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Overview: Greedy Selection for Kaczmarz Methods

I We consider solving linear systems with Kaczmarz methods.

I Strohmer & Vershynin [2009] show linear convergence with
randomized row selection.

I Does it make sense to use greedy row selection?

I Our contributions:

? Efficient implementation of greedy rules for sparse A.

? Faster convergence rates for greedy selection rules.

? Analysis of approximate greedy selection rules.

? First multi-step analysis for Kaczmarz methods.

? Faster randomized selection rule with orthogonality.

Problems of Interest

We consider a consistent system of linear equalities/inequalities,

Ax = b and/or Ax ≤ b,

where

I A ∈ IRm×n, b ∈ IRm, and a solution x∗ exists.

Applications in ML that involve solving linear systems:

1. Least squares:

min
x

1

2
‖Ax− b‖2 ⇐⇒

(
A −I
0 AT
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x
y

)
=
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b
0

)
.

2. Least-squares support vector machines.

3. Gaussian processes.

4. Fitting final layer of neural network (squared-errors).

5. Graph-based semi-supervised learning.

6. Decoding of Gaussian Markov random fields.

The Kaczmarz Method

On each iteration of the Kaczmarz method:

I Choose row ik and project xk onto hyperplane aTik
xk = bik,

xk+1 = xk +
bik − aTikx

k

‖aik‖2
aik.

? Convergence under weak conditions.

I Usual rules are cyclic or random selection of ik.

Greedy Selection Rules

I The maximum residual (MR) rule selects ik according to

ik = argmax
i
|aTi xk − bi|.

? The equation ik that is ‘furthest’ from being satisfied.

I The maximum distance (MD) rule selects ik according to

ik = argmax
i

∣∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣∣ .
? Maximizing distance that iteration moves, ‖xk+1 − xk‖.

Kaczmarz vs. Coordinate Descent

Key differences between Kaczmarz and coordinate descent:

Kaczmarz CD

Problem linear system least-squares

Selects rows of A columns of A

Assumes consistent system linearly independent columns

Convergence ‖xk − x∗‖ f (xk)− f (x∗)

The Orthogonality Graph

Orthogonality graph G of the matrix A:

I Each row i is a node.

I Edge between nodes i and j if ai is not orthogonal to aj.

→ After selection ik, equality ik will be satisfied for all subsequent
iterations until a neighbour in the orthogonality graph is selected.

Efficient Implementation of Greedy Rules

I If A has at most c non-zeros per column and r non-zeros per row:
I Can compute greedy rules in O(cr logm) using max-heap.
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I Use the orthogonality graph of A to track which rows to update:

I For selected i, only update node i and neighbours of node i.

→ Projecting onto hyperplane does not affect sub-optimality of non-neighbours.

I Costs O(gn+ g log(m)), where g is maximum number of neighbours of any node.

→ If g is small, comparable to O(n + log(m)) of randomized strategies.

xk

xk

xk+1

I Use an efficient approximation of the greedy rules:

→ e.g., Johnson-Lindenstrauss dimensionality reduction [Eldar & Needell, 2011].

Convergence Rates for Different Selection Rules

We use the following relationship between ‖xk+1 − x∗‖ and ‖xk − x∗‖:

‖xk+1 − x∗‖2 = ‖xk − x∗‖2−‖xk+1 − xk‖2 + 2 〈xk+1 − x∗, xk+1−xk〉︸ ︷︷ ︸
(=0, by orthogonality)

.

By the definition of the Kaczmarz update, we obtain for any selected ik,

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 −

(
aTik
xk − bik

)2

‖aik‖2
. (1)

From (1), we can derive the following rates:

I For uniform random selection, we can show

E
[
‖xk+1 − x∗‖2

]
≤
(

1− σ(A, 2)2

m‖A‖2∞,2

)
‖xk − x∗‖2, (Uniform∞)

where ‖A‖2∞,2 := maxi{‖ai‖2} and σ(A, 2) is the Hoffman constant.

I Using Ā = D−1A, where D = diag(‖a1‖, . . . , ‖am‖) gives tighter bound,

E
[
‖xk+1 − x∗‖2

]
≤
(

1− σ(Ā, 2)2

m

)
‖xk − x∗‖2. (Uniform)

I Strohmer & Vershynin show that non-uniform selection with probability ‖ai‖2/‖A‖2F
gives

E
[
‖xk+1 − x∗‖2

]
≤
(

1− σ(A, 2)2

‖A‖2F

)
‖xk − x∗‖2. (Non-Uniform)

? Faster than Uniform∞ but not necessarily faster than Uniform.

I For the maximum residual selection rule we get

‖xk+1 − x∗‖2 ≤
(

1− σ(A,∞)2

‖A‖2∞,2

)
‖xk − x∗‖2, (Max Res∞)

where
σ(A, 2)√

m
≤ σ(A,∞) ≤ σ(A, 2).

? The MR rule is at least as fast as Uniform∞, could be up to m times faster.

I Using row norm ‖aik‖ gives tighter bound,

‖xk+1 − x∗‖2 ≤
(

1− σ(A,∞)2

‖aik‖2

)
‖xk − x∗‖2. (Max Res)

? Faster when ‖aik‖ < ‖A‖∞,2, gives tighter rate with multi-step analysis.

I For the maximum distance rule, we can show a rate of

‖xk+1 − x∗‖2 ≤
(

1− σ(Ā,∞)2
)
‖xk − x∗‖2, (Max Dist)

where

max

{
σ(Ā, 2)√

m
,
σ(A, 2)

‖A‖F
,
σ(A,∞)

‖A‖∞,2

}
≤ σ(Ā,∞) ≤ σ(Ā, 2).

? Faster than all other rules in terms of ‖xk+1 − x∗‖.

Relationships Among Rules

Uniform∞ Uniform Non-Uniform Max Res∞ Max Res Max Dist
Uniform∞ = ≤ ≤ ≤ ≤ ≤
Uniform = P P P ≤
Non-Uniform = P P ≤
Max Res∞ = ≤ ≤
Max Res = ≤
Max Dist =

→ P: depends on problem.

Example: Diagonal A

For diagonal A, we can get explicit forms of constants.

Consider the case when all eigenvalues are equal except for one:

λ1 = λ2 = · · · = λm−1 > λm > 0.

Letting α = λ2
i (A) for any i = 1, . . . ,m− 1 and β = λ2

m(A), we have

β

mα︸︷︷︸
U∞

<
β

α(m− 1) + β︸ ︷︷ ︸
NU

<
β

α + β(m− 1)︸ ︷︷ ︸
MR∞

≤ 1

λ2
ik

αβ

α + β(m− 1)︸ ︷︷ ︸
MR

<
1

m︸︷︷︸
U, MD

.

? Strohmer & Vershynin’s NU is worst rule, greedy/uniform much faster.

Approximate Greedy Rules

I For multiplicative error in the MD rule,∣∣∣∣∣∣
aTik
xk − bik
‖aik‖

∣∣∣∣∣∣ ≥ max
i

∣∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣∣ (1− ε̄k),

we show for some ε̄k ∈ [0, 1),

‖xk+1 − x∗‖2 ≤
(

1− (1− ε̄k)2σ(Ā,∞)2
)
‖xk − x∗‖2,

which does not require ε̄k → 0.

I For additive error in the MD rule,∣∣∣∣∣∣
aTik
xk − bik
‖aik‖

∣∣∣∣∣∣
2

≥ max
i

∣∣∣∣∣aTi xk − bi‖ai‖

∣∣∣∣∣
2

− ε̄k,

we show for some ε̄k ≥ 0,

‖xk+1 − x∗‖2 ≤
(
1− σ(Ā,∞)2)‖xk − x∗‖2 + ε̄k,

which requires ε̄k → 0 (avoid with hybrid of Eldar & Needell).

? If ε̄k → 0 fast enough, we obtain the same rate of exact case.

Adaptive Randomized Rules

Define a sub-matrix Ak of selectable rows using orthogonality graph of A.
I For adaptive non-uniform, we obtain the bound

E
[
‖xk+1 − x∗‖2

]
≤
(

1− σ(Ak, 2)2

‖Ak‖2F

)
‖xk − x∗‖2.

I This bound is much tighter if you have one large ‖ai‖ and no
neighbours have been selected since the last time row i was selected.

? A similar bound is obtained for adaptive uniform selection.

Multi-Step Maximum Residual Bound

Using the orthogonality graph G of the matrix A, we obtain a tighter bound
on the MR rule using sequence of ‖ai‖ values,

‖xk+1− x∗‖2 ≤ O(1)

max
S(G)

|S(G)|

√√√√ ∏
j∈S(G)

(
1− σ(A,∞)2

‖aj‖2

)

k

‖x0− x∗‖2,

based on geometric mean of star subgraphs S(G) with at least two nodes.

→ Much faster rate if large ‖ai‖ are more than 2 edges apart.
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