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Motivating Problem: Structure Learning in Discrete MRFs

We want to fit a Markov random field to discrete data y , but
don’t know the graph structure

Y1 Y2?

Y3 Y4

? ?

?

?

?

We can learn a sparse structure by using `1-regularization of
the edge parameters [Wainwright et al. 2006, Lee et al. 2006]

Since each edge has multiple parameters, we use group
`1-regularization
[Bach et al. 2004, Turlach et al. 2005, Yuan & Lin 2006]:

minimize
w

− log p(y |w) subject to
∑

e

||we ||2 ≤ τ
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Optimization Problem Challenges

Solving this optimization problem has 3 complicating factors:

1 the number of parameters is large

2 evaluating the objective is expensive

3 the parameters have constraints

So how should we solve it?

Interior point methods: the number of parameters is too large

Projected gradient: evaluating the objective is too expensive

Quasi-Newton methods (L-BFGS): we have constraints
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Extending the L-BFGS Algorithm

Quasi-Newton methods that use L-BFGS updates achieve state of
the art performance for unconstrained differentiable optimization
[Nocedal 1980, Liu & Nocedal 1989]

L-BFGS updates have also been used for more general problems:

L-BFGS-B: state of the art performance for bound constrained
optimization [Byrd et al. 1995]

OWL-QN: state of the art performance for `1-regularized
optimization [Andrew & Gao 2007].

The above don’t apply since our constraints are not separable

However, the constraints are still simple:

we can compute the projection in O(n)
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Our Contribution

This talk presents an extension of L-BFGS that is suitable when:

1 the number of parameters is large

2 evaluating the objective is expensive

3 the parameters have constraints

4 projecting onto the constraints is substantially cheaper than
evaluating the objective function

The method uses a two-level strategy

At the outer level, L-BFGS updates build a constrained local
quadratic approximation to the function

At the inner level, SPG uses projections to minimize this
constrained quadratic approximation
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Problem Statement and Assumptions

We address the problem of minimizing a differentiable function
f (x) over a convex set C:

minimize
x

f (x) subject to x ∈ C

We assume you can compute the objective f (x), the gradient
∇f (x), and the projection PC(x):

PC(x) = arg min
c

‖c − x‖2 subject to c ∈ C.
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PG: Projected Gradient Algorithm

PG: move towards the projection of the negative gradient

Feasible Set

f(x)

xk
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Naive Projected Newton Algorithm

The problem with projected gradient: slow convergence

Can we speed this up by projecting the Newton direction?
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Naive Projected Newton Algorithm

The problem with projected gradient: slow convergence

Can we speed this up by projecting the Newton direction?

NO! This can point in the wrong direction
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Correct Projected Newton Algorithm

In projected Newton methods, we form a quadratic
approximation to the function around xk :

qk(x) , fk + (x − xk)T∇f (xk) + 1
2(x − xk)TBk(x − xk)

At each iteration, we minimize this function over the set:

minimize
x

qk(x) subject to x ∈ C

NOT the same as projecting the unconstrained Newton step

This generates a feasible descent direction dk , x − xk

The method has a quadratic rate of convergence around a
local minimizer [Bertsekas, 1999]
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Problems with the Projected Newton Algorithm

Unfortunately, the projected Newton method can be inefficient:

Computing dk may be very expensive

Using a general n-by-n matrix Bk is impratical

Our algorithm is a projected quasi-Newton algorithm where:

L-BFGS updates construct a diagonal plus low-rank Bk

SPG efficiently computes dk with this Bk and projections.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Updates

Quasi-Newton methods work with parameter and gradient
differences between iterations:

sk , xk+1 − xk and yk , gk+1 − gk

They start with an initial approximation B0 , σI , and choose Bk+1

to interpolate the gradient difference:

Bk+1sk = yk

Since Bk+1 is not unique, the BFGS method chooses the matrix
whose difference with Bk minimizes a weighted Frobenius norm:

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk
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L-BFGS: Limited-Memory BFGS

Instead of storing Bk , the limited-memory BFGS (L-BFGS) method
just stores the previous m differences sk and yk .
[Nocedal 1980, Liu & Nocedal 1989]

These updates applied to B0 = σk I can be written compactly in a
diagonal plus low-rank form [Byrd et al. 1994]:

Bm = σk I − NM−1NT

This representations makes multiplication with Bk cost O(mn).
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SPG: Spectral Projected Gradient

Recall the projected quasi-Newton sub-problem:

minimize
x

fk + (x − xk)T∇f (xk) + 1
2(x − xk)TBk(x − xk)

subject to x ∈ C

With the L-BFGS representation of Bk , we can compute the
objective function and gradient in O(mn).

This still doesn’t let us efficiently solve the problem

To solve it, we use the spectral projected gradient (SPG) algorithm.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Discussion

Projected Newton Algorithm
Limited-Memory BFGS Updates
Spectral Projected Gradient
Projection onto Norm-Balls

SPG: Spectral Projected Gradient

Recall the projected quasi-Newton sub-problem:

minimize
x

fk + (x − xk)T∇f (xk) + 1
2(x − xk)TBk(x − xk)

subject to x ∈ C

With the L-BFGS representation of Bk , we can compute the
objective function and gradient in O(mn).

This still doesn’t let us efficiently solve the problem

To solve it, we use the spectral projected gradient (SPG) algorithm.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Discussion

Projected Newton Algorithm
Limited-Memory BFGS Updates
Spectral Projected Gradient
Projection onto Norm-Balls

SPG: Spectral Projected Gradient

Recall the projected quasi-Newton sub-problem:

minimize
x

fk + (x − xk)T∇f (xk) + 1
2(x − xk)TBk(x − xk)

subject to x ∈ C

With the L-BFGS representation of Bk , we can compute the
objective function and gradient in O(mn).

This still doesn’t let us efficiently solve the problem

To solve it, we use the spectral projected gradient (SPG) algorithm.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy Optimizing Costly Functions with Simple Constraints



Introduction
PQN Algorithm

Experiments
Discussion

Projected Newton Algorithm
Limited-Memory BFGS Updates
Spectral Projected Gradient
Projection onto Norm-Balls

SPG: Spectral Projected Gradient

The classic projected gradient takes steps of the form

xk+1 = PC(xk − αgk)

SPG has two enhancements [Birgin et al. 2000]:

It uses the Barzilai and Borwein [1988] ‘spectral’ step length:

αbb =
〈yk−1, yk−1〉
〈sk−1, yk−1〉

It uses a non-monotone line search [Grippo et al. 1986]
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SPG: Spectral Projected Gradient

There is growing interest in SPG for constrained optimization
[Dai & Fletcher 2005, van den Berg & Friedlander 2008]

We apply SPG to minimize the strictly convex constrained
quadratic approximations

Friedlander et al. [1999] show that SPG has a superlinear
convergence rate for minimizing strictly convex quadratics

Instead of ‘solving’ the sub-problem, we could just perform k
iterations of SPG to improve the steepest descent direction.

In this case, solving the sub-problems is in O(mnk), plus the
cost of computing the projection k times.
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Outline of the Method

The projected quasi-Newton (PQN) method:

1 Evaluate the current objective function and gradient

2 Add/remove difference vectors for L-BFGS

3 Run SPG to compute the projected quasi-Newton direction dk

4 Generate the next iterate with a backtracking line search

The overall algorithm will be most effective when:
computing projections is cheaper than evaluating the objective
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Projection onto Norm-Balls

We are interested in projecting onto balls induced by norms:

C ≡ {x | ‖x‖ ≤ τ}

This projection can be computed in linear-time for many `p-norms,
such as the `2-, `∞-, and `1-norms [Duchi et al. 2008]

We are also interested in the case of the mixed p, q-norm balls that
arise in group variable selection:

‖x‖p,q =
( ∑

i ‖xσi‖
p
q

)1/p

The group-lasso is the special case where p = 1, q = 2:

‖x‖1,2 =
∑

i ‖xσi‖2
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Projection onto Mixed Norm-Balls

The following proposition leads to an expected linear-time
randomized algorithm for group-lasso projection:

Proposition

Consider c ∈ Rn and a set of g disjoint groups {σi}g
i=1 such that

∪iσi = {1, . . . , n}. Then the Euclidean projection PC(c) onto the
`1,2-norm ball of radius τ is given by

xσi = sgn(cσi ) · wi , i = 1, . . . , g ,

where w = P(v) is the projection of vector v onto the `1-norm
ball of radius τ , with vi = ‖cσi‖2.
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Experiments

We performed several experiments to test the new method:

We first compared to other extensions of L-BFGS [see paper]

We then compared to state of the art methods for graph
structure learning
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Gaussian Graphical Model Structure Learning

We looked at training a Gaussian graphical model with an `1

penalty on the precision matrix elements to induce a sparse
structure [Banerjee et al. 2006, Friedman et al. 2007]:

minimize
K�0

− log det(K ) + tr(Σ̂K ) + λ‖K‖1,

We used the Gasch et al. [2000] data with the pre-processing of
Duchi et al. [2008], and as with previous work we solve the dual
problem:

maximize
W

log det(Σ̂ + W )

subject to Σ̂ + W � 0, ‖W ‖∞ ≤ λ

We compared to a projected gradient method [Duchi et al. 2008].
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Gaussian Graphical Model Structure Learning with Groups

We also compared the methods when we induce a group-sparse
precision matrix using the `1,∞-norm [Duchi et al. 2008]:

minimize
K�0

− log det(K ) + tr(Σ̂K ) + λ‖K‖1,∞,
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We also used PQN to look at the performance if we replace the
`1,∞-norm [Duchi et al. 2008] with the `1,2-norm:

minimize
K�0

− log det(K ) + tr(Σ̂K ) + λ‖K‖1,2,
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Markov Random Field Structure Learning

Finally, we looked at learning a sparse Markov random field:

minimize
w

− log p(y |w) subject to
∑

e

||we ||2 ≤ τ

We used the trinary data from [Sachs et al. 2005], and compared
to Grafting [Lee et al. 2006] and applying SPG to a second-order
cone reformulation [Schmidt et al. 2008].
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Extensions to Other Problems

There are many other cases where we can efficiently compute
projections:

Projection onto hyper-planes or half-spaces is trivial

Projecting onto the probability simplex can be done in
O(n log n)

Projecting onto the positive semi-definite cone involves
truncated the spectral decomposition

Projecting onto second-order cones of the form ‖x‖2 ≤ y can
be done in O(n)

Dykstra’s algorithm can be used for combinations of simple
constraints [Dykstra, 1983]
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Summary

PQN is an extension of L-BFGS that is suitable when:

1 the number of parameters is large

2 evaluating the objective is expensive

3 the parameters have constraints

4 projecting onto the constraints is substantially cheaper than
evaluating the objective function

We have found the algorithm useful for a variety of problems, and
it is likely useful for others (code online soon)
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