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Abstract. We propose a generalization of the conjugate gradient mdtraiduses multiple preconditioners,
combining them automatically in an optimal way. The derivai®described in detalil, and analytical observations
are made. A short recurrence relation does not hold in gefartgiis new method, but in at least one case such a
relation is satisfied: for two symmetric positive definite mmeditioners whose sum is the coefficient matrix of the
linear system. A truncated version of the method works effelstifor other cases as well. The algorithm may be
useful for domain decomposition techniques and other probiemvkich the need for more than one preconditioner
arises naturally. We discuss similarities and differencih the standard and block conjugate gradient methods.
Numerical examples illustrate and validate the merits of ogwrthm.
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1. Introduction. The conjugate gradient (CG) method is celebrating its S8radvear-
sary this year. In the years since its conception in 1952i{%jas established itself as the
method of choice for iteratively solving large sparse synmiogositive definite (SPD) lin-
ear systemsdx = b. Throughout the years it has seen many variants and geraraltis,
blossoming into a large family of Krylov subspace solvers.

This paper is concerned with a variation of the standardqmditioned conjugate gradi-
ent (PCG) method that employs multiple preconditioners. cAk the algorithm MPCG:
multi-preconditioned conjugate gradient. The motivatisrthat for preconditioning cer-
tain problems there are several alternative approachds different desirable properties,
but it may be difficult to combine them into a single effectpeeconditioner. A multi-
preconditioned solver could automatically take advantdgel available preconditioners.

As with flexible CG [10], and as discussed in section 3, ouraagh cannot generally
maintain one of the most attractive features of standard:R&famous three-term recur-
rence relation. However, in practice a truncated versiothefmethod works efficiently in
many cases we have tested. Moreover, we are able to showiealyythat for the case of
two preconditioners whose sum is equal to the coefficientiryat short recurrence relation
does hold.

1.1. Relevant previous work and contribution of this paper. Block versions of CG
have been proposed in the literature, but none of them cerssicsing multiple precondition-
ers. O’Leary [11] derived a block conjugate gradient metHedigned to handle multiple
right hand sides, which is also capable of acceleratingdhgargence of linear systems with
a single right hand side. The method uses a single preconditiand can be classified as
a block Krylov method. Brezinski [3] proposes an effectivewnadaptation of block CG
for solving with a single right hand side, partitioning thmtial residual into multiple search
directions (see also Bantegnies and Brezinski [1] for mdseus$sion).

Gu et. al. propose in [7, 8] an approach based on multipleckedirections similar to
the block CG approach (again with a single preconditiori®r with the conjugacy property
weakened by zeroing out components of the search direcitioaother subdomains, elim-
inating global communication bottlenecks in a parallelimnment at the price of slower
convergence.
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Related work that should also be mentioned is the family ailfle or inexact methods
[5, 10, 12, 14]. Our approach is different since in those m@sithe preconditioner changes
throughout the iteration, whereas in the method that weqeepMPCG, the preconditioners
are fixed and are determined a priori. (At the same time, we ti@tt a flexible variant of
MPCG can be applied in a straightforward fashion.) As a tesu iteration subspace and
the optimality results are different.

Our new iterative method incorporates multiple precondirs and obtains an energy
norm minimization property, while maintaining-conjugation and orthogonality properties
similar to PCG, but with iterates constructed igeneralizeKrylov space incorporating an
arbitrary set of preconditioners. We believe that the téple opens new opportunities for
fast and robust solution techniques.

1.2. Organization of paper and notation. The paper is structured as follows. In Sec-
tion 2 we derive a multi-preconditioned steepest descetttade In Section 3, the main part
of the paper, we derive the MPCG algorithm and discuss itpaati®es. Section 4 is devoted
to numerical experiments. Finally, in Section 5 we draw sameclusions and point out
possible directions for future research.

Throughout we will assume without loss of generality that ioitial guess isty = 0,
with accompanying initial residual, = b; generally quantities computed at thn iteration
of an algorithm will have the subscript The matrixA is symmetric positive definite, and
the preconditioners ar&/;, j = 1,.. .k, whereMj*1 ~ A~!. This is the one case where the
subscript does not indicate the iteration at which the qtyaist computed: My, ... M;, are
fixed throughout the algorithm.

2. Multi-preconditioned steepest descent (MPSD). Since A is symmetric positive
definite, it is possible to employ the notion of energy norfai| 4 = veT Ae. The basic
Steepest Descent (SD) algorithm for solvidg = b is to take the negative gradient of the
energy norm of the error, i.e. the steepest descent dirgotibich also happens to be the
current residual vectat;, as the search direction for a step that minimizes the enswgy
of the error associated with the new guess:

Piv1 =Ty

_ (T —1,, T
Qi1 = (pi+1Api+1) (pi+17"i)
Titl = Ti + Qi41Pi+1

Tiv1 =T — 041'—0—1Api+1

Of course, convergence is much faster if the search direasicloser to the actual error
A~1r;, so it is natural to precondition this iteration by instedwasingp;; = M 'r;
whereM ~! =~ A~1, obtaining gpreconditionedsD algorithm (PSD).

One possible approach of further improving the new resithié enlarge the search
space from one dimension to multiple dimensions: use a ssafth directiong’, . .. ,pF.
In particular, if multiple preconditionera/y, ..., M, are available, usg], , = Mjflriﬂ.
Let P, = [pi|...|pF]. To get the same energy norm minimization, we derive a multi-
preconditioned steepest descent (MPSD) algorithm:

, . .
T ~1,pT
Qiy1 = (P APip1) ™ (Pyami)
Tit1 = T + Pip1oip
riv1 =1 — APip1044
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Note thata is now avectorof coefficients specifying the linear combination of seadirkc-
tions for updating the guess.

3. Multi-preconditioned conjugate gradient (MPCG). Although the steepest descent
method converges, it is inefficient compared with Conjudatadient. This section estab-
lishes the multi-preconditioned analogy of CG in a fashimnilar to the derivation of the
standard PCG, whose first step is an iteration of PSD. Theognab the derivation of the
standard method with a single preconditioner allows for imgkhe reasonable assumption
that MPCG will improve on MPSD in a way similar to the improvent obtained by using
CG rather than SD.

3.1. Derivation. One way of looking at CG and why it is so much faster than SD is
to interpret it as a generalized SD with multiple searchdioms. At step + 1, the search
directions are simplyy, ..., p;11, i.e. the new search direction plus all the previous ones.
Thus we get a global energy norm minimum, not just a local dyaminimization. The
clever part about CG is choosing the search directions té-benjugate, so thab ; AP;
is just diagonal and trivial to invert. Furthermore, duehe global minimization, the previous
search direction®’; are orthogonal to the most recent residualfgolm is zero except for
the last component, making the update even simpler.

We will want to preserve these features in generalizing P€@&ave multiple search
directions per step (generated from multiple precondéish That is, we want the property

PFAP; =0 for i j.
We begin with one step of MPSD:
Pl :Mj_lro for j=1,...,k
ay = (P AP) "' (Plro)
21 =0 + Proy
M =Tg— AP1a1
Then we generate the preconditioned residuals to increasdirnension of the search space:

Z;’:M]flrl for j=1,... k.

Let Z; = [2}]...|2F]. We will want to getP, from Z, by making it A-conjugate to the
previous directions:

Py =2, — P(PTAP)'PTAZ, ,

or more generally:

Pip1=Zipg1— Y Py(PlAP)'PIAZ; .
j=1

Now, with the newA-conjugate search direction, we can again seek a globahmmithat
simplifies to a local computation:

_ /pT  \—1/pT ..
i1 = (P APip1)  (Phqri)
Tit1 = 25 + P10y
Tig1 =T — Api+106¢+1

The algorithm is given in Figure 3.2.



pjl-:zj:Mj_lro for ]:1,,k
P = [pi|pil. .. |p}]
oy = (PLAP) ™ (Plrg)
1 = Xo —+ P1061
TN =70 — APlOél
Repeat = 1,2, ... until convergence
Ziyr = (M ey | My by | M )
Piy1 = Zig1 — 250y Pj(PLAP) T Pl AZ;
aip1 = (P APi1) (Plmi)
Tit1 = T + P10
riv1 =1 — APip10541
end

FiG. 3.1.The MPCG algorithm.

3.2. Orthogonality properties. Since we do a global minimization of energy norm at
the previous steps, we get the usual orthogonality property

(3.1) Prr;=0 for i<j.

7

Note also that

(32) TJTZZ = T;‘»F (Pz + PZ‘,1(P;lllAPifl)_lpijllAZZ')
= T’]TR + ’I"jTPi_l ( . )
=0+0 for i<y

Up to this point we have derived properties which are validdioy choice of theZ’s,
e.g. even with random nonsymmetric preconditioners chaséependently at each step.
However, let us now use the fact that our preconditionersamemetric and do not change
throughout the iteration (as opposed to a flexible method@gnT

r]Tzf = rfM;lri,l = ro(AMgl)Tri,l = (Ms’lrj)Tri,l = (z;+1)Tri,1

In combination with (3.2), we conclude that

(3.3) riZ;=0 for j#i—1.

3.3. Breakdown. The MPCG algorithm could break down RJ-TAPj is singular for
any j, which happens for example if two or more of the preconddisnare identical to
each other. Note tha?jTAPj is k-by-k, wherek is the number of preconditioners. It is
therefore an extremely small matrix whose singularity carebsily detected. A possibility
of breakdown should not be a major concern: sensible chditteeqreconditioners should
preclude such a situation, since it does not make sense tsehmreconditioners that do
not produce linearly independent A-conjugate directidtidwever, in any case an automatic
way to avoid a breakdown situation may be to apply the pséudrse oijT AP;, which
effectively means that redundant search directions amégh
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3.4. A case where PCG and MPCG are equivalent. Consider the following case of
polynomial preconditioning.

PropPoOsSITION3. 1. If roundoff errors are ignored, thej-th iteration (j = 1,2,...) of
PCG with a preconditionep is identical to thejth iteration of MPCG withMl‘1 =M1
andMy ' = M—1AM~.

Proof. Assuming an initial guess af, = 0 with initial residualrqy = b, the standard
PCG algorithm solves far,; as the vector from the Krylov subspace

K2 (M~ A; M~ Yrg) = span{M 'ro, (M~ A)M rg, ..., (M P A)¥ 1M1y}

that minimizes the energy norm of the error. Let us show thatsame Krylov subspace
is obtained withj iterations of MPCG with the above defined; and M. Note that

Zy = Py = [M~Yro|M~tAM~'rg) andry = 1o — APiay. Therefore the next residual
ry € span{rg, AM ~tro, AM~YAM~'ry}. The corresponding subspace from whicls
chosen is spanned by ~'r, and M ~TAM ~1ry in the first iteration, and is extended by
M~Y(AM~1)2%rq andM 1 (AM~1)3rq in the second iteration. The rest of the proof readily
follows by induction, for any given integet by repeating the same argument. Since MPCG
finds the vector from this subspace that minimizes the eneogy of the error, just as PCG
does, it must produce the same iterates as FCG.

3.5. Therecurrencerelation. For regular PCG observe that

P} Azipr = (Ap;)" zia

r r T

_ j—1 "7

= (7 ) Zi+1
Q;

=0 for j<i

Thus theA-conjugation step may ignore all but the previous seardcton, giving the short
recurrence. Unfortunately in MPC&is a vector and cannot be inverted, so the above does
not easily generalize. However, note that in MPA®;a; = r;_; — r;. Using equation
(3.3), this means fof < i

(3.4) ol Pl AZ;i 1 =0,
and then after expanding/ ,

_ T
((PJTAPJ) I(PJT'I"J',l)) P]TAZZ'+1 = 0;

ri_ o (Pj(PTAP)™'PlAZ; ) = 0.

We also knowr! (P;(P] AP;)~'PI'AZ;,) = 0for s > j since thenl P; = 0. Thus
even if the updater(PjTAPj)*leTAZ,;H is not zero, it is orthogonal to all residuals from
51 Up.

While this orthogonality condition is as close to a short reence relation as MPCG
generally gets, there is an important case in which it is @obwshort and there is no error in
the truncation: we now formulate and prove this result, ieigig with a lemma.
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LEMMA 3.2. Supposed = B + C whereB and C are used as the preconditioners for
MPCG. Then th& x 2 matrix ZJ.TAZiH is diagonal forj # i + 1.
Proof. Write out the columns of eachh matrix and perform the multiplication explicitly:
Z]TAZH_l = [BilTj_l‘CilTj_l]T (B + C) [Bilm\C*lr,;]
[P B Y B+ C)B ™y rg_lB_l(B +C)C~1r;
0B+ C)B [ | CTHB+O)C
ri (BT +C7 }

| r}ll(B_l +C Y (...)

_ [ (--2) T,grfl(Zi1+1 +Zi2+1) }
L T]T—l(Zi1+ +2%1)

1) o

L0 ()
where the last step uses equation (IB).
We now prove the short recurrence for this= B + C' case:
THEOREM 3.3. Supposed = B + C whereB and C are SPD and are used as the
preconditioners for MPCG. Then the search directions $atise short recurrence relation

(3.5) Piy1 = Zig1 — P(PTAP) ' Pl AZ;y4.

Proof. To show that the sum in the gener&iconjugation formula forP;; collapses
to just the one term as in (3.5), we will prove th%fAZHl = 0 for j < . We begin our
induction argument with th¢ = 1 case.

Forj =1, P, = Z;. By lemma 3.2P/'AZ; ., is diagonal. Also recall from equation
(3.4) thata? (P AZ; 1) = 0. We argue thaty; has all nonzero entries unless = 0: a
zero entry would indicate there is no energy norm improverimetime solution possible along
the corresponding search direction, i.e. for that colunay, teea’th column p§ of P;, we
haverd p¢ = 0. Butp$ = M, rq, sord p$ cannot be zero, assuming the preconditioners are
positive definite. The only diagonal matrix which has a veetith all nonzero entries in its
null-space is the zero matrix. Thiy AZ; ;1 = 0.

Now assume thaP? AZ;,; = 0 for all s < j and let us work on the case for Substi-
tuting the general summation formula 8§ gives

T

j—1
PrAZ ., = <Zj - Z P,(PTAP,)~PT AZ,) AZiq
s=1
j—1
=Z]AZi =Y _ Z] AP(PFAP) ' PIAZ; .
s=1

Sinces < j —1 < i in the above sum, the factét! AZ;,, in each term is zero by induction,
so the sum is zero. We are left with" AZ; ., = Z] AZ;,. Just as in the base case, we
know this is a diagonal matrix by lemma 3.2 and th&( P AZ; 1) = 0 by equation (3.4).
Also as in the base case note that, by the energy norm mirtiorizaroperty, if an entry of
a; was zero then it would have to be that the corresponding aolin®; was orthogonal to
r;j—1. Say such a column js}. Using the definition of’;, we can expand:

j—1

T;‘-Fflp? = ’I"}llz;t - Z rfflPS(PS,TAPS)_ngAZjea.
s=1
6



T
— — PCG/My —a(1;
~ = —PCGMx il ¢
MPCG(1)

FiG. 4.1. Convergence history for example 4.1.1: relative residaald the components of throughout the
MPCG iteration fore = 0.5.

Sinces < j — 1, the factors"]_, P, are zero by equation (3.1). We are left with ,z¢ =
ro_lMa—lrj,l which must be positive if the preconditioners are positigérdte. Thus every
entry ofo; is nonzero, and so just as in the base case we must ha\déﬁhm;’iﬂ is the zero
matrix. O

3.6. Truncated MPCG. Theorem 3.3 shows that in certain cases there is no need to
use the full MPCG. Even when the recurrence relation is nottsnumerical experiments
indicate that it often is acceptable to truncate theonjugation step to the standard short re-
currence (that is, only makié  ; A-conjugate taP; instead of all previous search directions).
The terms we truncate are often very small, and convergsraftein not significantly slowed
down by the omission. Numerical results that demonstraseatie given in Section 4.

While we do not have a full analytical justification for the expation that a truncated
version of MPCG be effective, some insight may be provideddfgrring to the result that
was obtained earlier in this section, namely that the upﬂ’;nté’JTAPj)*PjTAZiH is or-
thogonal to all the residuals from_; up. In practice often the terms that have been truncated
are small; this observation is supported by numerical éxparts we have performed.

We define MPCGm) to be a truncated version of MPCG in which only the lassearch
directions are used in each iteration. Note that anothemrpater necessary for defining (full
as well as truncated) MPCG is the number of preconditioners. However, to maintain
simplicity of notation, we avoid incorporating it into thefihition.

4. Examples. We now present numerical examples that demonstrate thésraed po-
tential of the MPCG method, and discuss different ideas éov to choose multiple precon-
ditioners.

4.1. ADI examples. We start this section by showing how the mechanism of MPCG
works for two simple model problems with ADI preconditiogin

4.1.1. 2D Poisson with weak coupling in onedirection. Consider

“Ugy — EUyy = f(I, y)

on) = (0,1) x (0,1), with Dirichlet boundary conditions. We set the right-heside and
the boundary conditions so thafx, y) = cos(wx) cos(my) is the exact solution.

Using the standard second order centered difference scivitime grid points in each
direction (that is, with mesh size = —), the coefficient matrix is:* x n?, given by
A=1,®T,+eT, ® I,, whereT,, = tri[—1, 2, —1]. We select two preconditioners in an
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ADlI fashion: M, = I, T, andM, = ¢T,,®I,,. Thus,M,, is tridiagonal and corresponds to
the discretized operateru,,, andM, is a discrete operator corresponding-teu,,,. Since

A = M, + M, by construction, Theorem 3.3 holds and MPCG(1), which iebam short
recurrences, produces the same iteration sequence as MRQAGroundoff errors). Setting

¢ = 1 corresponds to the standard Poisson equation, for whickytinenetry between and

y implies that MPCG withV/,, and/, as preconditioners is tied with the standard PCG with
either M, or M, in terms of overall computational work. (Numerical expegins indeed
confirm this.) However, for smaller values ofthe symmetry is lost and differences between
using M, and M, are expected. We take = 0.5, and compare the convergence of PCG
and MPCG(1). Figure 4.1 illustrates the behavionaind the convergence of MPCG(1). A
32 x 32 grid was used. As expectetif,, dominates the search space; the graphea fmnfirm
this.

Note that each iteration of MPCG(1) involves solving for tpreconditioners and hence
is more computationally expensive than a PCG iteration tactof of nearly 2. The iteration
counts that are presented in the graphs are 206 for PCG $jnd.02 for PCG usingy/,,
and66 for MPCG(1) usingV/, and,,. Thus, PCG withV/,, outperforms MPCG(1) whereas
PCG withM,, is inferior.

The point that we are making in this example is that whileehaight be a single pre-
conditioner whose performance is better than a combinatigneconditioners, the detection
of the preconditioning for MPCG is done automatically, amésinot rely on knowledge of
the underlying continuous problem or properties of the matndeed, not always is it pos-
sible to identify beforehand which single preconditiorgettie best one to use. Even in cases
where one particular preconditioner clearly dominatesC@Rcould still be useful, as a few
iterations could be executed to determine what the mosttaféepreconditioner is, and then
one could switch to regular PCG with that choice.

4.1.2. ADI for 3D Poisson. The three-dimensional Poisson equati®iu = f on the
unit cube with Dirichlet boundary conditions, is discretizusing standard centered finite
differences, and is solved using three preconditionersiiARl fashion: discrete operators
that correspond te-u,,, —uy,, —u... We used a random right-hand-side vector and ran the
program for several meshes. The short recurrence relavies bt hold in this case; this was
observed by keeping track &7 AZ throughout the iteration. But numerical experiments
indicate that MPCG(1) performs as well as full MPCG. In othenrds, the convergence
behavior is practically not affected by the truncation. Wssare given in Table 4.2. We do
not have an analytical explanation for this intriguing fesu

n  n®  MPCG (1) Full MPCG
8 512 32 31
16 4096 61 60
24 13824 88 88

FIG. 4.2. The Poisson equation in three dimensions, using three pditoners, in an ADI fashion. The
right-hand-side vector in this case was random, with nordistribution.

4.2. Domain Decomposition. One of the natural applications for MPCG is domain de-
composition: each preconditioner corresponds to (appratély) solving a restriction of the
PDE to a subdomain. MPCG will then automatically provide sthing akin to a coarse grid
correction: the matrix equation fer is a Galerkin projection of the matrix onto a small sub-
space with one degree of freedom per subdomain. This allomséich greater scalability
than the corresponding PCG method using just a fixed combmaf subdomain solves.

8



For preliminary experiments we solved the standard 5-fgRagson problem on a square
grid with Dirichlet boundary conditions. For precondites we partition the domain into
disjoint rectangles, where in each of which we exactly sdheerestriction of the problem,
i.e. inverting the submatrix ofi corresponding to those unknowns. For regular PCG, we
assemble these into a standard block diagonal preconglitiofior MPCG, we treat each
subdomain solve as a separate preconditioner which catysuppique search direction.

Our first observation is that if we have just
Convergence of PCG and MPCG two subdomains, then MPCG apparently (observed
to round-off error) preserves the short recurrence—
though this situation is not covered by theorem 3.3.
In this case, MPCG is noticeably more efficient
than PCG: e.g. to solve on1®0 x 100 grid (with
100 x 50 subdomains) ta0~° relative residual re-
duction took PCG 49 iterations but MPCG just 37.
The cost of these iterations is dominated by the sub-
domain solves, so the small amount of extra work
0% 0 2 w4« s that MPCG does per iteration is more than compen-
teratons sated for by the enhanced convergence rate. Figure

FiG. 4.3. Residual norm history of PCG 4.3 shows the residual norm histories.
and MPCG for a 2D Poisson problem on a  For more subdomains, the short recurrence
100 x 100 grid, preconditioned with tw@00 x  property is lost. However, we were intrigued to find
50 subdomain solves. that the full (non-truncated) form of MPCG actu-

ally has significantly better scalability than standard
PCG, at least in terms of iteration counts. If we keep the eoi@in size constant as we
increase the grid size, then the iteration count for PCGeimses linearly with the side length
of the grid. But for full MPCG, the iteration count appearsotdy increase logarithmically:
see figure 4.4 for the numbers from our numerical experiment.

Unfortunately with truncation—even keeping two or threevjas iterations’ search
directions and not just one—the scalability is diminished @ results are noticeably slower.
We conjecture that truncating to one search direction lemddinear convergence (like PCG,
but slower), but retaining more search directions steadifyroves the scalability, ultimately
towardsO(logn) for full MPCG. For example, MPCG(3) (keeping three previmesrch
direction groups) appears from figure 4.4 to lead(@>/?) iterations for am x n grid.

Relative residual

[N
o,
&

Truncated Truncated Truncated
Grid Size| PCG MPCG (1) MPCG (2) MPCG (3) Full MPC(

')

25| 39 69 45 44 19
50| 70 131 77 67 22
100 | 126 257 125 107 24

FIG. 4.4. Iteration counts for a 2D domain decomposition scalabilégt, using approximately x 8 subdo-
main solves for the preconditioners.

4.3. A Modd Bending Problem. Our motivation for this example is plate and shell
elasticity problems, or more generally PDE’s where the im#&trsolve is the sum of relatively
easy to precondition parts (e.g. second order differenparators) and more challenging
parts (e.g. fourth order differential operators). We usedstandard centered finite difference
discretization of

1
4— 2 _ =
BV*u — SV-u + HU f
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SAINV  MIC(0) Combined Full Truncated Truncated

S PCG PCG PCG MPCG MPCG(1) MPCG(2)
1073 63 146 143 48 65 57
102 49 126 117 40 47 47
10~1 56 81 70 35 41 41
1 122 58 54 41 54 46
10 171 56 54 44 58 50
102 186 56 54 44 61 50

FiG. 4.5. Iteration counts (to reduce the residual b§—1° for a model bending problem. The parametis
the coefficient that appears in the PDE.

with clamped boundary conditions & g—z = 0) on a unit square domain as a model for an
implicit time step in a bending simulation.

The biharmonic term in this problem gives rise to a non-M+irand can cause stan-
dard incomplete Cholesky methods to break down, thoughdamgle modified incomplete
Cholesky works very well for the other terms. A robust al&give that has been successfully
applied to difficult shell problems is Stabilized AINV[2]. &\investigate using both SAINV
(on the full matrix, permuted with a minimum degree orderwgh drop tolerance 0.1) and
modified incomplete Cholesky (on all terms except the bitwimoperator, using the regular
grid ordering, with level O fill) in MPCG.

Our test case usesla0 x 100 grid, B = 107, At = 1072, and various values fof.
Our motivation for these specific choices is related to agatif the operators. We present
iteration counts for PCG with the two different preconditéos as well as their sum (i.e. giving
them equal weight), for full MPCG, and for truncated MPCG{aii MPCG(2) in figure 4.5.

Observe that as the relative importance of the second-ted@archanges, the effective-
ness of PCG with a particular choice of preconditionersegsignificantly. Meanwhile,
full MPCG followed closely by truncated MPCG(2) robustlyhive the minimum iteration
counts—though of course doing more work per iteration. Femtiore imbalanced problems
(S very small or very large) it is almost certain that PCG with #ppropriate preconditioner
will be the clear winner in terms of actual time, but for themminteresting balanced cases—
where it is unclean priori what the appropriate preconditioner is—truncated MPCGctoul
be a very competitive, robust choice.

To illustrate some of the dynamic behavior of MPCG, we plettito components af
for full MPCG in theS = 0.1 problem in figure 4.6. While the contribution from the SAINV
preconditioner remains steady, the contribution from tteelifired incomplete Cholesky pre-
conditioner steadily grows. We hypothesize this is due ttNSAbeing more effective over-
all, but MIC(0) doing a better job on low frequencies—whicleetually are all that is left
after SAINV deals with the rest of the spectrum. These stkeatianging weights could not
be duplicated by a fixed combination in regular PCG. Intémght, we do not see the upwards
trend in truncated MPCG: further investigation is requitednderstand this behavior.

We have observed variations on this problem where MPCG datefare as well. From
these experiments it appears MPCG usually behaves in omeafidys (excepting the scal-
able domain decomposition results in the previous sectioerg/we get the coarse grid cor-
rection effect). In some problems the multiple precondiis act synergistically, and the full
and truncated forms of MPCG perform comparably: the adutisearch directions from the
multiple preconditioners more than make up for the loss @bgl orthogonality and attendant
loss of global optimality. For other problems truncated M&@erforms poorly, and while
full MPCG necessarily converges in fewer iterations thanpdé PCG, it appears not to af-
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FIG. 4.6. Plots of how the two components @f(one for the SAINV preconditioner and the second for the
modified incomplete Cholesky preconditioner) evolve okeriterations for full MPCG applied to th8 = 0.1
bending problem. The second plot shows the relative chaogethe initial value ofx.

ford a major improvement: the extra search directions asglypeedundant, so PCG with its
guarantee of global optimality is more efficient than truedaMPCG.

5. Discussion and future research. The MPCG method derived in this paper estab-
lishes a class of algorithms that are distinct from Krylobspace solvers that we have seen
so far in the literature. A feature of the method is that theioh of ‘optimal’ precondition-
ing (in an energy minimization sense, as described in Se&jas done automatically. We
believe that this is a promising approach, in particular timee when research in the field
of numerical linear algebra is shifting away from fine-tumifrylov solvers towards relying
more strongly on effective preconditioning methodologies

The method we propose is different from flexible methodsesihe preconditioners in
MPCG are fixed and do not change throughout the iteratiors atgo different from block
methods, which maintain multiple search directions fromdtart but only use a single pre-
conditioner. Our algorithm constructs a generalized Kry@pace whose dimension is pro-
portional to the number of preconditioners incorporated.

Short recurrences cannot generally be preserved when imameohe preconditioner is
involved. But we were able to show that for two preconditienehose sum is equal to the co-
efficient matrix itself, a short recurrence relation holdd ¢he truncated algorithm MPCG(1)
can be used without giving away anything. In addition, weshexperimentally observed two
interesting phenomena which our analysis does not covehelthree-dimensional Poisson
equation with three ADI preconditioners MPCG(1) convergsdast as full MPCG, even
though the short recurrence relation does not hold. Furtber in a nonoverlapping do-
main decomposition test problem we have observed that i sfturrence holds for two
subdomains. When more than two subdomains are applied tinersbarrence is lost, but
scalability remains very good, as is demonstrated in sedtid.

In many complicated and large scale problems, the choicgpod@onditioner is not ob-
vious, and if more than one candidate is available, a fixedotmation of the preconditioners
may not work well enough. This is where the mechanism of MPG$ aome in handy, since
it determines throughout the iteration how to combine trecpnditioners. Even if MPCG
ultimately is not faster than PCG with the right selectiorpodconditioner, a few iterations
of MPCG may robustly identify what that selection should be.

Parallelism may be another strong point of MPCG. While we hameimplemented
our algorithm in a parallel environment, it is evident tha time-consuming stef; ., =
(M 7| My try| ... |M '] can be straightforwardly parallelized. We also envisioat th
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there may be useful parallel speed-up even from highly sdtpigreconditioners: e.g. in-
stead of running PCG with incomplete Cholesky, leaving biéf dual-processor workstation
sitting idle, two variations on incomplete Cholesky coutdriin in parallel with MPCG.

Future research may extend into several directions. Dodeipmposition applications
naturally lend themselves to an approach such as MPCGg¢uplartly if the physics of one
domain is significantly different than the physics of anotthemain (e.g. due to material in-
terfaces). Singular preconditioners that practicallgetfbnly one particular subdomain could
be used. Also, a flexible variant of MPCG might prove usefillbvéing the preconditioners
to vary throughout the iteration, for example if they arelegapto sub-problems using PCG
with a rough convergence tolerance.

Again recall that in the domain decomposition example oecpnditioners were sin-
gular. Regular PCG of course cannot tolerate preconditiowbose null-spaces overlap the
span of the right hand side. It is tempting to ask if we can ghghfurther, with precondi-
tioners that are even slightly indefinite (in different spéses). A motivating case here is the
sparse approximate inverse SPAI [6] whose definitenesdiiculti to determine.

Another possible research direction is the derivation oftinpueconditioned solvers for
other classes of linear systems. In particular, since GMRB$does not possess a short
recurrence relation multi-preconditioned GMRES may bg eempetitive.

A MATLAB implementation of the multi-preconditioned conjugatedigat method is
available at [4]. The authors welcome comments and suggesti
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