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Figure 1: Simulation of a rotating fan in wind, Re ≈ 105, visualized with smoke marker particles. Large scale motion and detailed boundary
layer dynamics are cheaply and easily coupled using our method, producing high quality fluid animations at low cost. Top: top view of fan
wake at frames 80, 120 and 200. Bottom: side view at frame 300.

Abstract

Most fluid scenarios in graphics have a high Reynolds number,
where viscosity is dominated by inertial effects, thus most solvers
drop viscosity altogether: numerical damping from coarse grids is
generally stronger than physical viscosity while resembling it in
character. However, viscosity remains crucial near solid bound-
aries, in the boundary layer, to a large extent determining the look
of the flow as a function of Reynolds number. Typical graph-
ics simulations do not resolve boundary layer dynamics, so their
look is determined mostly by numerical errors with the given grid
size and time step, rather than physical parameters. We introduce
two complementary techniques to capture boundary layer dynam-
ics, bringing more physical control and predictability. We extend
the FLIP particle-grid method with viscous particle strength ex-
change[Rivoalen and Huberson 2001] to better transfer momen-
tum at solid boundaries, dubbed VFLIP. We also introduce Weakly
Higher Resolution Regional Projection (WHIRP), a cheap and sim-
ple way to increase grid resolution where important by overlaying
high resolution grids on the global coarse grid.
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1 Introduction

In computer graphics, the incompressible Navier-Stokes equations
are often used to produce realistic fluid animation. Storing fluid
quantities on a Cartesian grid and performing pressure projection
to handle incompressibility and boundary conditions, Eulerian ap-
proaches have proved their merit in scalably handling complex
boundary shapes and maintaining stability with large time steps
[Bridson 2008].

Despite the ease of use and implementation of Eulerian approaches,
their ability to simulate high Reynolds flow remains a problem.
In this type of flow, fluid motion is often strongly influenced by
boundary layer dynamics. A boundary layer of vanishing thickness
usually cannot be resolved at practical grid resolutions, making the
no-stick or no-slip boundary conditions both diverge from physi-
cal predictability. Besides the possibility of producing inconsistent
results under grid refinement, the flow motion is poorly or not at
all controlled by changing the Reynolds number, as shown in Fig.
2: simulations at low resolution, which don’t resolve the boundary
layer, cannot hope to resemble the results produced by high resolu-
tion simulations.

Fluid-structure interactions in slightly viscous flow has been suc-
cessfully modeled by vortex methods [Chorin 1973; Stock and
Gharakhani 2010]. Boundaries are viewed as generators of vor-
ticity in vortex methods. However, solving the boundary integral
equation for general geometry in 3D is non-trivial, and concerns
also remain about how to reliably achieve stability with 3D vor-
tex stretching [Gamito et al. 1995; Zhang and Bridson 2014]: we
have found it hard in practice to generally adopt vortex methods for
computer graphics.

On the other hand, while the variational framework [Batty et al.
2007] with FLIP advection [Zhu and Bridson 2005] is capable of
simulating free-slip boundaries nicely, with insufficient grid resolu-
tion the momentum exchange near (more physical) no-slip bound-
aries is only poorly resolved.



Figure 2: Vortex shedding from a cylinder in 2D at Re=15000,
zoom-in view near the boundary. Left column: simulation results
at low resolution (approximately 50 × 50 grid cells shown). Mid-
dle column: simulation obtained with 4× resolution. Right column:
simulation obtained with our method, with the same coarse grid but
a 4× refined grid overlaid just around the solid. Our method pro-
duces results visually consistent with the high resolution reference
because only the boundary layer needs that resolving power.

To capture near-boundary flow accurately without incurring the
same expense for the domain as a whole, adaptive methods have
been proposed for graphics by many researchers, e.g. using adap-
tive grids [Losasso et al. 2004; Setaluri et al. 2014; Ando et al.
2013] or domain decomposition [Golas et al. 2012]. While the for-
mer category has advantages in more smoothly varying the degree
of refinement, there is extra overhead in mesh generation and mem-
ory indexing. On the other hand, domain decomposition solvers re-
quire extra iterations per time-step to couple the solutions between
different domains.

We take inspiration from how, in FLIP, the particles carry flow ve-
locities and move with the flow, while an Eulerian grid is used to
adjust the particle velocities to a divergence-free state. In this pa-
per, we extend this philosophy to arrive at an efficient, easy to im-
plement, highly adaptive fluid solver:

• The classic FLIP scheme is augmented with a particle strength
exchange (PSE) method [Mas-Gallic 1995] to solve the
convection-diffusion part of the Navier-Stokes equations.

• By seeding extra ghost boundary particles at the boundary, our
solver captures the boundary layer dynamics more accurately,
producing results visually consistent with higher resolution
simulations (cf. Fig. 2).

• Our time integration weakly couples the regionally refined so-
lutions efficiently, alleviating the need for sophisticated global
solvers.

• The regional refinements can be placed arbitrarily, even over-
lapping each other, without any geometric operations to merge
them together, simplifying mesh generation for spatially adap-
tive solvers.

2 Related work

Boundary layers are often the source of turbulence in high Reynolds
number flows. Pfaff et al. [2009] attempted to capture this effect
by seeding vortex particles from a precomputed artificial boundary
layer to enhance a coarse simulation. However, their approach is
limited to static boundaries and may be less physically plausible

Table 1: Symbol abbreviations used throughout this paper.

ν Kinematic viscosity of the fluid
up,i Velocity stored on particle i
xi Position of particle i
ug(x) Velocity sampled on grid at position x
Ω Fluid domain
Ωsub,i ith Sub-domain with particle-mesh refinement
Wh(x) Kernel used to spread a particle quantity to the grid
Hτ (x) Heat kernel for particle momentum exchange
h Local grid cell spacing

Figure 3: Our method captures the velocity field near the boundary
efficiently and with high apparent fidelity. Left: zoom-in near the
boundary flow. Right: the entire simulation, Re=15000.

than desired as the vortex particles are seeded by chance. In con-
trast, our method aims to solve the viscous dynamics at the right
scale, alleviating the limitation to static boundaries and improving
direct physical control of the result.

When modelling fluid motion with vortex elements, vorticity can
be seeded near the boundary by diffusing the boundary vortex sheet
[Park and Kim 2005; Stock and Gharakhani 2010]. In these ap-
proaches, the unknown vortex sheet strength is determined by solv-
ing boundary integral equations. Besides the expense of the GM-
RES solve for the vortex street strength, there are questions of solv-
ability of the equations themselves for arbitrary topology under
general motion, which is significant for computer graphics appli-
cations.

Particles, along with Eulerian velocity projections, have been
widely used in computer graphics to capture fluid features which
may fall between grid samples and be smoothed away by purely
Eulerian solvers, e.g. FLIP [Zhu and Bridson 2005], or derivative
particles [Song et al. 2007] and the closely related APIC [Jiang et al.
2015]. We further extend this concept: in our method, particles
are used to represent the change of flow momentum due to diffu-
sion and external forces, while multiple-resolution Eulerian grids
bounding different subregions are used to project particle momen-
tum towards their divergence-free state (along with a global coarse
grid).

Our scheme is related to the Iterated Orthogonal Projection (IOP)
framework proposed by Molemaker et al. [2008] but differs in two
aspects: instead of re-projecting the field solution globally in con-
secutive iterations, our projection is only applied to a set of lo-
cally refined sub-domains; during each projection our pressure dis-
cretization respects the solid boundary conditions as per Batty et al.
[2007], while in IOP, boundary conditions are only imposed in a
separate step of the iteration.

Chimera grids proposed by English et al. [2013] are a promising
tool for adaptive, large-scale fluid computations, but require non-
trivial domain discretization to merge grids together, and a rela-
tively expensive global solver. While the global solve may be crit-
ical for water simulations, in this paper we focus our attention on
purely gaseous phenomena and demonstrate a faster and simpler
weak coupling of grids is effective.
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Figure 4: A typical domain construction used in our method. Ω
indicates the global Eulerian domain where fluid motion is loosely
captured. Eulerian subdomains with finer resolution can be placed
anywhere to enhance the simulation quality locally, such as the
green domain(Ωsub,1) for near-boundary turbulence and the red
domain (Ωsub,2) where the camera was placed. Particles are
seeded to fill the space; within gray areas, particles are seeded at
higher density to track finer details.

Domain decomposition schemes have been used as preconditioners
for iterative linear solvers within pressure projection (e.g. [Edwards
and Bridson 2014]), or as a useful tool to decouple fluid features
with different solution methods [Golas et al. 2012]. Our method
also makes use of domain decomposition concepts: we solve the
convection-diffusion and force calculation part on particles, and use
multiple Eulerian grids as an auxiliary tool to perform velocity pro-
jection to obtain an adaptive refined and weakly coupled solution in
the fluid domain.

Stock et al. [2010] proposed an efficient one-way coupling to sim-
ulate rotor wake. The fluid state is first updated with a vortex par-
ticle time step, which provides the velocity boundary condition for
the Eulerian sub-domain to advance itself. Vortex particles in the
Eulerian sub-domain can then interpolate vorticity changes for the
next time-step. In contrast, our space-filling Lagrangian particles
carry fluid momentum instead of vorticity, to avoid the potential
complexities associated with vortex stretching and viscous bound-
ary conditions in general three-dimensional flows.

Multigrid solvers are becoming increasingly popular in graphics to
accelerate the pressure solve (e.g. [McAdams et al. 2010; Ferstl
et al. 2014], [Ando et al. 2015]) We likewise use multigrid for the
various grids in our solver.

While Lentine et al. [2010] used multi-level grids to obtain detailed
fluid animations efficiently, their algorithm is limited to purely Eu-
lerian schemes, whereas our solver is designed for hybrid particle-
mesh methods like FLIP, which offer less numerical diffusion.

A common technique in industry is to inject additional detail with
vorticity confinement [Steinhoff and Underhill 1994; Fedkiw et al.
2001]) or post-process turbulence synthesis (e.g. [Kim et al. 2008;
Schechter and Bridson 2008]). We did not use such methods, focus-
ing on a more direct approach of better solving the Navier-Stokes
equations at higher Reynolds numbers, where the look can be con-
trolled primarily with actual physical parameters. However, proce-
dural techniques like these could be added as an additional layer to
our method to produce even greater details.

3 VFLIP and Weakly Higher Resolution Re-
gional Projection (WHIRP).

The incompressible Navier-Stokes equations we approximately
solve are:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u + f ,

∇ · u = 0.

(1)

We adopt the usual FLIP framework to handle the material deriva-
tive Du/Dt on the left hand side, storing velocity on particles
which are moved in a grid-based velocity field. The pressure gradi-
ent and incompressibility condition (together with boundary condi-
tions) are handled by a separate pressure projection step, augmented
in this paper with multiple grids (see figure 4). We use particle
strength exchange (PSE) for the viscous term, and integrate body
forces f with an Euler step split from the rest of the time integra-
tion as usual.

An overview of our algorithm is given in Fig. 5, while each sub-
routine called in a time step is listed in Alg. 1. Technical details of
each subroutine are given in the corresponding subsections, §3.1,
§3.2,§3.3 and §3.4.

Algorithm 1 TimeStep(∆t )
1: // Convection-diffusion §3.1
2: For each particle i
3: up,i = PSE(∆tν);
4: xi = ForwardTrace(ug , ∆t, xi)
5: // Hierarchical projection §3.2
6: In fluid domain Ω
7: particles = Collect particles in Ω
8: DivergenceFreeUpdate(particles)
9: For each sub-domain Ωsub,i in dx descending order

10: particles = Collect particles in Ωsub,i
11: DivergenceFreeUpdate(particles)
12: SeedAndDeleteParticles // §3.4

Algorithm 2 DivergenceFreeUpdate(particles)
1: u∗g = Splat particle velocities to grid cells
2: ug = Project(u∗g)
3: δu = ug − u∗g
4: For each particle i
5: up,i = up,i + δu(xi)

3.1 Solving the convection-diffusion equation with
ghost particles

Given particles and their velocity at time step n, the convection-
diffusion part of the Navier-Stokes equation,

Du

Dt
= ν∆u, (2)

can be solved efficiently with a so-called Particle Strength Ex-
change method. To deal with boundary objects, at each time step
we seed ghost particles randomly in a 2h band inside the bound-
ary (where h is the spacing of the grid covering the solid, and with
the same density as regular FLIP particle seeding), and set their ve-
locity to that of the solid object. Given particle velocity up,i, the
updated particle strength is then calculated using the stable formula

un+1
p,i = unp,i +

∑
j∈η(up,j − up,i)Hτ (xi − xj)∑

j∈ηHτ (xi − xj)
(3)



Figure 5: Overview of our algorithm. At the beginning of each time step, the velocity of each particle is known, the convection-diffusion part
of Navier-Stokes equation is solved by a PSE method (§3.1). We then splat the particle velocity to the coarse grid, and make the resulting
field divergence-free §3.2. The velocity change is interpolated to all particles for divergence correction. Then, for any subdomain Ωsub,i in
the field, the corrected particle momentum is splatted to the grid again and made locally divergence-free. Any particle within a subdomain
Ωsub,i is considered a small-scale particle and collects its momentum correction from the corresponding domain.

where η is the neighborhood in which we look for particles (a box
of size 2h), and Hτ (x) is the heat kernel with τ = νδt, which
reads

Hνδt(x) =
1

(4πνδt)d/2
exp

(
−‖x‖2

4νδt

)
(4)

The (4πνδt)−d/2 factor can be elided due to the normalization in
Equation 3.

Once the particle velocites have been diffused, particles are pas-
sively advected through the divergence-free flow field. We used
Ralston’s 3rd order Runge-Kutta time integrator [1962], as the most
efficient optimal RK scheme with a stability region overlapping the
pure imaginary axis (for rotations):

u′i = SampleVelocity(xi)

u′′i = SampleVelocity(xi + 0.5∆tu′i)

u′′′i = SampleVelocity(xi + 0.75∆tu′′i )

xn+1
i = xni +

2

9
∆tu′ +

3

9
∆tu′′ +

4

9
∆tu′′′

(5)

When sampling velocity from the velocity buffer, we use trilin-
ear interpolation. In the case where multiple overlapping grids are
detected, we take the grid with the finest resolution. While this
sounds overly simple, and potentially introduces discontinuities at
the edges of grids, we have not observed any noticeable artifacts
as typically the velocity jumps would be small, and it is only the
integral in time of the velocity (the particle trajectories) which we
observe. It would not be difficult to use a partition-of-unity blend
to get a smoother velocity at grid edges if for some reason this was
necessary. After advection, we further update the particle velocities
with forcing terms such as buoyancy before pressure projection.

3.2 Regional projection for particle velocity correction

Once the post advection particle velocities are known, we use a re-
gional projection method to correct the velocity field to an approxi-
mately divergence-free state. Following Batty et al. [2007], finding
the inviscid divergence-free projection of an input velocity field u∗

is equivalent to a minimization problem:

min
p

ˆ
Ω

1

2
ρ‖u∗ − ∆t

ρ
∇p‖2 −

ˆ
Ω

1

2
ρ‖u∗‖2 +

ˆ
S

pn̂ ·∆tupre,
(6)

where upre is typically a prescribed velocity at solid or fluid do-
main boundaries S.

As outlined in Alg. 2, in our regional projection, we first splat all
particle velocities to the Eulerian domain Ω with a wide kernel
Wh(x), as if we were computing the large eddy filtered version

of the velocity field:

ug(x) =

∑
j ujWh(x− xj)∑
jWh(x− xj)

. (7)

Here x is a fixed grid cell position, and xj and uj are the the posi-
tion and velocity of particle j respectively.

In our implementation, the usual bi-/trilinear hat function kernel
was used:

Wh(x) =

d∏
θ=1

φ
(xθ
h

)
,with

φ (r) =

{
1− |r|, r ∈ [−1, 1) ,

0, else,

(8)

where d = 2, 3 is the spatial dimension, h is the kernel width which
simply equals the grid spacing, and xθ is the θth component of
vector x.

After we splat the particle velocity to the grid, the velocity field on
the grid is made divergence-free by pressure projection. Our pro-
jection uses a standard staggered grid and face-weighted pressure
discretization similar to Batty et al. [2007]. The velocity change is
then interpolated to the particles to correct their velocities.

At this stage the velocity defined on the particles is (approximately)
divergence-free at the coarse scale. To increase the flow fidelity in
regions of interest (near boundaries or cameras, for example), fur-
ther projections with higher resolution in each subdomain are per-
formed with essentially the same procedure. We splat the coarse-
corrected particle velocity to the corresponding refined domain us-
ing the kernel Wh(x) with the smaller refined h, make the grid-
based velocity field divergence-free, and interpolate the velocity
change back to the particles in that region. In each subdomain pro-
jection, at the domain boundaries we restrict the normal component
of velocity not to change (as established by splatting from the par-
ticles). We repeat this process until all the regional refined domains
are processed.

During each projection, the Poisson equation for pressure is solved
with a multi-grid preconditioned conjugate gradient method, whose
implementation details are given in §3.3.

3.3 Our pressure solver

Similar to McAdams et al. [2010] and Setaluri et al. [2014], we use
a multigrid preconditioned Krylov solver for our pressure Poisson
equation. Our multigrid solver is constructed semi-algebraically:
we construct RL (the restriction matrix mapping the residual of
level L to a coarser level) and PL (the prolongation matrix used



to add coarse level corrections back to the level L solution) using
geometric information given by the fluid domain, but use matrix
multiplications to construct the coefficient matrix AL+1 of each
coarsening level L+ 1 (Alg. 3).

Algorithm 3 MultiGridCoarsening(AL,PL,RL, AL+1)
1: for each cell in coarse level
2: i← index of this cell
3: for each sub cell in fine level
4: j ← index of this sub cell
5: if AL(j, j) 6= 0
6: RL(i, j) = 1/2d //d = 2,3 dimension of the problem
7: PL(j, i) = 1.0
8: AL+1 ← 0.5RLALPL

As shown in Alg. 3, our restriction and prolongation matrices are
transposes of each other, up to a scale factor, with restriction equiv-
alent to simply averaging residuals across the fine level grid cells
covered by a coarse grid cell, and prolongation equivalent to tak-
ing the nearest neighbor coarse value; this is a “aggregation”-style
multigrid. For pure multigrid, this does not produce optimal con-
vergence; we improve the scheme by applying a scaling of 1

2
to the

coarse level coefficient matrix, which, away from solid boundaries,
gives exactly the same coefficient matrix as if we were to redis-
cretize the PDE on the coarse grid. For cases with solid boundaries,
this coarsening strategy acts as a volume weighted rediscretization
at the coarse level. Our coarsening strategy doesn’t increase the size
of the discrete Poisson stencil: a coarse cell has at most six neigh-
bors with non-zero coefficients. This in turn allows for the usual
red-black ordering to parallelize Gauss-Seidel sweeps, and in gen-
eral makes smoothing far more efficient. For other implementation
details of multigrid-preconditioned Krylov solvers, please refer to
McAdams et al. [2010].

In all our experiments, the multigrid-preconditioned conjugate gra-
dient solver appeared to converge with a constant rate of approx-
imately 0.1 per iteration, though more complex schemes may be
necessary for extremely complex solid geometry.

3.4 Seeding and deleting particles

At the end of each time step, particles are seeded and deleted as
necessary to maintain reasonable sampling of the fluid in each grid
cell, according to the highest resolution grid nearby. Newly seeded
particles take their velocity by interpolation from the finest avail-
able grid. We delete particles randomly from cells where the count
exceeds a threshold (16 in our examples), and seed new particles
where the count is below another threshold (8 in our examples).

Referring to figure 4, the grey areas surrounding (but not inside) re-
fined subdomains are treated with the finer grid spacing: we main-
tain a higher particle density in the grey areas as there is a chance
that the fluid in the grey region will be advected into the refined sub-
domain during the course of the next time step. For our examples
we used a bandwidth of 3h, where h is the refined grid spacing, for
this intermediate zone but it could of course be determined more
dynamically and frugally based on the local velocity and the time
step size.

As an alternative to avoid higher particle counts, we have experi-
mented with only seeding extra particles in the refined regions, not
the grey neighborhoods, but widening the support of the particle-
to-grid kernel near the edge of the refined grid to avoid gaps in the
data. This exchanges more work for less storage, which may be
preferable in some cases, though the results are similar.

Figure 6: Impulsively started flow past a sphere at Re=15000 sim-
ulated using our solver

Figure 7: Vortex shedding in impulsively started flow around a
2m diameter sphere at Re=20000. Left: naïve grid-based viscosity
model with h = 0.0625. Middle: naïve solver with h = 0.03125
(twice the resolution). Right: our model using a coarse grid of
h = 0.125 and a refined grid around the sphere with h = 0.03125.
The computation time for the left and right simulations are roughly
equal.

4 Results and discussion

We parallelized the proposed methods on a desktop machine with
an Intel(R) Core(TM) i7-3930K CPU and 32 GB RAM. We com-
pared our new solver to a typical inviscid FLIP solver as used in
graphics, as well as a “naïve” viscous Navier-Stokes solver where
viscosity is added with an explicit-in-time finite difference (since
we are interested in very high Reynolds numbers, this explicit step
was always stable). Simulations were visualized by judiciously in-
jecting smoke marker particles which are passively advected with
the grid velocity field. The accompanying video shows compar-
isons between the methods for different resolutions and different
Reynolds numbers in a variety of examples.

In Fig. 6, we show a flow simulation frame obtained with our solver
at Reynolds number of 15000: the flow separates from the boundary
at small angle, it remains laminar with structured vortices for about
one diameter, and then becomes turbulent. This is similar to figure
55 on page 34 of An Album of Fluid Motion [1982].

As shown in Fig. 7, with the naïve uniform-resolution grid-based
viscosity model, a much higher resolution is necessary to cap-
ture important fluid motions such as vorticity detaching from the
boundary layer. With our sub-grid particle-based viscosity model
and regional refinement, the characteristic vortex shedding can be
achieved at much lower cost.

Figure 8: For a flow past cylinder simulation at Re = 800, inflow
speed U = 5m/s, and cylinder diameter D = 1.6m, the experi-
mental model predicts a Strouhal number of around 0.2 [Lienhard
1966], hence a shedding frequency of around 0.625. The above
pictures are from frame 754 and frame 920 of our simulation with
∆t = 0.01, where vortices shed off the same side just reach the end
of the domain; this gives a shedding frequency just over 0.6.



Figure 9: Our method on the same scenario as Fig. 7 with different
resolutions. Left: coarse simulation (global h = 0.25, inner h =
0.0625). Middle: 2× refinement for both (global h = 0.125, inner
h = 0.03125). Right: only the inner grid is refined (global h =
0.25, inner h = 0.03125). Important fluid features can be cheaply
captured by only increasing the inner grid resolution.

Figure 10: Rotating fan (each blade is 1.3m long, rotating at one
cycle per second) in a constant wind of 2m/s, with ν = 10−4,
giving Re ≈ 105. The refined grid has h = 0.005m. Left: zoom-in
view at the fan blades. Right: the entire simulation.

In Fig. 8 we performed a 2D flow past cylinder simulation. The
cylinder is only about 12 cells wide in the coarse grid; a 4× local
refinement is applied to resolve the boundary layer. The shedding
frequency produced by our solver matches the experimental model.

In Fig. 9 we take the same scenario (impulsively started flow around
a sphere at Re=20000) but look at changing global and inner grid
resolution in our method. Vortex shedding is largely dominated by
how well a solid boundary is resolved. Our method can resolve
some sub-grid scale viscosity effects, but it fails to predict the near-
boundary behavior when the refined grid is too coarse to resolve it.
However, increasing the resolution of the local grid just around the
boundary improves the simulation quality greatly without requiring
refinement in the rest of the domain.

When the resolution of the coarse domain isn’t enough to repre-
sent the solid object, our regional refinement may still be enough to
capture the solid boundary well (Fig. 1, Fig. 10). Vortex shedding
from solid objects is essential to fluid animation in these scenarios,
which can be faithfully captured by our method.

Our method makes it much cheaper to adequately resolve the vis-
cous boundary layer, locally and on-the-fly, alleviating the limita-
tion to parametrize boundary layer with far field flow motions as in
Pfaff et al. [2009]. It is thus suitable for more general simulation

Figure 11: Smoke rising around a sphere of diameter 0.3m, with
ν = 10−4 and the inner grid h = 0.005m, Re ≈ 103. Left:
simulation with a uniform FLIP solver. Right: simulation using our
solver with a coarser global grid and a 4× refined grid around the
sphere. With approximately the same computation time, our solver
captures structures in the boundary disturbances over the bottom
of the sphere more sharply.

scenarios, e.g. buoyancy-driven plumes as shown in Fig. 11.

5 Conclusions, limitations, and future work

We extended incompressible FLIP in two ways, with a particle-
based viscosity model that can resolve momentum exchange at
higher resolution than the grid, and with an extremely simple re-
gional projection method (together with particle seeding/deletion
rules) to adaptively refine in important areas, without needing more
complex grid or mesh structures to globally couple different reso-
lutions. Very little extra code beyond a standard FLIP simulator is
required to implement this paper. Moreover we showed that match-
ing the qualitative look of some high Reynolds numbers scenarios
hinges just on resolving the viscous boundary layer, even while the
rest of the domain can use a coarse grid.

The typical inviscid solver used in graphics doesn’t take viscosity
into account at all, and for example can only lead to vortex shed-
ding through numerical errors related to grid size and time step.
Both the naïve method and our method will fail to give character-
istic results when the boundary layer isn’t resolved, again leading
to simulations whose look is more controlled by numerical errors
related to grid size and time step than physical parameters. How-
ever, our method allows for resolving boundary layers much more
efficiently, at which point physical parameters are at last a useful
control and further refinement will reliably give similar but more
detailed results, as artists generally hope for.

Our solver is still limited formally to first order accuracy in time,
and the PSE approach is likely only first order in space: while we
feel it’s valuable for coarse grids and large time steps, it is not an
efficient approach for convergence to a fully accurate solution. The
PSE part is also inappropriate for highly viscous flows, where an
implicit grid-based solver is almost certainly the better option.

The global time step is also a limitation of this approach to spatial-
only adaptivity. The time step selected in graphics simulations,
when multiple steps per frame are taken, is frequently determined
by restricting the CFL number, i.e. limiting the number of grid cells
a fluid particle may travel through in one time step. In refined sub-
domains with smaller grid cells, this is a much more stringent re-
striction than is needed for the coarse global grid, wasting some
computational effort.

We have not considered fluid phenomena beyond simple smoke sce-
narios. Fire and explosions, where nonzero divergence may be pre-
scribed by the pressure projection, would require some adjustment
to our regional projection scheme. Free surface liquids, such as
commonly used for water, would require even more thought if re-
gional grids overlap the free surface.

There are several other avenues for further research. The
convection-diffusion part we currently handle with PSE might be
improved with other ideas from grid-free methods; we could also
look at using an effective eddy viscosity to better model unresolved
turbulence. Our regional projection is not limited to regular grids,
but could also use unstructured tetrahedral meshes to conform more
accurately to solid boundaries (while avoiding the need for a global,
conforming, tetrahedral mesh, which could be a useful savings for
simulations involving moving rigid bodies). Last but not least, it
is possible to also track the vorticity on each particle to correct
the missing angular momentum during particle advection, similar
to Zhang et al. [2015]; replacing the FLIP framework with APIC
[Jiang et al. 2015] might also allow for better tracking of vorticity.



Table 2: Timings of various simulations associated with this paper, measured on a desktop machine with Intel(R) Core(TM) i7-3930K CPU
and 32 GB RAM.

Reynolds Simulation Time
Example Method ∆t Outer Grid Size Inner Grid Size Number (seconds per frame)

Flow past sphere

Naïve solver 0.03 160 x 80 x 80 N/A 1,000 12.52
0.03 320 x 160 x 160 N/A 20,000 73.46

Our method
0.03 80 x 40 x 40 48 x 64 x 64 1,000 11.21
0.03 160 x 80 x 80 96 x 128 x 128 20,000 70.76
0.03 80 x 40 x 40 96 x 128 x 128 15,000 56.07

Rotating fan in wind Our method 0.03 240 x 120 x 120 144 x 96 x 144 ≈ 105 120.40
Rising smoke plume 0.05 50 x 100 x 50 100 x 200 x 100 ≈ 103 79.10

Flow past sphere

FLIP 0.03 160 x 80 x 80 N/A N/A 11.31
FLIP + WHIRP 0.03 80 x 40 x 40 40 x 40 x 40 N/A 4.06

VFLIP 0.03 160 x 80 x 80 N/A N/A 15.41
VFLIP + WHIRP 0.03 80 x 40 x 40 40 x 40 x 40 N/A 4.20

Table 3: Timings of flow past sphere simulations with only differences in outer and inner grid sizes, measured on a desktop machine with
Intel(R) Core(TM) i7-3930K CPU and 32 GB RAM.

Simulation Time
(seconds per frame)

Outer Grid Size
100x50x50 150x75x75 200x100x100

Inner
Grid
Size

66x66x66 12.19 19.71 34.36
100x100x100 28.99 35.46 50.52
200x200x200 166.14 168.64 185.57
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