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Admin

• Assignment 3 due now. 

– Solutions posted Monday after class.

• Practice midterm will be posted after class.

– Monday tutorials will go through it.

• Midterm next Friday, October 30.

– In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided. 

http://www.october212015.com/



Last time: Kernel Trick

• Given test data  𝑋, predict  𝑦 using:

• Key observation behind kernel trick:
– If we have K and  𝐾,  we don’t need the features.

– We can train regression models based on similarities rather than features.



Today: Problems with a Huge Number of Examples

• With L2-regularized least squares, can compute ‘w’ in O(nd2 + d3).

• What if ‘d’ is huge?

– With kernel trick, cost is O(n2d + n3).

– With gradient descent, cost is O(nd) per iteration.

– Gradient descent applies to any differentiable loss and regularizer.

• What if ‘n’ is huge?

– For example, every e-mail in g-mail.

– If ‘n’ is too large, even O(nd) becomes too expensive.



Minimizing Sums with Gradient Descent

• Consider minimizing average of differentiable functions:

• Includes all our differentiable losses as special cases.

• Gradient descent for this problem:

• Nice properties, but iterations require gradients of all ‘n’ examples.

• Key idea behind stochastic gradient methods:
– On average, we can decrease ‘f’ using the gradient of a random example.



Stochastic Gradient Method

• Stochastic gradient method:
1. Pick a random example it.

2. Perform a gradient descent step based only on this example.

• Intuition: unbiased estimate of full gradient:

• Key advantage:
– Iteration cost is O(d), it does not depend on ‘n’.

– If ‘n’ is 1 billion, it is 1 billion times faster than gradient descent.

• But does this actually work?



Deterministic Gradient Method in Action
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Convergence of Stochastic Gradient

• Problem is that stochastic gradient step might increase error ‘f’:

– Since you only look at one example, you can’t just check ‘f’.

• Key property used for convergence:

– If the sequence of wt are sufficiently ‘close’, we decrease ‘f’ on average.

– How ‘close’ they need to be depends on how close we are to minimum.

• To get convergence, we need a decreasing sequence of step sizes:

– Need to converge to zero fast enough (makes variance go to 0).

– Can’t converge to zero too quickly (need to be able to get anywhere).

• For example:



Deterministic vs. Stochastic Gradient
• Gradient descent:

• Stochastic gradient:



Decreasing vs. Constant Step Size

• Stochastic gradient needs decreasing step-sizes for convergence:
– But with this strategy, convergence rate is very slow.

• Practical alternative: constant step-size.
– When outside zone of confusion, convergence is very fast.

– Convergence stays fast until a fixed error level.
• But random behaviour after this point.

• Another practical alternative:

– Use bigger step sizes like O(1/√𝑡), but average later iterations.

– Averages out random behaviour.



Stochastic Gradient with Constant Step Size



Stochastic Gradient with Averaging



Gradient Descent or Stochastic Gradient?

• Assume you want solution with fixed number of digits of accuracy.

• Gradient descent:

– Iterations are expensive, O(nd).

– But number of iterations ‘t’ is polynomial in digits of accuracy.

• Stochastic gradient:

– Iterations are cheap, O(d).

– But number of iterations ‘t’ is exponential in digits of accuracy.

• In computer science, polynomial usually means ‘efficient’:

– But stochastic gradient faster for sufficiently large ‘n’ or low time/accuracy.



Gradient Descent vs. Stochastic Gradient

• Since 2012: methods with O(d) cost and polynomial in number of digits.
– Key idea: if ‘n’ is finite, you can use a memory instead of having αt go to zero.

– First was stochastic average gradient (SAG).
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Stochastic Gradient with Infinite Data

• Magical property of stochastic gradient:
– The classic convergence analysis does not rely on ‘n’ being finite.

• Consider an infinite sequence of IID samples.
– Or any dataset that is so large we cannot even go through it once.

• Approach 1 (gradient descent):
– Stop collecting data once you have a very large ‘n’.
– Fit a model on this fixed dataset (our standard approach).

• Approach 2 (stochastic gradient):
– Perform a stochastic gradient iteration on each example as we see it.
– Never re-visit any example, always take a new one.

• Current theory:
– Approach 2 is doing stochastic gradient on test error, it cannot overfit.
– Approach 2 achieves test error of Approach 1 (up to constant) after ‘n’ steps.
– In practice, Approach 1 usually gives lower test error but we don’t know why.



Back to the Future Part 2

• What if our infinite data is coming in over time? 
– Stochastic gradient directly drives down the test error and cannot overfit.

• So can we learn to optimally predict the future?

• No, stochastic gradient requires that the examples are IID.

• But, we can predict the future in some limited ways…
http://www.imdb.com/title/tt0096874/
http://www.october212015.com/



Online Learning

• Online learning starts with a limited set of possible models:
– For example, the set of all possible linear models wTxi.
– Another example would be 50 different global climate models.

• Assumes we get a sequence of samples, but no IID assumption.
– We could be collecting data over time.

• Framework of online learning:
1. At each time ‘t’, we receive features of new example xi.
2. We predict  𝑦i using ‘best’ model (or weighted combination of models).
3. We see the true yi and suffer a loss (such as squared error: (  𝑦i – yi)

2).
4. Update estimate of best model (or model weights) based on true yi.

• Update:
– Stochastic gradient step (linear models).
– More weight on models that predict well (weighted combination).



Regret in Online Learning

• Without IID assumption, performance could be arbitrarily bad:

– Data could be in future “there really is no free lunch” zone.

• But we can still say something about the ‘regret’:

• The average regret converges to zero:

– Does not mean that any of the original models was good.

– Just means that difference in performance compared to best goes down.



Online Learning in Action



Digression: should ensembles treat models equally?

• Recall the key observation regarding ensemble methods:

– If models overfit in “different” ways, averaging gives better performance.

• But should all models get equal weight?

– E.g., decision trees of different depths, when lower depths have low 
training error.

– E.g., a random forest where one tree does very well (on validation error) 
and others do horribly.

– In online learning, give weight to models that perform well on test data.

– In science, research may be fraudulent or not based on evidence.

• In these cases, naïve averaging may do worse.



Bayesian Model Averaging

• Suppose we have a set of ‘m’ probabilistic binary classifiers wj.

• If each one gets equal weight, then we predict using:

• Bayesian model averaging treats model as a random variable:

• So we should weight by probability that wj is the correct model:

– Equal weights assume all models are equally probable.



Bayesian Model Averaging

• Can get better weights by conditioning on training set:

• The ‘likelihood’ p(y | wj, X) makes sense:

– We should give more weight to models that predict ‘y’ well.

– Note that hidden denominator penalizes complex models.

• The ‘prior’ p(wj) is our ‘belief’ that wj is the correct model. 

• This is how rules of probability say we should weigh models.

– The ‘correct’ way to predict the future given what we know.

– But it makes people uncomfortable because it is subjective.



Conditioning by Observation vs. by Intervention

• Conditioning by observation: 

– If I see my watch says 3:50, the weekend is almost here.

• Conditioning by intervention: 

– If I set my watch to say 3:50, it doesn’t help.

• If we plan to take actions, we need to model effects of the actions:

– Otherwise, predictions could be meaningless.

• Leads us into causality, planning, and reinforcement learning.
(but not in this course)



Summary

• Stochastic gradient methods let us use huge datasets.

• Convergence of stochastic gradient requires decreasing step sizes.

• Stochastic gradient with infinite data has nearly-optimal test error. 

• Online learning can minimize ‘regret’ for non-IID data.

• Bayesian model averaging give coherent way to combine models.

• Next time: 

– What ‘parts’ are my personality made of?


