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Structure Learning with /1-Regularization

@ Several authors have recently examined parameter estimation
in graphical models with ¢1-regularization.

@ Regularization and structure learning in a convex framework.
o First works looked at Gaussian graphical models.

@ Recent works consider log-linear models of discrete data.
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Structure Learning with
For example, assume we have a pairwise undirected graphical

model, 1
p(x) = Z [ ¢ita) [T (i ).
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with node parameters w; and edge parameters w;;.
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For example, assume we have a pairwise undirected graphical
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model,

with node parameters w; and edge parameters w;;.

Assume that wj; = 0 is equivalent to removing the edge (i, ).
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Structure Learning with /1-Regularization

For example, assume we have a pairwise undirected graphical

model,
é ZH¢I Xi H¢U(Xl,)9

J>i

with node parameters w; and edge parameters w;;.
Assume that wj; = 0 is equivalent to removing the edge (i, ).

We can use group /1-regularization for simultaneous parameter
estimation and structure learning:

mm—ZIogp "|lw) +)\ZZ||WU||2,

i j>i
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Structure Learning with /1-Regularization

A list of papers on this topic (incomplete):

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et
al., 2006], [Lee et al., 2006], [Meinshausen & Biihlmann, 2006],
[Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007],
[Shimamura et al., 2007], [Yuan & Lin, 2007], [d" Aspremont et al.,
2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008],
[Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidt et al., 2008], [Fan & Feng, 2009], [Holing & Tibshirani, 2009],
[Krishnamurphy & d'Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin
et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt &
Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al.,
2010].
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Structure Learning with /1-Regularization

Many of these papers have made the pairwise assumption:

[Li & Yang, 2004], [Li & Yang, 2005], [Banerjee et al., 2006], [Huang et
al., 2006], [Lee et al., 2006], [Meinshausen & Biihlmann, 2006],
[Wainwright et al., 2006], [Dahinden et al., 2007], [Schmidt et al., 2007],
[Shimamura et al., 2007], [Yuan & Lin, 2007], [d" Aspremont et al.,
2008], [Banerjee et al., 2008], [Dahl et al., 2008], [Duchi et al., 2008],
[Friedman et al., 2008], [Kolar & Xing, 2008], [Levina et al., 2008],
[Schmidt et al., 2008], [Fan & Feng, 2009], [Holing & Tibshirani, 2009],
[Krishnamurphy & d'Aspremont, 2009], [Lu, 2009a], [Lu, 2009b], [Marlin
et al., 2009a], [Marlin et al., 2009b], [Schmidt et al., 2009], [Schmidt &
Murphy, 2009], [Schnitzspan et al., 2009], [Yuan, 2009], [Vidaurre et al.,
2010].
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with log-linear models [Goodman, 1971], [Bishop et al., 1975].

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Introduction

Structure Learning with ¢1-Regularization
Our Contribution

Our Contribution

@ The pairwise assumption is inherent to Gaussian models.

@ The pairwise assumption has not traditionally been associated
with log-linear models [Goodman, 1971], [Bishop et al., 1975].

@ The assumption is restrictive if higher-order statistics matter.

e Eg. Mutations in both gene A and gene B lead to cancer.
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Our Contribution

The pairwise assumption is inherent to Gaussian models.

The pairwise assumption has not traditionally been associated
with log-linear models [Goodman, 1971], [Bishop et al., 1975].

The assumption is restrictive if higher-order statistics matter.

Eg. Mutations in both gene A and gene B lead to cancer.

This work gives give one way to go beyond pairwise potentials.
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The challenge in going beyond pairwise potentials is the
exponential number of possible higher-order potentials:
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@ We consider the special case of hierarchical log-linear models.

@ We give a convex formulation that utilizes overlapping group
l1-regularization to enforce the hierarchy.
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The challenge in going beyond pairwise potentials is the
exponential number of possible higher-order potentials:

@ We consider the special case of hierarchical log-linear models.

@ We give a convex formulation that utilizes overlapping group
l1-regularization to enforce the hierarchy.

@ We give an active set method that rules out non-hierarchical
higher-order potentials.
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The challenge in going beyond pairwise potentials is the
exponential number of possible higher-order potentials:

@ We consider the special case of hierarchical log-linear models.

@ We give a convex formulation that utilizes overlapping group
l1-regularization to enforce the hierarchy.

@ We give an active set method that rules out non-hierarchical
higher-order potentials.

@ We use projected gradient methods and Dykstra’s cyclic
projection algorithm to optimize with respect to the active set.
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© Higher-Order Log-Linear Models
@ General Log-Linear Models
@ Hierarchical Log-Linear Models
@ Overlapping Group ¢1-Regularization
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Higher-Order Log-Linear Models

General Log-Linear Models

In log-linear models [Bishop et al., 1975] we write the probability
of a vector x € {1,2,...,k}P as a normalized product

o) = 5 T éatxa).

ACS

over each subset A of S 2 {1,2,...,p},
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Higher-Order Log-Linear Models

General Log-Linear Models

In log-linear models [Bishop et al., 1975] we write the probability

of a vector x € {1,2,...,k}P as a normalized product
p() 2 2 T 6alxa)
7 A\RA),
ACS

over each subset A of S 2 {1,2,...,p},
We consider a full parameterization of these potential functions,
and a more parsimonious weighted Ising parameterization.
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General Log-Linear Models

The full parameterization for a threeway potential on binary nodes,

xi =1,x; = 1, xx = 2)wjjk112

—

log ¢ijk (xjj) = I(x; = 1,x; = 1, x, = )wjjperar + 1

+I(x =1,x = 2,x¢ = D)wjjaon +I1(x; = 1,x =2, x =2

Wijk122

+1I(x = 2,x; = L, xk = D)wjorn +I(x;i = 2,x; = 1, x4 = 2)wjkor2

+1I(x = 2,x; = 2, xk = L)wjjkoz + 1

—~ —~ —
— — —

X =2,xj =2,x =2 Wijk222-
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xi =1,x; = 1, xx = 2)wjjk112
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— — —
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®a(xa) has kAl parameters w.

Setting wy = 0 is equivalent to removing the potential.
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General Log-Linear Models

The full parameterization for a threeway potential on binary nodes,

xi =1,x; = 1, xx = 2)wjjk112

—

log ¢ijk (xjj) = I(x; = 1,x; = 1, x, = )wjjperar + 1

+I(x =1,x = 2,x¢ = D)wjjaon +I1(x; = 1,x =2, x =2

Wijk122

+1I(x = 2,x; = L, xk = D)wjorn +I(x;i = 2,x; = 1, x4 = 2)wjkor2

+1I(x = 2,x; = 2, xk = L)wjjkoz + 1

—~ —~ —
— — —

X =2,xj =2,x =2 Wijk222-
®a(xa) has kAl parameters w.

Setting wy = 0 is equivalent to removing the potential.

In pairwise models we assume wa = 0 if |A| > 2.
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Group ¢;1-Regularization for General Log-Linear Models

We can extend the work on pairwise models to the general case by
solving [Dahinden et al., 2007]:

min —Zlogp(x W)+ > Aallwall2,

ACS
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Group ¢;1-Regularization for General Log-Linear Models

We can extend the work on pairwise models to the general case by
solving [Dahinden et al., 2007]:

n
min — > log p(x’lw) + Y Aallwallz,
i=1 ACS
However,

@ Sparsity in the groups A does not correspond to conditional
independence.

@ Without a cardinality restriction, we have an exponential
number of variables.
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Hierarchical Log-Linear Models

Instead of using a cardinality restriction, we use:

Hierarchical Inclusion Restriction:
If wa=0and AC B, then wg = 0.

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Higher-Order Log-Linear Models General Log-Linear Models
Hierarchical Log-Linear Models
Overlapping Group ¢7-Regularization

Hierarchical Log-Linear Models

Instead of using a cardinality restriction, we use:

Hierarchical Inclusion Restriction:
If wa=0and AC B, then wg = 0.

We can only have (1,2, 3) if we also have (1,2), (1,3), and (2, 3).
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Hierarchical Log-Linear Models

@ This is the well-known class of hierarchical log-linear models
[Bishop et al., 1975].
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Hierarchical Log-Linear Models

@ This is the well-known class of hierarchical log-linear models
[Bishop et al., 1975].

@ Much larger than the set of pairwise models
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Hierarchical Log-Linear Models

@ This is the well-known class of hierarchical log-linear models
[Bishop et al., 1975].

@ Much larger than the set of pairwise models

@ Group-sparsity corresponds to conditional independence.
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Hierarchical Log-Linear Models

@ This is the well-known class of hierarchical log-linear models
[Bishop et al., 1975].

Much larger than the set of pairwise models

Group-sparsity corresponds to conditional independence.

However, we can't enforce the hierarchical constraint with
(disjoint) group ¢1-regularization.
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Overlapping Group /1-Regularization for Hierarchical
Constraints

Bach [2008], Zhao et al. [2009] enforce hierarchical inclusion
restrictions with overlapping group ¢1-regularization.
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Overlapping Group /1-Regularization for Hierarchical
Constraints

Bach [2008], Zhao et al. [2009] enforce hierarchical inclusion
restrictions with overlapping group ¢1-regularization.

Example:
@ We can enforce that B is zero whenever A is zero by using
two groups: {B} and {A, B}.

@ The resulting regularizer is Ag||wg||2 + Aa.5||wa 5|2
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Overlapping Group /1-Regularization for Hierarchical
Log-Linear Models

We can learn hierarchical log-linear models by solving

mm—Zlogp Xw)+ > Al Do [wall2)*.

ACS  {B|ACB}
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Overlapping Group /1-Regularization for Hierarchical
Log-Linear Models

We can learn hierarchical log-linear models by solving

mm—Zlogp Xw)+ > Al Do [wall2)*.

ACS  {B|ACB}

Under reasonable assumptions a minimizer of this convex
optimization problem will satisfy hierarchical inclusion.

A nicer way to write this:

n
. i *
min— log p(x'[w) + Y Aallwi|l2-

i=1 ACS
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© Optimization
@ Hierarchical Search
@ Projected Gradient Methods
@ Cyclic Projection Methods
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Active Set Method

@ We want to avoid considering the exponential number of
possible higher-order potentials.
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Active Set Method

@ We want to avoid considering the exponential number of
possible higher-order potentials.

@ We know the solution will be hierarchical, so we propose to
only consider groups that satisfy hierarchical inclusion.
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Active Set Method

@ We want to avoid considering the exponential number of
possible higher-order potentials.

@ We know the solution will be hierarchical, so we propose to
only consider groups that satisfy hierarchical inclusion.

@ The resulting method guarantees a weak form of global
optimality.
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Active, Inactive, Boundary Groups

@ We call A an active group if A or some superset of A is
non-zero.
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Active, Inactive, Boundary Groups

@ We call A an active group if A or some superset of A is
non-zero.

@ If A is not active, and some subset of A is zero, we call A an
inactive group.
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Active, Inactive, Boundary Groups

@ We call A an active group if A or some superset of A is
non-zero.

@ If A is not active, and some subset of A is zero, we call A an
inactive group.

@ The remaining groups are called boundary group.
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Active, Inactive, Boundary Groups

@ We call A an active group if A or some superset of A is
non-zero.

@ If Ais not active, and some subset of A is zero, we call A an
inactive group.
@ The remaining groups are called boundary group.

@ Boundary groups can be made non-zero without violating
hierarchical inclusion.
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Optimality of Boundary Groups

With inactive groups fixed, the optimality conditions with respect
to a boundary group A are

IV > log p(x‘ w2 < Aa.
i=1

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Hierarchical Search
Optimization Projected Gradient Methods
Cyclic Projection Methods

Optimality of Boundary Groups

With inactive groups fixed, the optimality conditions with respect
to a boundary group A are

n
IV > log p(x‘ w2 < Aa.
i=1
If the gradient is O for active groups:

@ These are necessary and sufficient optimality conditions if
inactive groups are fixed.

@ They are necessary conditions of global optimality.
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Active Set Method

Similar to Bach [2008], we use an active set method:

@ Find the set of active groups, and the boundary groups
violating the necessary conditions.

@ Solve the problem with respect to these variables.
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Active Set Method

Similar to Bach [2008], we use an active set method:

@ Find the set of active groups, and the boundary groups
violating the necessary conditions.

@ Solve the problem with respect to these variables.

This adds groups that satisfy hierarchical inclusion, and where the
model poorly estimates the higher-moment in the data.
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Active Set Method

Similar to Bach [2008], we use an active set method:

@ Find the set of active groups, and the boundary groups
violating the necessary conditions.

@ Solve the problem with respect to these variables.

This adds groups that satisfy hierarchical inclusion, and where the
model poorly estimates the higher-moment in the data.

(analogous to the greedy method of [Gevarter, 1987] for fitting

maximum entropy distributions subject to marginal constraints
[Cheeseman, 1983]).
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Example of Active Set Method

Initial boundary groups.
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Example of Active Set Method

Optimize initial boundary groups.

o B B & B
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Example of Active Set Method

Find new active groups.
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Example of Active Set Method

Find new active groups.
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Example of Active Set Method

No new boundary groups, so we are done.
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Example of Active Set Method

@ In this example, we only needed to consider 4 of 10 possible
threeway interactions, 1 of 5 fourway interactions, and no
fiveway interactions.
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Example of Active Set Method

@ In this example, we only needed to consider 4 of 10 possible
threeway interactions, 1 of 5 fourway interactions, and no
fiveway interactions.

@ The active set method can save us from looking at an
exponential number of higher-order factors.
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Example of Active Set Method

@ In this example, we only needed to consider 4 of 10 possible
threeway interactions, 1 of 5 fourway interactions, and no
fiveway interactions.

@ The active set method can save us from looking at an
exponential number of higher-order factors.

@ We still need to efficiently optimize the active groups and
sub-optimal boundary groups...
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Optimizing the Active Set

@ Solving with the current active set is a group ¢1-regularization
problem with overlapping groups,

mm—zlogp xw) + > Aallwil2.

ACS
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Optimizing the Active Set

@ Solving with the current active set is a group ¢1-regularization
problem with overlapping groups,

min —Zlogp xw) + > Aallwil2.

ACS

@ We write this non-smooth problem as an equivalent smooth
problem with simple Euclidean norm cone constraints,

min — log p(x|w) + Z AABA;
we ACS

s.t. Va, ga> ||will2.
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Euclidean Norm Cone

{{w. g}lg > |lw|l2}
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Euclidean Norm Cone

{{w. g}lg > |lw|l2}
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Euclidean Norm Cone

{{w. g}lg > |lw|l2}
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Projected Gradient

@ Projected gradient methods [Goldstein, 1964, Levitin and
Poljak, 1965] are widely used for optimization with simple
constraints.

@ These methods use iterations of the form

Wit1 = Pc(wk — OéVf(Wk)).
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Projected Gradient

@ Projected gradient methods [Goldstein, 1964, Levitin and
Poljak, 1965] are widely used for optimization with simple
constraints.

@ These methods use iterations of the form

Wit1 = Pc(wk — OéVf(Wk)).

@ The function P¢(w) computes the Euclidean projection of a
point w onto the convex set C,

Pe(w) = argmin [x — 2.

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Hierarchical Search
Optimization Projected Gradient Methods
Cyclic Projection Methods

Projection onto Euclidean Norm Cone

It is easy to project onto the Euclidean norm cone [Boyd and
Vandenberghe, 2004, Exercise 7.3(c)]:

(0?0)7 if HWZHZ < —8A,
PC(WZ')gA) - (WZ,gA), lf ||WZ||2 g gA7

14+ga/||wW% % % . N

Leea/Iwalle (s |\wiylf), if (w2 > |gal-

Thus, it is simple to analytically compute the projection onto a
single constraint.
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Projected Gradient Algorithm
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Projected Gradient Algorithm

Mark Schmidt and Kevin Murphy Convex Structure Learning in Log-Linear Models



Hierarchical Search
Optimization Projected Gradient Methods
Cyclic Projection Methods

Projected Gradient Algorithm
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Projected Gradient Algorithm
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Enhanced Projected Gradient Methods

The basic projected gradient method converges slowly, but several
enhancements are possible:

@ Spectral projected gradient: Barzilai-Borwein step length and
non-monotomic line search [Birgin et al., 2000].

@ Accelerated projected gradient: Extrapolation step to achieve
a better worst-case convergence rate [Nesterov, 2004].

@ Inexact projected quasi-Newton: L-BFGS approximation to
Hessian matrix [Schmidt et al., 2009].
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Projection onto the Intersection of Simple Sets

@ We can easily compute the projection onto each norm cone.
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Projection onto the Intersection of Simple Sets

@ We can easily compute the projection onto each norm cone.

@ But since the groups overlap we can't do this independently.
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Projection onto the Intersection of Simple Sets

@ We can easily compute the projection onto each norm cone.
@ But since the groups overlap we can't do this independently.

@ We want the projection onto the intersection of simple sets.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

@ In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.
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on Neumann's Result

E.v. operators,

£ D is the zet of
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von Neumann's Result

Take two intersecting subspaces.
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von Neumann's Result

We want to project a point onto their intersection.
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von Neumann's Result

Project onto subspace 1.
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von Neumann's Result

Project onto subspace 2.
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von Neumann's Result

Project onto subspace 1.
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von Neumann's Result

Project onto subspace 2.
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von Neumann's Result

Project onto subspace 1.
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von Neumann's Result

Project onto subspace 2.
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von Neumann's Result

Project onto subspace 1.
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von Neumann's Result

And keep going...
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von Neumann's Result

The limit is the projection onto the intersection.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

@ In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:
@ In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.
@ Bregman [1965] showed that cyclically projecting onto general
convex sets converges to a point in their intersection.
(but not necessarily the projection)
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Bregman's Algorithm

We have an arbitrary number of convex sets.
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Bregman's Algorithm

Start with some initial point.
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Bregman's Algorithm

Project onto convex set 1.
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Bregman's Algorithm

Project onto convex set 2.
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Bregman's Algorithm

The limit is a point in the intersection.
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Bregman's Algorithm

In general, the limit is not the
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:
@ In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.
@ Bregman [1965] showed that cyclically projecting onto general
convex sets converges to a point in their intersection.
(but not necessarily the projection)
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

@ In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.

@ Bregman [1965] showed that cyclically projecting onto general
convex sets converges to a point in their intersection.
(but not necessarily the projection)

@ Dykstra [1983] showed that a simple modification makes the
method converge to the projection for general convex sets.
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Dykstra’s Algorithm

We want to project a point onto the intersection of convex sets.
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Dykstra’s Algorithm

Project onto convex set 1, and store the difference.
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Dykstra’s Algorithm

Project onto convex set 2, and store the difference.
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Dykstra’s Algorithm

the difference from projecting on convex set 1.

| .
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Dykstra’s Algorithm

Project onto convex set 1, and store the difference.
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Dykstra’s Algorithm

the difference from projecting on convex set 2.
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Dykstra’s Algorithm

Project onto convex set 2, and store the difference.
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Dykstra’s Algorithm

The limit is the onto the intersection.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

@ In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.

@ Bregman [1965] showed that cyclically projecting onto general
convex sets converges to a point in their intersection.
(but not necessarily the projection)

@ Dykstra [1983] showed that a simple modification makes the
method converge to the projection for general convex sets.
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Cyclic Projection Algorithms

Projecting onto the intersection of simple sets is a classic problem:

@ In his 1933-34 lecture notes, von Neumann showed that
cyclically projecting a point onto two subspaces converges to
the projection onto their intersection.

@ Bregman [1965] showed that cyclically projecting onto general
convex sets converges to a point in their intersection.
(but not necessarily the projection)

@ Dykstra [1983] showed that a simple modification makes the
method converge to the projection for general convex sets.

@ Deutsch and Hundal [1994] showed that Dykstra’s algorithm
converges at a geometric rate for polyhedral sets.
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@ Experiments
@ Multivariate Flow Cytometry
@ Traffic and USPS
@ Structure Estimation
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Multivariate Flow Cytometry Experiments

Does it empirically help to have higher-order potentials?
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Multivariate Flow Cytometry Experiments

Does it empirically help to have higher-order potentials?

We first consider a small data set where we can tractably compute
the normalizing constant:

e Multivariate flow cytometry [Sachs et al., 2005].
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Multivariate Flow Cytometry Experiments

Does it empirically help to have higher-order potentials?

We first consider a small data set where we can tractably compute
the normalizing constant:

e Multivariate flow cytometry [Sachs et al., 2005].

We compared:
o Pairwise with /»-regularization and group ¢1-regularization.
@ Threeway with ¢>-regularization and group ¢1-regularization.

@ Hierarchical with overlapping group ¢1-regularization.
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Multivariate Flow Cytometry Experiments

Does it empirically help to have higher-order potentials?

We first consider a small data set where we can tractably compute
the normalizing constant:

e Multivariate flow cytometry [Sachs et al., 2005].

We compared:
o Pairwise with /»-regularization and group ¢1-regularization.
@ Threeway with ¢>-regularization and group ¢1-regularization.
@ Hierarchical with overlapping group ¢1-regularization.

We trained on 1/3, used 1/3 to select A, and used 1/3 as a test
set (for 10 random splits).
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Flow Cytometry Data

Multivariate Flow Cytometry
Traffic and USPS
Structure Estimation

o o o
~ @ el —

I
o

test set relative negative log-likelihood
© 9o o o o
— N w N (¢,

o

==
+ i
Pairwise Threeway HLLM |
-1
! J
|
| -
P - | —
P - + o
L2 L1 L2 L1 L1

Mark Schmidt and Kevin Murphy

Convex Structure Learning i

Linear Models



Multivariate Flow Cytometry
Traffic and USPS
Experiments Structure Estimation

Traffic and USPS Experiments

We next consider two larger data sets:
e Traffic flow level [Shahaf et al., 2009].
@ USPS digits data discretized into four states.

On these experiments we used weighted Ising potentials, and used
a pseudo-likelihood for training/test.
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Traffic Flow
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USPS Data
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Structure Estimation

o We sought to test whether the HLLM model could recover a
true structure.
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Structure Estimation

o We sought to test whether the HLLM model could recover a
true structure.

@ We generated samples from a 10-node data set with potentials
(2,3)(4,5,6)(7,8,9,10) and parameters from N(0,1).
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Structure Estimation

o We sought to test whether the HLLM model could recover a
true structure.

@ We generated samples from a 10-node data set with potentials
(2,3)(4,5,6)(7,8,9,10) and parameters from N(0,1).
@ We recorded the number of false positives of different orders

for the first model along the regularization path that includes
the true model.
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Structure Estimation

o We sought to test whether the HLLM model could recover a
true structure.

@ We generated samples from a 10-node data set with potentials
(2,3)(4,5,6)(7,8,9,10) and parameters from N(0,1).

@ We recorded the number of false positives of different orders
for the first model along the regularization path that includes
the true model.

o Eg., with 20000 samples the order was
(8,10)(7,9)(9,10)(7,10)(4,5)(8,9)(2,3)(4,6)(8,9,10)(7,8)
(7,8,9)(7,8,10)(5,6)(1,8)(5,9)(3,8)(3,7)(4,5,6)(1,7)(7,9,10)
(7,8,9,10)
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Synethetic Data: Types of Errors

Types of errors made by HLLM:
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Extensions

@ Dykstra’s algorithm may be useful for other overlapping group
£1-regularization problems.

@ The model can be applied to learn hierarchical conditional
random fields.
@ The main remaining issue is finding inactive groups that do

not satisfy sufficient optimality conditions. A simple heuristic
is to look at an extended boundary.
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Summary

o We give a convex formulation of structure learning in
hierarchical log-linear models.
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Conclusion

Summary

o We give a convex formulation of structure learning in
hierarchical log-linear models.

@ We proposed methods to deal with the exponential number of
variables.
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Summary

o We give a convex formulation of structure learning in
hierarchical log-linear models.

@ We proposed methods to deal with the exponential number of
variables.

@ We found that going beyond pairwise potentials gives similar
or better results on every data set we tried.
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Summary

Conclusion

Summary

o We give a convex formulation of structure learning in
hierarchical log-linear models.

@ We proposed methods to deal with the exponential number of
variables.

@ We found that going beyond pairwise potentials gives similar
or better results on every data set we tried.

(thanks to the reviewers, and code will be online soon...)
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