$
(34)

Update by method of multipliers (fixed step):

$$x^{k+1} := \min_{x} L(x, \lambda^k, \theta)$$
(35)

$$\lambda^{k+1} := \lambda^k + \theta(Ax^{k+1} - b)$$
(36)

3

Comparing to dual ascent:

- **Good** *news*: convergence under more relaxed conditions;
- Bad news: dual decomposition no longer works (now we have quadratic terms)!

Comment ADMM can help!

A B + A B +

ADMM

Alternating Direction Method of Multipliers

minimize
$$f(x) + g(z)$$

subject to $Ax + Bz = b$ (37)

Its Lagrangian is:

$$L_{\theta}(x,\lambda,z) = f(x) + g(z) + \lambda^{T}(Ax + Bz - b) + \frac{\theta}{2} ||Ax + Bz - b||_{2}^{2}$$
(38)

ADMM scheme:

$$\begin{aligned}
x^{k+1} &:= \min_{x} L_{\theta}(x, z^{k}, \lambda^{k}) \\
z^{k+1} &:= \min_{x} L_{\theta}(x^{k+1}, z, y^{k}) \\
\lambda^{k+1} &:= \lambda^{z}_{k} + \theta(Ax^{k+1} + Bz^{k+1} - b)
\end{aligned} (39)$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Closer Look at ADMM

Comment

We need more convincing evidence that the scheme will work!

The thing unnatual here is the new variable z. We'll check the KKT condition with the constraint problem above:

$$\nabla g(z) + B^T \lambda = 0 \tag{40}$$

We'll check if this could be satisfied by the ADMM scheme. Since z^{k+1} minimized $L_{\theta}(x^{k+1}, z, \lambda^k)$, then

$$0 = \nabla g(z^{k+1} + B^{T}\lambda^{k} + \theta B^{T}(Ax^{k+1} + Bz^{k+1} - b))$$
(41)
= $\nabla g(z^{k+1} + B^{T}\lambda^{k}$ (42)

Which means the KKT condition is satisfied.

Mengliu Zhar			 _	
	N/1-	ana		120
		CILE		i ei u

Outline

- Lagrange Dual Form
- ② Dual Decomposition, Augmented Lagrangian and ADMM
- **③** SVM and Convex Optimization

3

<ロ> <同> <同> < 同> < 同>

Now let's come back to the constrained version of SVM model:

minimize
$$||w||_2$$

subject to $y_i(wx_i - b) \ge 1$ $i = 1, 2, ..., m$ (43)

It's easy to convert it to Lagrangian dual form as following:

$$\max_{\lambda} \{ \min_{w,b} \{ ||w||_2^2 + \sum \lambda_i [1 - y_i(wx_i - b)] \} \}$$
(44)

Comment

The formulation is too complex! We can do further to simplify it!

 A 10 M	 Zhaa
eno	 7 11210
ч. _В	

Dual Form of SVM

Check KKT condition, taking 1-order derivative of w and b on Lagrangian function $||w||_2^2 + \sum \lambda_i [1 - y_i(wx_i - b)]$:

$$w = \sum_{i} \lambda_{i} y_{i} x_{i}$$
(45)
$$0 = \sum_{i} \lambda_{i} y_{i}$$
(46)

Replace them back in (44), we have:

$$\max_{\lambda} g(\lambda) = \max_{\lambda} \{ \sum \lambda_i - \frac{1}{2} \sum y_i y_j \lambda_i \lambda_j (x_i)^T x_j \}$$

s.t. $\lambda_i \ge 0, i = 1, 2, ..., m$
 $\sum \lambda_i y_i = 0$ (47)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

- Lagrangian Duality, KKT condition
- 2 Dual Decomposition, Augmented Lagrangian, ADMM
- Stample using Lagrangian Duality on SVM

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank You!

Mengliu Zhao

SFU-MLRG

March 12, 2014 25 / 25

æ

<ロ> (日) (日) (日) (日) (日)