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Introduction

Formulation of binary SVM problem:
Given training data set

D = {(xi , yi )|xi ∈ Rn, yi ∈ {−1, 1}, i = 1, 2, ...,m} (1)

We’re trying to find the maximal-margin hyperplane,
which can be described by its normal vector w which
satisfies (b is some offset):

minimize ||w ||2
subject to yi (wxi − b) ≥ 1 i = 1, 2, ...,m

(2)

Comment

We encounter a lot of constraint minimization problems in Machine
Learning.
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Why We Want Convex Problems?

Mengliu Zhao SFU-MLRG March 12, 2014 3 / 25



Outline

1 Lagrange Dual Form

2 Dual Decomposition, Augmented Lagrangian and ADMM

3 SVM and Convex Optimization

Mengliu Zhao SFU-MLRG March 12, 2014 4 / 25



Convex Optimization Problems

General form of convex optimization problem is like following:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., n
(3)

where f0, fi are convex functions, hj are linear functions.

Property

The feasible set of a convex optimization problem is also convex.

In other words, convex optimization problem is solving a convex function
over a convex space.
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General Constraint Problem with Lagrange Duality

However, most constraint problems we optimize are not convex:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., n
(4)

Lagrangian:

L(x , λ, ν) = f0(x) +
m∑
i=1

λi fi (x) +
n∑

j=1

νjhj(x) (5)

λi (> 0), νj are called Lagrangian multipliers or dual variables; the
Lagrangian dual function is defined as:

g(λ, µ) = inf
x
L(x , λ, ν) (6)
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Geometric Explanation – Primal Problem

minimize −x2 + 152

subject to x2 − 152 ≤ 0
(7)

(x2 − 152) (8)
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Geometric Explanation – Dual Problem

−x2 + 152 + λ(x2 − 152) (9)

λ = .1 : .1 : 2 (10)

g(λ) = inf
x
{−x2 + 152 + λ(x2 − 152)

λ = .1 : .1 : 2 (11)
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Geometric Explanation – Two Observations

Observation (I)

Dual function g(λ) is concave.

maximize g(λ)
subject to λ > 0

(12)

is a convex optimization problem.

Observation (II)

Let p∗ be the optimal value of the primal problem, then

g(λ) ≤ p∗,∀λ (13)
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Economic Explanation

Company production cost f0, with certain limits fi below ai (rules,
resources):

minimize f0(x)
subject to fi (x)− ai ≤ 0, i = 1, 2, ...,m

(14)

However, if , the company can pay a fund rate of λi > 0 to violate certain
rules, which adds back to the total cost:

g(λ) = inf
λ
{f0(x) +

∑
i

λi (fi − ai )} (15)

In this case, the optimal value d∗ for the company is the cost under the
least favorable set of prices λ −→ max g(λ).
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Strong & Weak Duality

How well does the dual problem approximate the original problem?
1 Weak Duality: optimal duality gap is always non-negative.

p∗ − d∗ ≥ 0 (16)

2 Strong Duality: duality gap is zero.

p∗ = d∗ (17)

Q: When does strong duality hold?

Theorem (Slater’s Theorem)

D is feasible set. Assume the primal problem is convex:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., n
(18)

If ∃x ∈ relintD, and fi (x) < 0, i = 0, 1, ...,m, then strong duality holds.
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KKT Condition

For constrained problem:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., n
(19)

If x∗ is the primal minimum, then it satisfies the following necessary
condition:

∇f0(x∗) +
m∑
i=1

λi∇fi (x∗) +
n∑

j=1

νj∇hj(x∗) = 0 (20)
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Dual Form, Then What?

Once we get the dual problem, it’s easy to solve, e.g., by gradient
approach (dual ascent).

Property

If g(λ) is a convex (concave) function, then ∇f (λ∗) = 0 iff λ∗ is the
global minimizer (maximizer).

Comment

A lot of conditions need to be satisfied for a stable gradient method.
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Dual Ascent for Solving Dual Problem

Let’s look at a simplified version of the constrained problem:

minimize f (x)
subject to Ax = b

(21)

Its dual form:

max g(λ) = max
λ
{min

x
L(x , λ)} (22)

L(λ, x) = f (x) + λ(Ax − b) (23)

Update x , λ at each iteration:

xk+1 = min
x

L(x , λk) (24)

λk+1 = λk + αk+1∇g(xk+1, λk) (25)

Question

What if we have a much more complex situation?
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Dual Decomposition

Suppose the problem is of high dimension, x̂ = (x , z), and f (x̂) is
separable:

f (x̂) = f1(x) + f2(z) (26)

Ax̂ − b = (A1x − b1) + (A2z − b2) (27)

Then we can do dual ascent on each dimension separately:

L1(x) = f1(x) + λ1(A1x − b1) (28)

L2(x) = f2(x) + λ2(A2x − b2) (29)

xk+1 = min
x

L1(x , zk , λk) (30)

zk+1 = min
z

L2(xk+1, z , λk) (31)

λk+1 = λk + αk+1∇g(xk+1, zk+1, λk) (32)

Comment

1 Simple dual ascent is usually slow;

2 Needs a lot of stability conditions.
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Alternative to Dual Ascent – Augmented Lagrangian

Primal problem:
minimize f (x)
subject to Ax = b

(33)

Dual problem:

L(x , λ, θ) = f (x) + λT (Ax − b) +
θ

2
||Ax − b||22 (34)

Update by method of multipliers (fixed step):

xk+1 := min
x

L(x , λk , θ) (35)

λk+1 := λk + θ(Axk+1 − b) (36)
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Method of Multipliers

Comparing to dual ascent:

1 Good news: convergence under more relaxed conditions;

2 Bad news: dual decomposition no longer works (now we have
quadratic terms)!

Comment

ADMM can help!
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ADMM

Alternating Direction Method of Multipliers

minimize f (x) + g(z)
subject to Ax + Bz = b

(37)

Its Lagrangian is:

Lθ(x , λ, z) = f (x) + g(z) + λT (Ax + Bz − b) +
θ

2
||Ax + Bz − b||22 (38)

ADMM scheme:

xk+1 := min
x

Lθ(x , zk , λk)

zk+1 := min
z

Lθ(xk+1, z , yk)

λk+1 := λk + θ(Axk+1 + Bzk+1 − b)

(39)
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A Closer Look at ADMM

Comment

We need more convincing evidence that the scheme will work!

The thing unnatual here is the new variable z . We’ll check the KKT
condition with the constraint problem above:

∇g(z) + BTλ = 0 (40)

We’ll check if this could be satisfied by the ADMM scheme. Since zk+1

minimized Lθ(xk+1, z , λk), then

0 = ∇g(zk+1 + BTλk + θBT (Axk+1 + Bzk+1 − b)) (41)

= ∇g(zk+1 + BTλk (42)

Which means the KKT condition is satisfied.
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Dual Form of SVM

Now let’s come back to the constrained version of SVM model:

minimize ||w ||2
subject to yi (wxi − b) ≥ 1 i = 1, 2, ...,m

(43)

It’s easy to convert it to Lagrangian dual form as following:

max
λ
{min
w ,b
{||w ||22 +

∑
λi [1− yi (wxi − b)]}} (44)

Comment

The formulation is too complex! We can do further to simplify it!
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Dual Form of SVM

Check KKT condition, taking 1-order derivative of w and b on Lagrangian
function ||w ||22 +

∑
λi [1− yi (wxi − b)]:

w =
∑
i

λiyixi (45)

0 =
∑

λiyi (46)

Replace them back in (44), we have:

max
λ

g(λ) = max
λ
{
∑
λi − 1

2

∑
yiyjλiλj(xi )

T xj}
s.t. λi ≥ 0, i = 1, 2, ...,m∑

λiyi = 0

(47)
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Summary

1 Lagrangian Duality, KKT condition

2 Dual Decomposition, Augmented Lagrangian, ADMM

3 Example using Lagrangian Duality on SVM
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Thank You!
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