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Abstract

This thesis is concerned with various computational aspects of surface dynamics. By this I mean

algorithms and data structures to support simulations of the physics taking place on or about two-

dimensional manifolds. This includes internal dynamics (e.g. elastic forces) and external dynamics

(e.g. collisions).

The core of the thesis is simulating cloth motion, including the internal elastic dynamics (chapter

1), the external dynamics of contact and collision (chapter 2), and post-processing of the data

for rendering (chapter 3). The contact and collision algorithm, based on the notion of a collision

resolution pipeline where candidate trajectories are passed through several stages designed to resolve

different classes of collisions, was subsequently adapted to rigid body simulation (chapter 4).

Surface dynamics are also potentially the most important part of simulations of deformable

objects, driving the deformation of the interior. Chapter 5 presents a tetrahedral mesh generation

algorithm designed to support large surface deformations. Adaptivity is also discussed.

Throughout the thesis implicit surfaces defined by level sets are used to represent geometry.

Level sets are used in many other areas, especially computational fluid dynamics for simulations

of the surface between distinct regions of flow (e.g. material boundaries). Their chief drawback is

storage expense. Chapter 6 presents a data structure for efficiently storing level sets without needing

to change algorithms designed for regular grids. An example application, an interactive sculpting

tool, is presented to illustrate the structure.
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Chapter 1

Internal Cloth Dynamics

The simulation of cloth in a visually plausible and attractive manner is becoming an essential part of

the special effects industry, and has spurred much research effort in the computer graphics commu-

nity. This chapter discusses the modeling of the internal dynamics—that is the stretching, shearing,

and bending as opposed to collision and contact interactions—of fabric and related materials.

Cloth has a fairly complex structure, spanning several length scales from the nanostructure of

polymers to the microstructure of fibers to the mesostructure of the weaving pattern, but for the

purposes of animation it is typically adequate to abstract this down to a homogeneous continuum

model. Indeed, one of the challenges on the near horizon will be to tackle simulations of the small

scale structures in cloth; I believe the collision resolution algorithms presented in later chapters may

play a useful role in this endeavor.

1.1 Previous Work

Essentially all of the literature to date deals with cloth as a two-dimensional continuum. Though

some works such as [26] claim a “particle” representation that differs from the standard notion of

continua, they are more naturally seen simply as a particular discretization of continua.

In the textile mechanics community, finite element methods were used with parameters from

measured data in an attempt to predict the static drape of cloth in simple situations[105, 40, 62, 36,

6, 55]. Plate or shell elements are the preferred type to use to handle bending accurately. Several

works found some agreement with experiments, but only for simple quantities like the area of the

projected shadow of a tablecloth, or straightforward bending tests. It remains unclear whether

the considerable overhead of such complex methods is justified for computer graphics; simpler and

faster approaches allow much finer resolution meshes that can resolve more details in more realistic,

interesting situations.

In graphics, among the first works is [183]. A technique for modeling static drape was presented

1



2 CHAPTER 1. INTERNAL CLOTH DYNAMICS

there that heuristically combined physically-motivated procedures to produce elegant images. Later

work that also strove directly toward the ultimate shape of the cloth not necessarily by physical

simulation was [98], which turned to singularity theory to analyze folds and wrinkles in cloth.

Terzopoulos et al.[166] introduced rigorous simulation of elastic deformation to the computer

graphics community, discussing surfaces as well as volumes and curves, with finite difference dis-

cretization and implicit time integration. The next year [165, 164] extended the models to include

viscoelasticity and plasticity along with a simple model of fracture. Later [4] extended this work,

using a finite difference discretization of two-dimensional elasticity that handled inhomogeneity and

advanced viscoelasticity models. Aerodynamic forces (generated by a vortex method not tied to a

background grid) were added to the Terzopoulos model in [103, 104].

As an alternative model in graphics, [176] developed a force model for unstructured triangle

meshes based on continuum mechanics, essentially approximating a finite volume calculation for the

in-plane forces and basing the bending forces on a discrete approximation of curvature.

A different approach was to use a grid of particles connected by nonlinear springs with carefully

modeled force/strain curves. Breen et al.[26] matched the curves to measured data, then calculated

equilibrium positions of cloth draped over objects. This was accelerated by a multigrid algorithm

in [127]. The work of [54] elaborated the model to calculate full dynamics for animation, not just

static poses.

Even simpler was the use of simple linear springs in mass-spring networks, with various im-

provements. For example, [139] introduced a strain limiting procedure to improve the quality and

speed of explicit time integration. To simplify the involved calculations of their earlier model[176],

Volino et al. attempted to include more realistic resistance to area change (i.e. a better apparent

Poisson’s ratio) in a simple mass-spring model[178]. Van Gelder[174] determined a method for se-

lecting spring stiffnesses in mass-spring networks to better approximate elastic continua. In recent

work, [71] generalized linear edge springs to triangle springs and bending springs by way of proposed

energy functions.

The early work of Terzopoulos used implicit time integration with a simple direct matrix solver.

This is not efficient for larger models, so authors turned to explicit time integration scheme such as

symplectic Euler (often confusing it with forward Euler), Runge-Kutta methods, etc. Unfortunately,

as we will show later, these fully explicit methods are also very inefficient when damping forces are

considered, even with strain limiting as in [139]. Baraff and Witkin returned to implicit methods in

[17], demonstrating that a conjugate gradient iterative solver could be very efficient for large cloth

models. Their force model is more sophisticated than masses and springs, based on a continuum

description of potential energies. More recently, [5] improved the theoretical basis (and speed of

convergence) of their implicit solver. The chief problem with Baraff and Witkin’s work, however,

was that small-scale features such as wrinkles are artificially dissipated by the fully implicit time

integration; Choi and Ko[39] carefully adjusted the simple bending model of papers such as [139]
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to mitigate this, based on a heuristic buckling analysis. Parks and Forsyth[133] explored the use

of α-methods from computational mechanics to control the artificial dissipation in time integration

without changing the forces.

Speed was the overriding concern in [51], which made approximations to the implicit integration

of [17] to make the matrix that needs to be inverted constant from one time step to the next, pre-

computed its inverse, and added ideas from [139] to a mass-spring model to achieve interactive cloth

animation. Kang et al.[91] further simplified and accelerated this with a simple sparse approxima-

tion to the precomputed matrix inverse. To add back detail missing from the coarse meshes used in

this work, [92] added sinusoidal wrinkles to a cubic spline interpolation of the mass-points whenever

springs were compressed. [179] tried to take a middle ground in efficiency/accuracy between [17] and

[51]. This was brought into a later study[180] that compared several implicit and explicit methods

in simple test cases of cloth motion.

Adaptivity has been considered in several papers. Thingvold and Cohen[168] modeled cloth

forces with springs and hinges between the control points of a B-spline surface, with refinement (of

the tensor-product mesh) possible during a simulation. Adaptive refinement was later advanced in

[87] who established how to do it for a rectangular mass-spring network without being restricted to

tensor-product meshes. More recently, [72] demonstrated an easy yet rigorous approach to adaptive

finite element simulations, including shell models for surfaces such as aluminum cans and pillows.

Several useful surveys of cloth in computer graphics have been published, beginning with [109] in

1991. In 1996, [126] gave a fairly comprehensive survey of methods, summarizing and categorizing

seventeen earlier techniques. The book by House and Breen[84] collects several important articles

on cloth animation and serves as a very useful overview of cloth, touching on other aspects such as

control and rendering that are not discussed here.

1.2 A Mass-Spring Model

In this section I will discuss an approach to modeling the stretch and shear forces that resist in-plane

deformation of a surface.

Although clearly more sophisticated methods, such as the finite element models discussed in

[105, 40, 62, 36, 6, 55, 72], are necessary for some scientific applications it appears that fairly simple

mass-spring models are adequate for visual plausibility. In addition to speed their simplicity also

allows easy and intuitive modifications, as in [139] upon which I will expand.

The simplest mass-spring model is based on a rectangular grid of equal mass nodes1. “Stretch”

springs connect adjacent nodes along the grid lines, and “shear” springs connect adjacent nodes

along the diagonals, as illustrated in figure 1.1. All in-plane deformations are resisted to some

1It is arguable that nodes on the edges should have less mass as they represent less material, but in practice this
doesn’t seem to add any extra realism to simulation. Given that most cloth is sewn with a hem around the edges, it
is reasonable to have slightly heavier edges anyhow.
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Figure 1.1: A common model for cloth internal dynamics is a rectangular grid of springs.

extent by this model, which has been used in works such as [139, 39]. Claims are made in [26] that

(assuming the grid is aligned with the weave/weft directions of the cloth) this allows easy modeling

of the actual anisotropy of woven cloth. However, it is not intuitive how to pick stiffness parameters

for the springs since they are not orthogonal.

This grid is not enough: a triangle mesh is required for our computation of bending forces (though

a simpler technique just adds additional springs between cloth nodes separated by two edges in the

grid) and for collision handling. The standard approach is to split each square of the grid with the

same diagonal. However, this does introduce bias into the mesh; a better approach is to alternate

the diagonal used, leading to a “herring bone” pattern without an obvious bias (though each interior

cloth node still has degree equal to six).

While the grid-based approach is by far the simplest for applications where a rectangular piece

of cloth is desired (e.g. flags, curtains, sheets, some simple garments, etc.), it is not clear how to

extend it to more complicated geometry. Unstructured meshes are needed in this case. Again, finite

element or finite volume methods are an obvious choice, but mass-spring methods can be devised as

well.

Starting with a triangle mesh, one can put a spring on each mesh edge. The two issues are how

to assign masses to the nodes and stiffnesses to the springs.

The standard method for distributing the mass of the cloth to the nodes of its unstructured mesh

is to compute the mass of each triangle by multiplying the cloth planar density with the triangle

area, then distribute the mass of each triangle to its three corner nodes. The simplest approach is

just to give each node a third of the mass of each incident triangle. A more complicated alternative

is to form the Voronoi cell of each node in the mesh (clipped by the boundary) and integrate the

density over these to get the nodal masses. For some regular geometries the two result in exactly the

same answers, and in general, for well-shaped triangles (as one would want for numerical simulation),

the two do not differ by much. Given the simple nature of the rest of the model, there is no pressing
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reason to prefer the more complex Voronoi calculation.

The question of reasonable choices for the spring stiffnesses, given some Young’s modulus E that

one wants to imbue the cloth with, was tackled by [174]. In that work, the spring stiffness was scaled

by the sum of the areas of the incident triangles divided by the length of the edge2. In [119] we

provide a similar, but much shorter argument for scaling of this nature. The frequency of a spring

scales as
√
k/mlo so the sound speed scales as lo

√
k/mlo =

√
klo/m. We simply require the sound

speed to be a mesh-independent material property as it should be, implying that k must scale as

m/lo. This result is consistent with [174], since the mass and the area both scale identically with

their ratio equal to the density.

Lying somewhere between finite element models rigorously based in continuum mechanics and

heuristic mass-spring models are the work in [17] and [71] where forces are derived from variational

derivatives of discrete geometric “energies” such as the sum of squared differences of triangle areas

from their rest-state areas. I do not pursue this approach here, but note that it may be useful to

derive connections between mass-spring models and finite elements going through this geometric

route, for better understanding of the discrete models.

1.3 Strain Limiting

One of the interesting behaviors of cloth is its non-linear response to tension and compression.

Roughly speaking, the resistance to stretching is fairly weak in the initial phase of extension where

threads in the cloth are merely flattening out, but the resistance climbs significantly as the threads

themselves are extended. This can be modeled directly in the springs as in [26]. An alternative

approach has its origins in [139].

Provot’s algorithm in [139] was motivated primarily by efficiency. An explicit time integrator

is limited to step sizes that are proportional to one over the square root of the material stiffness.

For fast simulation times, it is thus desirable to decrease the stiffness. Of course, this results in

cloth that looks too stretchy. To correct for this Provot modified the mesh after each time step,

looping through the segments looking for springs that had deformed by more than 10% from their

rest lengths, and moving the endpoints inwards (an equal amount in the absence of constraints) to

reduce the strain3 to that 10% limit. This iterative procedure was empirically observed to converge

quickly, resulting in visually pleasing cloth animation.

In [27, 28] we elaborated on this idea. The first change is to make the adjustments to the

velocities of mesh nodes instead of just altering positions. After calculating new velocities for the

mesh based on the standard spring model accelerations, we loop through the springs looking for those

2The actual formulas in [174] actually have an edge length squared; we incorporate that extra edge length directly

into the force calculation, F = k l−lo
lo

, so that we can deal with the dimensionless strain (l − lo)/lo of the spring.
3Note that the paper mistakenly refers to “deformation rate” when deformation, or more precisely, strain, is

implied.
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whose predicted strain at the end of the time step is too high. We apply a momentum-conserving

impulse to the endpoints of each such spring, altering the velocities so that the predicted strain will

be in the valid range (exactly clamping it in fact). This is done sequentially, i.e. the velocities are

updated immediately after each impulse and thus can affect the impulses that may be applied to

other incident springs. Similar results to [139] are obtained but with conservation of momentum

and a set of velocities that is consistent with the position updates. It was also observed that this

procedure can be interpreted loosely as a Gauss-Seidel iteration for solving the nonlinear equations

of an implicit time integrator using a more realistic biphasic model of cloth forces. That is, it can be

expected (and is observed in practice) that more realistic cloth motion is achieved with this process

than by simply increasing the stiffness of the springs, because the real fabric only gently resists small

amounts of stretching (when the threads are just straightening out). Small scale wrinkling and other

subtle details become possible with biphasic behavior, though they would be strongly resisted in a

stiff linear model.

The other significant change in our papers was to allow for different strain limits in extension

and compression. In particular, for a generic cloth model we restrict extension to the usual 10%

but restrict compression to 0%, disallowing it completely. This at first seems counter-intuitive, since

cloth doesn’t have a strong resistance to compression as it does to extension beyond a limit. In

fact, what we are modeling is that the ratio between the resistance to in-plane compression and

out-of-plane buckling is high: if one attempts to compress cloth, it invariably buckles into folds

and wrinkles instead of compressing. By applying impulses to stop the in-plane compression, we

introduce more bending out-of-plane, forcing any slight deviation from planarity (even at the level

of round-off error) into a buckling fold. This improves the realism of cloth simulation significantly,

allowing the correct qualitative behavior to be captured even on very coarse grids. (A lengthy

discussion of cloth buckling may be found in [39], where bending resistance during compression

was reduced to mitigate the artificial damping of small scale features present in standard implicit

integration methods for cloth. This achieved a similar ratio between in-plane compression resistance

and out-of-plane bending resistance, though the authors did not realize this was the fundamental

issue.)

Another extension to the strain limiting idea was to also limit strain rate. A rule of thumb in

computational mechanics is to avoid deformations of more than 10% during a single time step, see

e.g. [31], and also [17] for an example in computer graphics cloth simulation. The natural way of

doing this is to monitor the strain rate, and adaptively reduce the size of the time step to ensure

this limit. Thus if a deformation is predicted to be happening too fast to be accurately resolved at

the current time step size, the simulation slows down and makes sure it is resolved.

However there are situations with high strain rates where accuracy may already have been lost

and it is pointless to be restricted to punishingly small time steps after the fact. For example, high

velocity collisions arise in computer graphics that to accurately model would require far smaller time
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steps and far finer meshes than are practical or necessary for visual purposes. Using appropriate

large time steps instead introduces sharp discontinuities in the velocity field of the mesh, resulting

in high strain rates. Other pragmatic examples include problems due to hand-animated characters

moving with non-physically high acceleration (and dragging physically simulated cloth with them),

and of course bugs in the software. For these situations it is still imperative to do something to

reduce the amount of strain per time step.

An attractive technique we proposed in [27] is to iteratively apply damping impulses that reduce

the strain rate (or specifically the strain per time step) of springs to a reasonable limit, exactly the

same way as we apply impulses to reduce strain. This stably and efficiently damps out problematic

areas of the cloth in these situations, eliminating bad oscillations, containing the problem (so it

doesn’t adversely affect other parts of the cloth through internal dynamics or collisions), and allowing

continued large time steps. The added robustness may be a big gain in production environments.

Finally, an interesting generalization of the two procedures is naturally suggested by using the

words strain and strain rate. Instead of applying this to simple linear springs, one can apply it

to more interesting elastic models. In [119] we used exactly this approach in limiting the strain

of tetrahedral finite elements (measured by the deformation of altitudes) to make element collapse

impossible.

1.4 Bending Elements

The forces that resist the bending of a surface are more problematic than the in-plane forces. A

classic approach to modeling bending problems in continuum mechanics are plates and shells (i.e.

plates with non-flat rest positions). However, use of finite element plates and shells necessitates

going to higher order basis functions, introduces a large range of numerical difficulties, complicates

collision handling, etc. While this is appropriate for accurate simulation of relatively well understood

small deformations of materials such as steel, there is no compelling reason to use such a complex

force model given the crude state of cloth modeling. Thus I present a simpler more direct model.

Another popular approach in computer graphics has been to augment the rectangular grid dis-

cussed above with springs connecting nodes that are two grid locations apart (e.g. [26, 139, 39]).

These resist bending of the cloth (in addition to stretching). However, such a model isn’t easily gen-

eralized to unstructured meshes, and moreover, cannot properly model curved rest positions without

introducing “popping”. That is, if a curved rest position is used to set the rest lengths of the springs,

the mirror image of the cloth (curved in the opposite direction) is also in stable equilibrium, so nodes

may flutter back and forth between the two stable points. The model I present here does not suffer

from this defect.

In order to handle unstructured triangle meshes and get finer, more robust control over bending

than in vertex-centric models, we posit as our basic bending element two triangles sharing an edge.
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Figure 1.2: A bending element with dihedral angle π − θ.

Our bending elements will be based on the dihedral angle and its rate of change, as in [17]. We

label the element as in figure 1.2, with vertex positions xi and velocities vi, i = 1, . . . , 4, and angle

θ between the normals n1 and n2.

The vector of velocities v = (v1, v2, v3, v4) and the vector of bending forces F = (F1, F2, F3, F4)

live in a 12 dimensional linear space. One can select a basis for this space identifying twelve distinct

“modes” of motion. For bending it is natural to select for the first eleven modes the three rigid body

translations, the three (instantaneous) rigid body rotations, the two in-plane motions of vertex 1,

the two in-plane motions of vertex 2, and the one in-line stretching of edge 3–4. None of these

change the dihedral angle, and thus should not participate in bending force calculations. This leaves

the twelfth mode, the bending mode, which is the unique mode orthogonal to the other eleven up

to an arbitrary scaling factor. This mode changes the dihedral angle but does not cause any in-

plane deformation or rigid body motion. Let us call it u = (u1, u2, u3, u4). From the condition of

orthogonality to the in-plane motions of vertices 1 and 2, we find that u1 is parallel to n̂1 and u2

is parallel to n̂2. From the condition of orthogonality to the in-axis stretching of edge 3–4, we see

that u3− u4 must be in the span of n̂1 and n̂2. Orthogonality to the rigid body translations implies

that the sum u1 + u2 + u3 + u4 is zero, and hence u3 + u4 is also in the span of n̂1 and n̂2, thus u3

and u4 are each in this span. Finally, after making u orthogonal to rigid rotations (which we can

conveniently choose to be about the axes n̂1, n̂2 and ê) we end up with

u1 = |E| N1

|N1|2
u2 = |E| N2

|N2|2

u3 =
(x1 − x4) · E

|E|
N1

|N1|2
+

(x2 − x4) · E
|E|

N2

|N2|2

u4 = − (x1 − x3) · E
|E|

N1

|N1|2
− (x2 − x3) · E

|E|
N2

|N2|2

up to an arbitrary scaling factor, where N1 = (x1 − x3)× (x1 − x4) and N2 = (x2 − x4)× (x2 − x3)

are the area weighted normals and E = x4 − x3 is the common edge. Thus u1 and u2 are inversely

proportional to their distance from the common edge, and u3 and u4 are a linear combination of u1

and u2 based on the barycentric coordinates of x1 and x2 with respect to the common edge. The
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bending elastic and damping forces must be proportional to this mode. One immediate observation is

that orthogonality to rigid body modes implies these forces conserve linear and angular momentum.

In fact, every bending model based on two triangles that does not use exactly these force directions

will violate either the fundamental conservation laws or will influence in-plane (i.e. non-bending)

deformations4.

For simplicity we choose the magnitude of elastic force so that

F e
i = ke |E|2

|N1|+ |N2|
sin (θ/2)ui,

for i = 1, . . . , 4. The elastic bending stiffness ke is a mesh-independent material property, the middle

factor scales this according to the anisotropy of the mesh (so the look of the cloth doesn’t change

significantly with remeshing5), and the sine factor measures how far from flat the cloth is. This

is the simplest quantity to compute that smoothly and monotonically increases from a minimum

when sharply folded at θ = −π, is zero when flat at θ = 0, and rises to a maximum at the other

sharply folded state θ = π. We use the formula sin (θ/2) = ±
√

(1− n̂1 · n̂2)/2 where the sign is

chosen to match the sign of sin θ, which is just n̂1× n̂2 · ê. Naturally more complex nonlinear models,

e.g. including powers of θ for increased resistance at sharper angles, are possible if a more accurate

model is known. But we stress that these factors must multiply all of the forces so that the force

directions and proportionalities do not change.

In many cases an artist desires that particular folds should consistently appear in a character’s

clothing to define their look. Even the best tailoring may not do this when the character is in

motion, and one tool in cloth simulation that can overcome this is sculpting folds directly into the

garment. We can straightforwardly model this with non-zero rest angles. Other manifolds such as

skin, skin-tight synthetic suits, molded rubber, etc. also naturally have non-flat resting positions.

To account for these we use

F e
i = ke |E|2

|N1|+ |N2|
(sin (θ/2)− sin (θ0/2))ui,

for i = 1, . . . , 4 where θ0 is the rest angle. Nonzero rest angles are also useful in other areas: e.g. [71]

derived essentially the same bending model as a lightweight alternative to shells for simulating stiff

curved materials such as hats and creased paper, [34] used nonzero rest angles to model curly hair

styles, and [124] designed “angular springs” to aid in volume preservation of muscle tissue. Figures

1.3 and 1.4 show examples of nonzero rest angles with widely different bending stiffnesses.

4Some may argue that in reality, in-plane and bending deformations are subtly coupled, but the exact nature of
this coupling varies between materials and is not understood for even the simplest fabrics, thus it is wisest to avoid
adding arbitrary and artificial coupling.

5Thanks go to David Baraff for helping us arrive at the correct force scaling which gives convergence in the mesh
refinement limit.
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Figure 1.3: Nonzero rest angles allow pre-sculpted folds, as in this “cloth” Buddha collapsing under
its own weight.
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The damping component of the bending forces depends on the rate of change of the dihedral angle

and acts to slow it down. Taking the time derivative of cos θ = n̂1 · n̂2 we find after simplification

that

dθ/dt = u1 · v1 + u2 · v2 + u3 · v3 + u4 · v4.

Parenthetically, this is essentially an alternative derivation of the bending mode u, i.e. it is the

gradient (the steepest ascent direction) of the dihedral angle. Then the damping bending forces are

F d
i = −kd|E|(dθ/dt)ui,

where we again include a mesh scaling factor |E| so that kd is a material property and may be

kept constant as the mesh is refined, possibly anisotropically. This can be rewritten as F d =

−kd|E|(u⊗ u)v, showing that the damping forces are linear in the velocities and have a symmetric

negative semi-definite Jacobian matrix that allows efficient linear solves (with conjugate gradients, for

example) for implicitly integrating the velocities. Again, while a more complex non-linear function of

dθ/dt may be used for the force magnitude (any such function will preserve symmetry), a model that

uses a combination of the velocities other than
∑

i ui · vi or generates forces in different directions

is not correct: such a model is damping motion other than bending.

We also note that in all these formulas, for extra efficiency the factors such as |E|, |N1|, etc. can

be kept constant from their rest pose values, and thus precomputed. For small amounts of in-plane

stretching, the difference is not large, and it is not clear which approach is better (again, since the

real physics are poorly understood and the models are crude).

An alternative approach to bending that some authors have taken (e.g. [166, 17, 71]) is to define

bending forces as the variational derivative of a potential that is approximately proportional to

the integral of mean curvature squared. In particular, [17, 71] did this by looking at the dihedral

angles between adjacent triangles. The formula in the first paper isn’t quite correct (i.e. it does not

converge to the correct integral when the mesh is refined toward some smooth limit geometry), but

should be:

Ebend = ke
∑ |E|2

|N1|+ |N2|
θ2

where the sum is over all interior edges of the mesh, and E, N1, N2, and θ are defined as above. This

formula can easily be verified for the simple case of regular meshes wrapped around cylinders. An

alternative derivation of this formula can be found in [71]. Note that for small angles θ ≈ sin(θ) and

that as a mesh is refined toward a smooth limit surface the angles between adjacent triangle normals

do approach zero. Also, since ui = ∂θ/∂xi as mentioned above, taking the variational derivative of

Ebend does result in elastic forces very close to the ones we propose above. That being said, the

direct “modal analysis” approach is in some ways preferable: it is simpler to modify the resistance

(just directly replace sin(θ/2) with the desired function of θ) and it is simpler to understand how

modifications will change the dynamics. In addition, the authors of [17] found that the variational
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Figure 1.4: The “cloth” Buddha with significantly stronger bending springs that dominate all other
forces, illustrating that our formulation is well behaved in the stiff limit, robust across a wide range
of materials.
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derivatives are tricky enough that approximations (assuming some terms are constant) were used,

and the authors of [71] resorted to automatic differentiation to evaluate forces.

1.5 Time Integration

At this point, the thesis has presented the details of force computations and a strain (-rate) limiting

post-processing method. In order to actually simulate the motion of a piece of cloth, however, a

scheme for integrating Newton’s equation of motion F = ma forward in time is required.

In [28] we argue that a mixed explicit/implicit scheme is highly effective for cloth simulation. The

motivation is to combine the flexibility and simplicity of explicit methods (such as Runge-Kutta)

with the efficiency of implicit schemes (such as backward Euler). In particular, we go explicit on

the elastic forces (those that are independent of velocity) and implicit on the damping forces (the

velocity-dependent forces). The algorithm is presented below, with x denoting positions, v velocities,

and a accelerations (from Newton’s law F = ma):

• vn+1/2 = vn + ∆t
2 a(t

n, xn, vn) (explicit update)

• Modify vn+1/2 to get ṽn+1/2 to limit strain, etc.

• xn+1 = xn + ∆tṽn+1/2 (explicit update)

• vn+1 = vn+1/2 + ∆t
2 a(t

n+1, xn+1, vn+1) (implicit solve)

• Modify vn+1 in place to limit strain, etc.

This corresponds to the central Newmark scheme (see e.g. [86]). Essentially we are combining the

explicit second order accurate leapfrog scheme for the position update with an implicit second order

accurate trapezoidal rule for the velocity update (decomposed here into a half step with forward

Euler and a half step with backward Euler; substitute the definition of vn+1/2 into the implicit step

to see the standard form of trapezoidal rule). The combination is a second order accurate method

that is stable for ∆t < O(
√
ρ/ke∆x) where ρ is the density, ke is the material stiffness, and ∆x is

the smallest edge length of the mesh, completely independent of how large the damping forces are.

This is a critical point, since a fully explicit scheme like Runge-Kutta has a much more stringent

quadratic time step restriction dependent on the damping forces, ∆t < O(ρ/kd∆x2) where kd is

the material damping parameter. The extra factor of ∆x means an order of magnitude more steps

are required for such a scheme. On the other hand, using much larger time steps with an implicit

scheme as in [17] introduces significant artificial damping, which only recently was mitigated by the

carefully tailored bending model in [39]: we do not need this fix, but instead are free to use the more

sophisticated bending model presented above.

An additional advantage of only going implicit on velocities is that while the forces in cloth

simulation are typically nonlinear and depend on positions in a complicated manner, the damping
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forces are often linear in the velocities with a symmetric Jacobian. This means we can use a fast

conjugate gradient solver without need for simplifying approximations such as those made in [17].

The use of an explicit update for position allows us to modify the velocities very simply to enforce

a wide variety of constraints, and further allows the strain limiting procedure discussed above. We

are careful, however, to avoid performing the strain limiting procedure in the middle of a trapezoidal

rule (i.e. we do the backward Euler half-step starting from the unmodified results of the forward

Euler half-step), to avoid disturbing accuracy and stability.

We note that for highly damped materials that while the above algorithm is stable it is not

“monotone”. That is, spurious oscillations may be introduced, because the first explicit half step of

the velocity (following which the position is updated) overshoots, and then is damped back down to

stability by the implicit half step.6 This effect can be minimized by simply switching the order of

the velocity steps, using the fact that backward Euler is unconditionally monotone:

• vn+1/2 = vn + ∆t
2 a(t

n, xn, vn+1/2) (implicit solve)

• Modify vn+1/2 in place to limit strain, etc.

• xn+1 = xn + ∆tvn+1/2 (explicit update)

• vn+1 = vn+1/2 + ∆t
2 a(t

n+1, xn+1, vn+1/2) (explicit update)

Note that the trapezoidal rule is used between vn−1/2 and vn+1/2, not vn and vn+1 as before,

thus we only get second order accuracy and stability independent of damping forces if the time step

∆t remains constant between time steps. If a variable time step is desired, as is usually the case, we

no longer have the trapezoidal rule and destroy both accuracy and stability. A better approach that

is preferable in the highly damped situation is to update the position with the implicit half step,

but then rewind and use the trapezoidal rule as in our first method:

• ṽn+1/2 = vn + ∆t
2 a(t

n, xn, vn+1/2) (implicit solve)

• Modify ṽn+1/2 in place to limit strain, etc.

• xn+1 = xn + ∆tṽn+1/2 (explicit update)

• vn+1/2 = vn + ∆t
2 a(t

n, xn, vn) (explicit update)

• vn+1 = vn+1/2 + ∆t
2 a(t

n+1, xn+1, vn+1) (implicit solve)

• Modify vn+1 in place to limit strain, etc.

This allows variable step sizes with second order accuracy and monotone behavior at the small

expense of an additional implicit solve. To summarize: we use the first method by default, but

switch to this last method for highly damped materials.

6Even fully implicit methods suffer from these oscillations when second order or higher accuracy is required, e.g.
the BDF2 method used in [39]. Essentially all implicit methods with higher order than backward Euler consist of an
explicit partial step or partial extrapolation, which will overshoot if the explicit time step restriction is not obeyed,
followed by a backward Euler step for the “rest” of the time step, which damps any stability problems.



Chapter 2

Contact and Collision for Cloth

The main bottleneck in cloth simulation is typically the contact/collision resolution. This can be

divided into object collision (cloth versus other objects) and self-collision (cloth versus itself).

Object collision is in many respects the simpler problem, at least for adequately smooth and thick

objects. Small penetrations of the cloth with the object are usually acceptable during simulation

since they can easily be prevented from going too deep, and can simply be fixed on a frame-by-frame

basis in parallel during rendering.

For self-collision there are two problems that must be tackled. One is simply the size of the

problem: since cloth is so flexible and since every element of the mesh is on the surface, huge

numbers of contacts or collisions are expected in common folding situations. Naive algorithms

such as resolving collisions in chronological order with an event queue will simply grind to a halt.

The other problem is low tolerance: since the cloth thickness is not modeled in the geometry,

any unresolved contact or collision results in cloth self-intersecting and poking out the other side.

Such self-intersections tend to get caught, tangling the cloth wholly unphysically and destroying

plausibility. Figure 2.1 illustrates the potential complexity of self-collision, in a simulation with

the algorithm presented below. Briefly put, this algorithm combines fast and accurate (but not

robust) repulsion forces with robust (but slower and less accurate) geometric methods, exploiting

the complementary strengths of both approaches.

Most citations to previous work in collisions will be made in context. However, as a general

overview of the main sources for this research, see Terzopoulos et al.[166] who used penalty methods

for deformable bodies, Provot[140] who took an alternate and more robust geometric approach for

cloth, Baraff[9, 10, 11, 12, 13] who carried out a detailed study of numerical methods for rigid body

motion with contact and friction in a series of papers, and Mirtich and Canny[118] who showed that

one could use just impulses even for resting contact in a micro-collision framework.

15
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Figure 2.1: Initially, a curtain is draped over a ball on the ground. The ball moves, flipping the
curtain over on top of itself producing stable folds and wrinkles using our static friction model.
Another ball enters the scene and pushes through the complicated structure of folds before slipping
underneath unraveling the curtain.
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2.1 Collision with Objects

Our first assumption is that the other objects in the simulation are sufficiently massive relative to

the cloth that the cloth will not affect their motion. This is often the case in computer animation

produced in layers, where skeletons are animated first, flesh and skin are added on top driven by

the skeleton, and clothes come last.

We further restrict attention to thick and smooth objects (relative to the sampling density of

the cloth mesh). These are very well represented by level sets (see e.g. [131]), that is, as the implicit

zero isocontour of a signed distance function discretely sampled on a grid. While the signed distance

functions for simple geometry such as planes and spheres are straightforward analytic expressions, in

general one approximates signed distance with a numerical method. The fast marching method[171,

151] is an efficient O(N logN) first-order accurate method (where N = n3 is the number of points in

the three-dimensional grid). An alternative that runs in linear time is the fast sweeping method[170].

Signed distance functions can also be directly sculpted or modeled [136, 122, 44] or obtained from

range images [43, 185, 45]. When collision objects are required at times in between precomputed

level sets, it is simple to interpolate the necessary information as was done for motion blur in [57].

Other methods exist as well, for example rasterizing the time swept surface [149].

We also make use of object velocities in our method (see below). For deformable bodies, we

map the local velocity of the object to the points interior to the object, and then use a velocity

extrapolation method [2] to extend the velocities to the grid points outside the object as well (see

also [57] where this method was used to define water velocities in the air region). Note that this

does not need to be done for rigid bodies since their pointwise velocities are intrinsically defined

throughout space by their translational and rotational components.

Essentially our algorithm detects any cloth nodes that penetrate collision objects and applies

impulses to push them to the surface. Although [53] pointed out that merely checking the points of

one object inside the other is not sufficient to catch all collisions—more complex tests may be needed

especially when the sample points do not adequately resolve the object—we make the assumption

that we do in fact have adequate resolution.

Consider a collision between a point on our cloth p moving with velocity vp and the level set

collision object. At the spatial location of p, we use the level set value φ, the outward pointing

normal N = ∇φ, and the velocity of the level set collision object v at that point. We compute the

distance p must travel along N to resolve the future interference of the point with the object. Thus

we anticipate collisions, similar to the suggestion in [67]. During a time step ∆t, we predict that our

point will move to the

φnew = φ+4t(vp − v) ·N

isocontour where the second term accounts for the relative motion between the point and the collision

object in the normal direction. If φnew is positive, the point will end up outside the level set and
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nothing needs to be done, but otherwise we need to process a collision. First, we calculate the

normal and tangential velocities for both the point and the level set, e.g.:

vN = v ·N

vT = v − vNN.

We update both the normal and tangential components to obtain vnew
p = vnew

p,N N + vnew
p,T following

the collision. The new normal velocity is calculated as

vnew
p,N = vp,N − φnew/∆t

which predicts the point to lie exactly on the zero isocontour after time ∆t. Friction is incorporated

into the relative tangential velocity update, vT,rel = vp,T − vT using the formula established below

in section 2.7,

vnew
T,rel = max

(
0, 1− µ

vnew
p,N − vp,N

|vT,rel|

)
vT,rel

where µ is the friction coefficient. This formula includes both the static and kinetic friction cases,

and in particular, exactly enforces zero relative tangential velocity for static friction, which is critical

in stably maintaining wrinkles on surfaces (methods that allow small slippage tend to let wrinkles

dissipate, degrading realism). The final post-collision velocity is

vnew
p,T = vT + vnew

T,rel.

The examples in figures 2.1 and 2.3 demonstrate this algorithm.

Thin but smooth objects cannot be handled in this fashion, and should be dealt with like cloth

self-collision, discussed in the rest of this chapter. With just this point sampling approach, cloth

nodes can erroneously pop through to the other side of the object. With the self-collision algorithm

discussed below appropriately adapted to include static objects, we can guarantee that this won’t

happen. The example shown in figure 2.2 demonstrates this.

However, this still isn’t sufficient for sharp objects. Even with the robust algorithm adapted

from our self collision procedure, problems are apparent: cloth snags unnaturally on sharp points,

far beyond the natural snagging one sees in real-life. By ensuring that the triangle mesh cannot

intersect the object, but otherwise not constraining their interaction, one quickly ends up with the

sharp point next to a node of the cloth mesh. In order for an incident triangle in the cloth to

slide past the sharp point, sufficient torque must be applied at the point of contact to rotate the

triangle—but the point of contact naturally ends up at nearly the least efficient spot for leverage.

Thus immense force is required, far more than should be in reality. Visually it appears as if the

cloth has snagged or if the friction coefficient is unrealistically high.
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This problem hasn’t been solved yet, but I will make suggestions for possible solutions. The

obvious idea to resolve the problem is to relax the rigidity of the triangles and instead use higher

order elements that can curve such as subdivision surfaces—however, this complicates robust collision

detection considerably. Using curved elements might only reduce the problem, anyhow, as there is

still fundamentally a mismatch between the length scale of the cloth mesh and the length scale of the

sharp point. The simulated cloth simply cannot reliably represent folds with that high curvature,

and so will strongly resist attempts to get those folds. A useful intuition that will reappear in

chapter 5 is to think of the discretized cloth as a real continuum with a set of artificial constraints

that reduce its possible configurations to a finite dimensional space. In this case, it may be that the

forces trying to drag the cloth around the sharp point will end up fighting these artificial, infinitely

strong constraints more than the actual physical elastic resistance of the cloth, because they operate

on different length scales.

A more complex approach is to use an Arbitrary Lagrangian-Eulerian (ALE) method[80], de-

coupling the rigid triangle geometry from the cloth material to some extent. The cloth material

could then slide through the mesh, around the sharp point, without needing to rotate triangles. In

addition to additional complexity (and the need for more advanced continuum models than masses

and springs) this may transfer the problem from snagging to mesh tangling, however.

A better idea would be to try to regularize the sharp point in some sense. It may not be possible

to actually round off the tip (as was actually done in figure 2.2). An alternate approach is to

distribute the repulsion forces or collision impulses to an area of the cloth around the tip, not just

to the triangle in contact, virtually rounding off the tip in a sense. Torque will no longer be applied

at a single point.

The rest of this chapter concentrates on self-collision.

2.2 A Collision Resolution Pipeline

For the more difficult problem of self-collision, I propose combining existing ideas (namely, repulsion

forces, collision impulses, and rigid impact zones) in a collision resolution pipeline. After determining

a candidate new state for the cloth based on internal dynamics, we process the implied trajectory

through a series of stages in a pipeline, each stage detecting and handling some of the collisions.

This notion of a pipeline allows for efficient and robust simulation with plausible results. The

first stages in the pipeline deal with simple collisions: they are inexpensive to detect and handle,

and in the absence of complications the collision response is very accurate. The later stages deal

with the remaining complex collisions, with algorithms that are more expensive and may give less

accurate (but stable) results.

We expect high efficiency since most collisions are simple, and thus are handled inexpensively at

the start of the pipeline. The later stages may be more expensive per collision, but will only need to
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Figure 2.2: A tablecloth draped over table legs with no tabletop is dragged to the ground by a
descending sphere.
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deal with the few isolated problems that remain. In fact, typically the later stages do nothing more

than quickly verify that the earlier stages handled everything. Furthermore, even when complicated

collision scenarios arise that need to be dealt with in the later stages, once they have been resolved

in one time step (and their colliding motions interrupted) they become simple and later time steps

can resolve them in the first stages of the pipeline.

This pipeline also promotes robustness, since the later stages of the pipeline can afford to be

very careful about not missing collisions, and can tolerate larger errors in collision resolution (e.g.

overly damping relative motion) in the interests of robustness.

The final argument for the pipeline framework is that it nicely corresponds to an audience’s

sense of plausibility. Humans are relatively good at detecting errors in physics for simple situations

(where we employ accurate collision response at the start of the pipeline), but in complex situations

where it may be impossible to see much of the detailed interaction and where the collision problem is

probably ill-posed or even chaotic to begin with, audiences may accept far less accurate simulations

as long as there are no gross violations of the laws of physics.

The same general framework works in other situations apart from cloth self-collision. For exam-

ple, [76] uses it for rigid body simulation; I will discuss this in a later chapter.

One can interpret the algorithm of [140] as a two-stage pipeline: pairwise impulse dynamics

followed by rigid “impact zones”. Our later paper [27] added the missing first stage that makes it

efficient and accurate: repulsion forces. The rest of this chapter details this complete pipeline.

2.3 Time Integration

We cleanly separate the time evolution of the internal cloth dynamics (and the environment around

the cloth) from the collision processing algorithm. This allows us to easily integrate our collision,

contact and friction processing algorithms with a pre-existing cloth dynamics engine. Starting at

time t = 0 with cloth positions x0 and velocities v0, the algorithm is as follows. For n = 0, 1, 2, . . .

• Select a collision time step size ∆t and set tn+1 = tn + ∆t

• Advance to candidate positions x̄n+1 and velocities v̄n+1 at time tn+1 with internal dynamics

• Compute the average velocity v̄n+1/2 = (x̄n+1 − xn)/∆t

• Check xn for proximity (section 2.4), then apply repulsion impulses (section 2.6) and friction

(section 2.7) to the average velocity to get ṽn+1/2

• Check linear trajectories from xn with ṽn+1/2 for collisions (section 2.4), resolving them with

a final mid-step velocity vn+1/2 (sections 2.8 and 2.9)

• Compute the final positions xn+1 = xn + ∆tvn+1/2

• If there were no repulsions or collisions, set vn+1 = v̄n+1

• Otherwise, advance vn+1/2 to vn+1 and limit the strain rate (section 1.3).
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When repulsions or collisions appear, our method for determining the final velocities is similar to

the one used for the internal dynamics in the previous chapter. (Note, however, that any reasonable

algorithm could be used for internal dynamics in the first line of the algorithm, e.g. one large implicit

time step as in [17] or many small explicit Runge-Kutta steps).

The algorithm is stable for any collision time step ∆t, thus ∆t can be chosen adaptively in

a straightforward manner. For example, we choose a minimum ∆t as the time step of the cloth

dynamics evolution and a maximum ∆t on the order of one frame, and start with the maximum.

We halve the time step when an actual collision occurs, i.e. the repulsion forces aren’t adequate, and

try the time step over again only doing the full collision processing at the minimum ∆t. Whenever

we get three successful time steps in a row we double ∆t again. Adaptive time stepping was also

addressed in [17]. Recent experiments indicate that this probably isn’t necessary, and fixing ∆t to

allow eight steps per frame is adequate for most animation.

When there are repulsions or collisions, we need to update the velocity from vn+1/2 to vn+1. For

central differencing we need to solve the implicit equation

vn+1 = vn+1/2 + ∆t
2 a(t

n+1, xn+1, vn+1)

In many cloth models, such as ours, the damping forces (hence accelerations) are linear in the
velocities giving the linear system

(I − ∆t
2

∂a
∂v )vn+1 = vn+1/2 + ∆t

2 ae(tn+1, xn+1).

Here ∂a/∂v is the Jacobian matrix of accelerations with respect to velocities, and ae(t, x) is the
elastic component of acceleration, i.e. everything apart from damping. In any reasonable cloth

model this matrix will be symmetric positive definite (or can be safely made so, see [17]) after

multiplying both sides by the mass matrix, i.e. converting velocities into momenta and accelerations

into forces. Then the conjugate gradient algorithm can be used to solve for vn+1. For nonlinear

damping Newton’s method can be used requiring similar linear solves.

It was observed in [51] that implicit updates such as this last velocity step can be interpreted

as a smoothing filter. The additional strain rate limiting from section 1.3 further smooths out any

excessive jumps (as a nonlinear filter). This is especially useful here, since collision processing may

introduce discontinuities in the cloth’s velocity field which left untouched may cause excessive strain

rates, leading to visual artifacts and additional unwanted collisions in subsequent time steps that

slow the simulation down. Another benefit of the final velocity update step is that when one node

collides and impulsively changes its velocity so that it is out of sync with surrounding nodes, the

velocity update puts the nodes back in sync reducing the relative velocity of surrounding nodes,

even though they have not yet been involved in a collision. This again reduces unnecessary stress

on the cloth and also increases the likelihood that repulsion forces will stop the surrounding nodes

before they actually collide, reducing the number of collisions that have to be handled.
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2.4 Proximity and Colliding Trajectory Detection

To accelerate the detection of proximities for repulsions and of intersections for collisions, we use

an axis-aligned bounding box hierarchy. For more details on hierarchical methods and bounding

volume hierarchies, see [77, 182, 18, 70, 102]. Further pruning of unnecessary tests between adjacent

patches in low curvature regions of cloth is possible, at least for static proximity tests, see [177, 176];

we have not used this optimization.

Our box hierarchy is built bottom-up once at the beginning of the simulation using the topology

of the cloth mesh. In one sweep we greedily pair off adjacent triangles to get parent nodes, then in

a sweep in the opposite direction pair off these to get the next level up, and so on alternating sweep

directions until we are left with one root node. At each time step we calculate the extents of the

axis-aligned boxes for the repulsion calculation (section 2.6) by taking a box around each triangle

enlarged by the thickness of the cloth (e.g. 1mm), and then taking the union of the extents in each

axis direction as we move up the hierarchy. We also recalculate the hierarchy from the leaves up

for each iteration of the collision algorithm (section 2.8), taking a box around each triangle and its

candidate position at the end of the step, since we have to cover the path that the triangle takes

during the time step. We further enlarge the leaf boxes by some rounding error tolerance (e.g.

10−6m). In both cases, we get a set of candidates for interference by intersecting the box to be

tested with the root of the tree; only if it overlaps do we recursively check its children, proceeding

until we reach the leaves of the tree. The leaves we reach indicate on which triangles the actual

geometry tests need to be performed. These tests break down into checking points against triangular

faces and edges against other edges (naturally we don’t compare a point against the triangle that

contains it, or an edge against an edge that shares an endpoint).

In what follows we use the shorthand xij to mean xi − xj . To check if a point x4 is closer than

some thickness h to a triangle x1x2x3 with normal n̂ we first check if the point is close to the plane

containing the triangle: |x43 · n̂| < h. If so, we project the point onto the plane and compute the

barycentric coordinates w1, w2, w3 with respect to the triangle:[
x13 · x13 x13 · x23

x13 · x23 x23 · x23

] [
w1

w2

]
=

[
x13 · x43

x23 · x43

]

w1 + w2 + w3 = 1.

These are the normal equations for the least-squares problem of finding the point w1x1+w2x2+w3x3

(in the plane) closest to x4. If the barycentric coordinates are all within the interval [−δ, 1 + δ] where

δ is h divided by a characteristic length of the triangle, the point is close.

To check if an edge x1x2 is close to another edge x3x4 we find the pair of points, one on each edge,

that are closest and check their distance. The search for the two closest points begins by checking

for the degenerate case of parallel edges, i.e. if |x21 × x43| is smaller than a round-off tolerance. If
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so, it reduces to a simple one-dimensional problem. Otherwise, we find the points on the infinite

lines that are closest via the normal equations:[
x21 · x21 −x21 · x43

−x21 · x43 x43 · x43

] [
a

b

]
=

[
x21 · x31

−x43 · x31

]
.

If these points are on the finite edges we are done, otherwise we clamp them to the endpoints. The

point that moved the most during clamping is guaranteed to be one part of the answer, and the

second point is found by projecting the first onto the second infinite line and clamping to the finite

edge. The direction pointing from one point to the other is saved as the “normal” vector. We also

save their relative positions along the edges, i.e. the weights 0 ≤ a, b ≤ 1 so that the points are

x1 + ax21 and x3 + bx43.

To detect a collision between a moving point and a moving triangle, or between two moving

edges, we first find the times at which the four points are coplanar assuming they move with constant

velocity over the collision time step as in [120, 140, 52]. The latter two showed this reduces to finding

the roots of a cubic equation,

(x21 + tv21)× (x31 + tv31) · (x41 + tv41) = 0.

Any roots outside of the interval [0,∆t] (slightly enlarged by a small round-off error tolerance, say

10−6) are discarded. The remaining roots are checked in increasing order with proximity tests at

time t. If the elements are closer than a small rounding error tolerance (10−6m for our simulations,

which is 1000 times smaller than the cloth thickness), we register a collision. We likewise check for

proximity at the end of the time step, t = ∆t, in case rounding errors hide a collision at the boundary

between two time steps. While earlier works neglected rounding error, our approach guarantees (if

collisions are resolved) that the cloth is separated by at least the rounding error tolerance at every

time step and never self-intersects during time steps.

2.5 Interpolating Within the Cloth

We often need to deal with two points from the cloth, computing their relative velocity or applying

an impulse to them. However, we cannot directly look up or alter the velocities of such points, and

instead must deal with the corners of the triangle or endpoints of the edges.

To compute the velocity of a point interior to a triangle or edge we use linear interpolation, which

is exact for affine deformations of the element (i.e. translation, rotation, and affine shearing and

scaling). In particular, if a point interior to a triangle x1x2x3 has barycentric coordinates w1, w2, w3

(calculated during proximity or collision detection) its interpolated velocity is w1v1 + w2v2 + w3v3,

and similarly if a point interior to an edge x1x2 is the fraction a along the edge then its interpolated
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velocity is (1 − a)v1 + av2. Note that we are finding the velocity of a specific piece of material

involved in a contact or collision, i.e. the weights wi or a are fixed so their time derivatives do not

appear.

If an impulse of magnitude I in direction n̂ needs to be applied to two points in the cloth (i.e. In̂ to

the first and −In̂ to the second), we instead apply impulses to the triangle corners or edge endpoints,

weighted by the barycentric coordinates, so that the desired change in relative (interpolated) velocity

for the two points is achieved. For the point-triangle case, where an interior point of triangle x1x2x3

with barycentric coordinates w1, w2, w3 is interacting with point x4, we compute adjusted impulses

Ĩ = 2I
1+w2

1+w2
2+w2

3

vnew
i = vi + wi(Ĩ/m)n̂ i = 1, 2, 3

vnew
4 = v4 − (Ĩ/m)n̂

assuming all nodes have mass m. For the edge-edge case where a point with relative position a

along the edge x1x2 interacts with a point with relative position b along the edge x3x4, the adjusted

impulses are

Ĩ = 2I
a2+(1−a)2+b2+(1−b)2

vnew
1 = v1 + (1− a)(Ĩ/m)n̂ vnew

2 = v2 + a(Ĩ/m)n̂

vnew
3 = v3 − (1− b)(Ĩ/m)n̂ vnew

4 = v4 − b(Ĩ/m)n̂.

Weighting the impulses in this way introduces appropriate torques for off-center interactions as well

as giving continuity across triangle boundaries, and converges to the expected formulas when the

interior points approach mesh nodes.

2.6 Repulsion Forces

Repulsion forces, also known as penalty forces, are a popular technique for collision resolution due to

their simplicity and apparent speed. However, if a simulation relies exclusively on them, robustness

may demand highly stiff forces that necessitate small time steps—and thus slow simulation times.

This may not always be an issue, for example [129, 128] were already limited to very small time steps

by the extremely stiff internal dynamics of the materials they simulated fracturing, but for cloth it

is a problem. In our pipeline we have a robust geometric algorithm as a back-up, and thus are free

to use weaker repulsion forces that don’t slow down the simulation. Furthermore, we can actually

exploit them as a modeling tool. By varying the spatial extent of the repulsion force field we can
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model the thickness of the cloth, and by varying the stiffness we can model the compressibility.

On the flip side, geometrically resolving the tens of thousands of collisions that can readily occur

in folding and contact situations would be prohibitively expensive. This is why repulsion forces

are mandatory. They significantly reduce the number of actual collisions usually eliminating them

altogether, making our collision pipeline efficient.

Our cloth is given a realistic thickness, e.g. 1mm, and repulsion forces are only applied between

pieces of cloth that have this close proximity. As discussed in section 2.4, we use an axis-aligned

bounding box hierarchy to make this proximity detection efficient. Proximity is determined for both

point-triangle pairs and edge-edge pairs. If a pair is close enough, then two kinds of repulsion forces

are applied. The first is based on an inelastic collision, and the second is a spring based force.

Baraff and Witkin[15, 16] discussed collision modeling for deformable bodies pointing out that

when a discretized rod collides with a wall, the endpoint of the rod should come impulsively to rest,

i.e. the endpoint is subject to a completely inelastic collision impulse. Subsequently the rod stores

energy in compression and then expands, separating from the wall. The loading and unloading of

the elastic rod models a completely elastic collision. They pointed out that inelasticity can only be

introduced by adding damping forces internal to the rod that dissipate energy due to the collision.

Other authors have used completely inelastic collisions as well, such as [51] and [32] (who used

completely inelastic collisions to remove the “kicks” generated by the repulsion springs of [99]).

We take a similar approach, modeling all cloth-cloth collisions and cloth-object collisions using an

identically zero restitution coefficient in Poisson’s hypothesis. The energy stored in deformations of

our mass-spring model when one of the nodes abruptly comes to rest against an object in its path

is released as the cloth restores itself, causing it to bounce. In fact, most real-world cloth-cloth and

cloth-object collisions are fairly inelastic, so even with a zero restitution coefficient one should take

care to monitor the energy stored within the cloth. We do this intrinsically by limiting the strain

rate as discussed in section 1.3.

Since our repulsion forces are meant to dramatically reduce the number of subsequent collisions,

we incorporate a completely inelastic collision into our repulsion force. Suppose two points in the

cloth, one inside a triangle and one a node of the mesh or both interior to mesh edges, are close and

have relative velocity vN in the normal direction which is less than zero, i.e. they are approaching each

other. (See section 2.5 above for details on interpolating velocities interior to triangles and edges,

and section 2.4 for details on the normal direction used in point-triangle and edge-edge interactions.)

To stop the imminent collision we apply an inelastic impulse of magnitude Ic = mvN/2 in the normal

direction. (See section 2.5 for how we distribute the impulse to the mesh nodes involved.)

Since our cloth model includes a realistic cloth thickness, we would like to ensure that pieces

of the cloth are well separated at a distance on the order of this cloth thickness. This helps cloth

to slide over itself (and objects) without the excessive snagging caused by the discretization errors

resulting from the representation of smooth surfaces with discrete triangles. When pieces of cloth are
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too close together, there is a compression of cloth fibers, and a second repulsion force is applied to

model this compression. The repulsion force is proportional to the overlap beyond the cloth thickness

h (e.g. 1mm). However, since our robust collision handling algorithm (see section 2.8) will stop

every intersection, our spring repulsion force is limited to a maximum when the objects touch, thus

avoiding problems with stiffness. Furthermore, we limit our repulsion force so that objects are never

propelled outside this overlap region in a single time step. This not only helps to reduce stiffness, but

allows cloth in contact to stay close enough together to feel repulsion forces in subsequent time steps.

This is important since the repulsion force magnitude is used to model friction, and thus friction

forces are also felt in future time steps producing stable folds and wrinkles that add to the visual

realism. Many other authors have used spring based repulsion forces, see e.g. [90, 110], but their

methods suffered from undue stiffness since an arbitrary amount of interpenetration was allowed to

occur. Again, this is alleviated in our model by the robust geometric collision algorithm that stops

interpenetration resulting in a bound on the magnitude of the spring based repulsion force.

The spring based repulsion force is modeled with a spring of stiffness k. As a simple heuristic,

we found that matching the stiffness of the stretch springs in the cloth gave good results—though

of course, this can be tuned to give a particular look of compressibility, e.g. to distinguish leather

from fluffy towels. The overlap is

d = h− (x4 − w1x1 − w2x2 − w3x3) · n̂

giving a spring force of kd in the direction n̂. Multiplying by ∆t gives the impulse. As discussed

above, we limit this so that the relative velocity change will reduce the overlap by at most some fixed

fraction (e.g. .1h) in one ∆t time step. If the normal component of relative velocity vN ≥ .1d/∆t

already we apply no repulsion, otherwise we compute the impulse magnitude

Ir = −min
(

∆tkd,m
(
.1d
∆t

− vN

))
and distribute it to the mesh nodes as explained in section 2.5.

2.7 Friction

We use Coulomb’s model for friction, both static and kinetic, with a single friction parameter µ. The

repulsion force FR from section 2.6 is the negative of the normal force FN pressing the cloth together.

Therefore a friction force, in the direction of the pre-friction relative tangential velocity vpre
T but

opposite to it, has magnitude at most µFN . This integrates to an impulse of magnitude µFN∆t in

the same direction, and thus a change in the relative tangential velocity of at most µFN∆t/m where

m is the mass (assumed equal for all particles involved). If this is larger than |vpre
T |, then either

the cloth was slipping and stopped due to kinetic friction, or was stuck and shouldn’t be allowed
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Figure 2.3: The friction between a rotating sphere and a piece of cloth draped over it creates a
complex structure of wrinkles and folds.
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to start slipping due to static friction. Either way the new relative tangential velocity should be

zero. If not, we can simply subtract this off the magnitude of the relative tangential velocity to

account for kinetic friction slowing down the slipping. This calculation can be simplified by noting

that FN∆t/m is just ∆vN , the change in relative velocity in the normal direction, which can be

directly calculated in the repulsion algorithm. Then the decrease in the magnitude of the relative

tangential velocity is min(µ∆vN , |vpre
T |), i.e. our final relative tangential velocity is

vT = max
(

1− µ
∆vN

|vpre
T |

, 0
)
vpre

T

We apply impulses to achieve this for both point-face proximities and edge-edge proximities. Figure

2.3 illustrates the use of this formula for object collisions as well (as mentioned in section 2.1).

2.8 Geometric Collisions

Repulsion forces alone cannot ensure that no interpenetrations will occur since positions are only

checked at discrete moments in time. For robust collision handling, the path of the cloth between

time steps must be considered as discussed in section 2.4.

Some authors back up simulations in time to treat collisions in chronological order, e.g. [77].

When a single time step may have thousands of collisions and contacts, as is characteristic of highly

deformable bodies like cloth, this would be too expensive. The problem was partially addressed for

rigid bodies by [116] who processed the rigid bodies in parallel using a timewarp algorithm to back

up just the objects that are involved in collisions while still evolving non-colliding objects forward

in time. This method works well except when there are a small number of contact groups which

unfortunately is the case for cloth as the entire piece of cloth has every node in contact with every

other node through the mass-spring network.

Instead of rewinding the simulation to process one collision at a time, we resolve them all si-

multaneously with an iterative procedure as did [176, 140, 113]. We also take this approach later

for rigid bodies in [76] (chapter 4). This does not give the same result as processing the collisions

in chronological order. However, there is enough uncertainty in the collision modeling and error

in the cloth discretization that we are already guaranteed to not get the exact physically correct

answer. Instead we will obtain a physically plausible solution, i.e. one of many possible physically

correct outcomes which may vary significantly with slight perturbations in initial conditions or the

inclusion of unmodeled phenomena such as interactions between fuzzy strands of cloth. More details

on sampling plausible solutions according to probability distributions reflecting a number of factors

can be found in [38] who addressed the related problem of multiple colliding rigid bodies.

As discussed in section 2.4, our geometric collision processing algorithm is activated either when

a collision actually occurs or when geometry (points and faces or edges and edges) is in (too) close
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proximity at the end of a time step. Thus, we need to account for both approaching and separating

objects when a “collision” is registered. If the geometry is approaching, we apply a completely

inelastic repulsion impulse. Otherwise, if the geometry is already separating (as may happen at the

end of the time step, i.e. a close call rather than a true collision), we apply a spring based repulsion

force. See section 2.6 for more details on both of these.

While processing all the collisions that occurred during a time step, we may have inadvertently

caused new secondary collisions to occur. In order to keep the cloth interference free, we must

analyze the newly computed post-collision path of the cloth for possible collisions and process these

as well. This means that the bounding box hierarchy needs to be adjusted to account for the

new post-collision velocities. Then secondary collisions can be detected and corrected, etc., and

the process continues until a final interference free state can be computed. Since relatively large

bounding boxes that contain the moving triangles need to be recomputed for every iteration, and a

cubic equation has to be solved for every possible collision, this may be expensive. Luckily, repulsion

forces tend to catch and treat almost all collisions making the iteration scheme here practical to apply

even for high velocity cloth with many nodes and a high degree of folding and contact. However,

there are still situations where many iterations are required, so after a few iterations we switch to

a failsafe method which quickly eliminates all collisions. We use the method proposed by [140], but

not followed through in the literature, possibly because the formulas proposed in [140] do not give

true rigid body motion. We give corrected versions below.

2.9 Rigid Impact Zones

Provot [140] proposed collecting the nodes involved in multiple collisions into “impact zones” which

are treated as rigid bodies. This is justified by observing that when cloth bunches together friction

will prevent most relative motion. After a few iterations of applying local impulses as outlined above,

we switch to the last stage in the pipeline, merging lists of colliding nodes representing impact zones.

Initially, each node in its own list. Then, when a point-face or edge-edge collision occurs, the lists

containing the four involved nodes are merged together into one larger impact zone. The impact

zones are grown until the cloth is collision free. The velocity of the nodes in the impact zone is

derived from a rigid body motion that preserves linear and angular momentum. The formula for

angular velocity given in [140] is flawed, so we present a corrected version here.

To find the rigid body motion we first compute the initial center of mass of the impact zone and

its average velocity

xCM =
∑

i
mxn

i∑
i
m
, vCM =

∑
i
mv

n+1/2
i∑

i
m
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then the angular momentum of the nodes with respect to their center of mass

L =
∑

i

m(xn
i − xCM )× (vn+1/2

i − vCM )

and the 3× 3 inertia tensor of the current configuration of nodes (using δ to represent the identity

tensor)

I =
∑

i

m
(
|xn

i − xCM |2δ − (xn
i − xCM )⊗ (xn

i − xCM )
)
.

The rigid body angular velocity that would preserve angular momentum is ω = I−1L, so the new

instantaneous velocity of node i is

vCM + ω × (xi − xCM )

Applied on its own, this impact zone method has a tendency to freeze the cloth into nonphysical

clumps. However, a combination of our repulsion forces and the initial collision impulses tend to

keep these impact zones small, isolated and infrequent. Moreover, once formed, they are short-lived

as the repulsion forces tend to quickly separate the offending nodes.

The key element of the impact zone idea is that self collision is impossible during rigid body

motion. However, this can be generalized: self collision is also impossible for general affine motions.

(Of course, motion under any nondegenerate continuous velocity field cannot cause self collision, but

will not in general preserve the piecewise linear geometry of the triangle mesh; in approximating the

motion by just moving the nodes of the mesh, self collision may be induced.) In fact, since we use a

forward Euler update and do not exactly move the cloth nodes in their rigid body motion calculated

above, we actually already introduce an error that is equivalent to some dilation proportional to the

rotation—but again, to underscore the point, self intersection is still impossible during this step.

However, we could take advantage of this property of general affine transformations. A possible

refinement of the impact zone idea that wouldn’t damp out quite as much kinetic energy is to

project the motion of the impact zone onto the space of affine transformations instead of just rigid

body transformations. This might be important in difficult simulations where bad freezing artifacts

become apparent with standard rigid impact zones.

To be precise about this projection, let u1, u2, . . . , uk be certain modes of allowed motion (uk
i is

the vector in R3 showing the motion of node i in mode k). For affine motions, k = 12. Let U be the

3n × k matrix with these modes as columns. If the original nodal velocities are similarly put into

a column vector v, we want a new set of velocities vnew in the span of U , i.e. vnew = Uα for some

vector α of k coefficients.

The change in motion will be achieved through some set of impulses p = M(vnew − v) where M

is the mass matrix (a diagonal 3n × 3n matrix with mi appearing three times along the diagonal

for node i). Similar to the modal analysis of bending presented earlier, we want to make sure that
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the impulses do not perturb the motion of the nodes in the selected modes U , and instead entirely

work in the modal space orthogonal to U . This will guarantee conservation of linear and angular

momentum (as U contains the translations and rotations respectively). This condition is simply

UT p = 0, or written out, UTM(Uα− v) = 0. The solution is

α = (UTMU)−1UTMv

whence the new velocities are given by

vnew = U(UTMU)−1UTMv

It can be easily verified that kinetic energy cannot increase with this operation. This is in fact

the calculation that is performed above using just the translations and rotations as the modes, but

taking advantage of orthogonality in the translations to reduce the matrix to be inverted to the 3×3

inertia tensor for just the rotations.



Chapter 3

Post-Processing Cloth

For visual purposes, surprisingly good cloth simulation results can be achieved on relatively coarse

meshes, i.e. ones on which the fine scale wrinkles and folds are just barely resolved. The key issue is

that these details must be qualitatively captured for a realistic look, but their motion doesn’t have

to be quantitatively very accurate to fool the eye. However, simply rendering the coarse meshes is

unacceptable: the jagged edges of the triangle mesh show up very clearly in the fine scale features.

For visually pleasing animations a smoother surface is desired. In this chapter I will describe a fast

and simple collision-aware subdivision algorithm I developed in [27] that generates such a surface

without introducing artifacts.

3.1 Related Work

Some authors have directly simulated smooth surfaces instead of simple triangle meshes. For ex-

ample, [168] used dynamic B-splines which allowed them to interactively refine the mesh in regions

of interest associating the control points with their dynamic simulation mesh nodes. They derived

a number of rules for when, where and how to refine, even detecting when mesh refinement would

cause intersection and then either stopping refinement or backing up the simulation in time to avoid

intersection. In [49] the convex hull properties of a subdivision surface model of cloth were exploited

to accelerate collision detection. Grinspun et al.[73] rigorously modeled thin manifolds with sub-

division surfaces detecting collisions with their derived bounds on surface normals and refining the

mesh as required to resolve them.

The fast simulation of [92] partly recovered details lost when using coarse meshes by modulating

a cubic spline interpolant (in post-processing) with sinusoids wherever springs were compressed.

This added interesting wrinkles and helped to preserve cloth area, enforcing buckling folds instead

of actual compression.

Another motivation for our post-processing is found in [85] who addressed cloth collisions with

33
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volumetric objects. They ensured that cloth nodes remained outside the objects making the collision-

handling algorithm faster and simpler, but allowed edge and face collisions with the objects. These

were handled in a post-processing step before rendering where they added nonactive points and

adjusted their positions to eliminate intersections. Additional processing attempted to preserve

area, though we have not found this to be an issue worth addressing.

In [14] Baraff suggested “first-order physics” to post-process rigid body positions to eliminate

interpenetrations, that is adjusting positions without altering velocities etc. or otherwise disturbing

the simulation. Our paper [28] made use of a similar strategy since during the simulation we only

push cloth nodes to the surface of level set collision objects without actually guaranteeing they do in

fact get to the surface, and definitely not doing anything about cloth triangles possible intersecting

objects. (However, as mentioned in the previous chapter, in the special case of dealing with thin

objects we instead use an object collision algorithm based on our self-collision algorithm which

robustly guarantees cloth triangles will not intersect objects.)

We identified another potential problem related to post-processing cloth-object collisions in [28],

namely that often simulations generate attractive wrinkling that slightly intersects objects. Pushing

the cloth geometry to the smooth level set surfaces eliminates these wrinkles, significantly reducing

the realism of the animation. This was fixed by monotonically mapping penetrating nodes to a

narrow band outside the level set instead, preserving relative depths.

Once object collisions with the cloth mesh have been satisfactorily dealt with, the problem still

remains of how to pass a smooth limit surface through the simulated nodes.

3.2 Collision-Aware Subdivision

Our post-processing scheme takes the existing intersection-free simulation data and produces a finer,

more detailed and smoother approximation to the manifold. Each frame is processed independently

after simulation, so refinement need not be considered at all in the simulation code and in partic-

ular doesn’t need to be done for all the intermediate time steps. This of course permits simple

parallelization.

The algorithm proceeds as follows. If we allowed intersection with objects in the simulation,

we begin by adjusting the cloth positions in the given frame to eliminate them, iterating back and

forth with an adjustment to eliminate cloth-cloth intersections that those adjustments may have

caused. We use the repulsions and collision impulses discussed earlier. When this is finished, our

original mesh is intersection-free even accounting for rounding error. We then subdivide the mesh

putting a new node at the midpoint of each edge. Since the original mesh was intersection-free and

the subdivided mesh lies exactly within the original mesh, the subdivided mesh is guaranteed to be

intersection-free as well.

Next we use the modified Loop subdivision scheme [107] to find smoother positions for all the
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nodes of the subdivided mesh. Unfortunately, moving to these smoothed positions may create

intersections despite the convex hull property. However, we can view the vector from a node’s

original position to its smoothed position as a pseudo-velocity and apply our collision detection

algorithms to determine when the intersection would occur. We stop the nodes at that point (or

just before that point to avoid difficulties with rounding error) as if they had inelastically collided.

We of course need to check again to see if these adjustments to the smoothed positions caused new

intersections. Typically only a few iterations are required to eliminate all intersections especially

since the convex-hull property of the subdivision means intersections are unlikely in the first place. A

solution is guaranteed to exist, since the new nodes can simply be left in the positions in which they

were created. Once we have a smoothed but intersection-free subdivided mesh, we can subdivide

again continuing until the desired resolution is reached.

Since the cloth is originally separated by a finite distance, but each step of subdivision smoothing

moves the nodes exponentially less and less, we very quickly find no more adjustments need to be

made. In particular, we halve the minimum separation distance at each subdivision step, while the

distances to the smoothed positions in the Loop scheme tend to decrease to a quarter. Thus in short

order no more intersections are possible and regular subdivision can be used (if such resolution is

needed).

This post-processing technique is not a cure for simulations that were too coarse. If the mesh

was under-resolved, visual “popping” artifacts may be apparent since each frame is processed inde-

pendently: there may not be enough temporal coherence in the coarse mesh. However, in all the

simulations we have run, this has not been the case.
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Chapter 4

Contact and Collision for Rigid

Bodies

The ideas presented in previous chapters on cloth simulation can be generalized to other domains.

While rigid body simulation is not the focus of this thesis, it is instructive to see how the idea of a

collision resolution pipeline and a post-processing treatment of friction can be carried over to rigid

bodies. This chapter presents a self-contained preprint of our paper [76] that followed this approach.

Repulsion forces turned out to not be as useful in this context, since they make large stacks

of objects somewhat “squishy”, allowing continued gradual slipping instead of a sharp termination

of motion, and thus they were eliminated from the collision resolution pipeline. While the rigid

impact zone idea appears to be useful for free-fall simulations (without a fixed ground), for standard

situations it results in unrealistic frozen stacks that should in reality topple, thus a different final

stage for the pipeline was chosen: our contact graph/shock propagation algorithm still allows global

contact information transfer, but now in one direction only, from the ground up. The treatment

of friction needed to be extended to handle angular motion, and rolling and spinning friction on

top of sliding friction. Finding a good way to model rolling and spinning friction is still very much

an open problem, but the current approach gives acceptable results for spheres at least. Another

important new contribution is an improved time integration for rigid bodies that cleanly separates

collision from contact and makes ad hoc velocity thresholds unnecessary in an impulse-based (i.e.

micro-collision) algorithm. Finally, a dual explicit/implicit representation of geometry (polygonal

mesh plus level set) allows very efficient calculations even with complicated nonconvex objects.

37



38 CHAPTER 4. CONTACT AND COLLISION FOR RIGID BODIES

Figure 4.1: 1000 nonconvex rings (with friction) settling after being dropped onto a set of 25 poles.
Each ring is made up of 320 triangles, and each pole is made up of 880 triangles.

4.1 Introduction

Dynamic volumetric objects are pervasive in everyday life, and the ability to numerically simu-

late their behavior is important to a number of industries and applications including feature films,

computer games and the automobile industry. One can differentiate between highly deformable

volumetric objects and those where the deformation is either negligible or unimportant, and in the

latter case efficiency concerns usually lead to rigid body approximations. Although there are certain

areas such as articulated figures, see e.g. [97], where the rigid body approximation is regularly used

to remove the need for more expensive deformable models, there are other areas such as brittle

fracture, see e.g. [129, 121], where the rigid body approximation could be useful (especially for small

fragments) and has not yet been aggressively pursued.

[35] notes the weakness of the rigid body approximation to solids and discusses some known

flaws in state of the art collision models. Moreover, they discuss some common misconceptions

mentioning for example that the coefficient of restitution can be greater than one in frictional

collisions. [156] emphasizes the difficulties with nonunique solutions pointing out that it is often

impossible to predict which solution occurs in practice since it depends on unavailable details such as

material microstructure. He states that one should repeat the calculations with random disturbances

to characterize the potential set of solutions. [19] exploited this indeterminacy by adding random

texture and structured perturbations to enrich and control the motion respectively. The goal of rigid

body simulation then becomes the construction of plausible motion instead of predictive motion.
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While the physicist strives toward synthesizing a family of solutions that are predictive in the sense

that they statistically represent experimental data, the interest in graphics is more likely to focus

on obtaining a particularly appealing solution from the set of plausible outcomes, e.g. see [38, 138].

With this in mind, we focus on the plausible simulation of nonconvex rigid bodies emphasizing

large scale problems with many frictional interactions. Although we start with a triangulated surface

representation of the geometry, we also construct a signed distance function defined on a background

grid (in the object frame) enabling the use of fast inside/outside tests. The signed distance function

also conveniently provides a normal direction at points on and near the surface of the object. We

take a closer look at the usual sequence of simulation steps—time integration, collision detection and

modeling, contact resolution—and propose a novel approach that more cleanly separates collision

from contact by merging both algorithms more tightly with the time integration scheme. This

removes the need for ad hoc threshold velocities used by many authors to alleviate errors in the

contact and collision algorithms, and correctly models difficult frictional effects without requiring

microcollision approximations [117, 118] (which also use an ad hoc velocity). We also introduce

a novel algorithm that increases the efficiency of the propagation method for contact resolution.

The efficiency and robustness of our approach is illustrated with a number of simple and complex

examples including frictional interactions and large contact groups as is typical in stacking.

4.2 Previous Work

[77] considered rigid body collisions by processing the collisions chronologically backing the rigid

bodies up to the time of impact. [116] used a timewarp algorithm to back up just the objects that

are involved in collisions while still evolving non-colliding objects forward in time. This method

works well except when there are a large number of bodies in contact groups, which is the case

we are concerned with in this paper. [77] processed collisions with static friction if the result

was in the friction cone, and otherwise used kinetic friction. If the approach velocity was smaller

than a threshold, the objects were assumed to be in contact and the same equations were applied

approximating continuous contact with a series of “instantaneous contacts”. [120] instead proposed

the use of repulsion forces for contact only using the exact impulse-based treatment for high velocity

collisions.

[9] proposed a method for analytically calculating non-colliding contact forces between polygonal

objects obtaining an NP-hard quadratic programming problem which was solved using a heuristic

approach. He also points out that these ideas could be useful in collision propagation problems

such as one billiard ball hitting a number of others (that are lined up) or objects falling in a stack.

[10] extended these concepts to curved surfaces. [11] advocated finding either a valid set of contact

forces or a valid set of contact impulses stressing that the usual preference of the latter only when

the former does not exist may be misplaced. For more details, see [12]. [13] proposed a simpler,
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faster and more robust algorithm for solving these types of problems without the use of numerical

optimization software.

[22] discussed the nonlinear differential equations that need to be numerically integrated to

analyze the behavior of three-dimensional frictional rigid body impact and pointed out that the

problem becomes ill-conditioned at the sticking point. Then they use analysis to enumerate all

the possible post-sticking scenarios and discuss the factors that determine a specific result. [118]

integrated these same nonlinear differential equations to model both contact and collision proposing

a unified model (as did [77]). They use the velocity an object at rest will obtain by falling through the

collision envelope (or some threshold in [117]) to identify the contact case and apply a microcollision

model that reverses the relative velocity as long as the required impulse lies in the friction cone.

This solves the problem of blocks erroneously sliding down inclined planes due to impulse trains

that cause them to spend time in a ballistic phase.

Implicitly defined surfaces were used for collision modeling by [166] to create repulsive force fields

around objects and [135, 150] who exploited fast inside/outside tests. We use a particular implicit

surface approach defining a signed distance function on an underlying grid. Grid-based distance

functions have been gaining popularity, see e.g. [58, 79] who used them to treat collision between

deformable bodies, and [94] who used them to keep hair from interpenetrating the head. Although

[67] pointed out potential difficulties with spurious minima in concave regions, we have not noticed

any adverse effects, most likely because we do not use repulsion forces.

[112] used position based physics to simulate the stacking of convex objects and discussed ways

of making the simulations appear more physically realistic. [113] considered stacking with standard

Newtonian physics using an optimization based method to adjust the predicted positions of the

bodies to avoid overlap. One drawback is that the procedure tends to align bodies nonphysically.

Quadratic programming is used for contact, collision and the position updates. They consider up to

1000 frictionless spheres, but nonconvex objects can only be considered as unions of convex objects

and they indicate that the computational cost scales with the number of convex pieces. Their only

nonconvex example considered 50 jacks that were each the union of 3 boxes. More recently, [147]

developed a freezing technique that identifies when objects can be removed from the simulation, as

well as identifying when to add them back. This allows the stacking of 1000 cubes with friction in

1.5 days as opposed to their 45 day estimate for simulating all the cubes.

4.3 Geometric Representation

Since rigid bodies do not deform, they are typically represented with triangulated surfaces. Starting

with either the density (or mass), algorithms such as [115] can then be used to compute the volume,

mass and moments of inertia. For efficiency, we store the object space representation with the center

of mass at the origin and the axes aligned with the principal axes of inertia resulting in a diagonal

inertia tensor simplifying many calculations, e.g. finding its inverse.
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Figure 4.2: Some nonconvex geometry from our simulations: the cranium, pelvis and femur have
3520, 8680 and 8160 triangles respectively.

In addition to a triangulated surface, we also store an object space signed distance function for

each rigid body. This is stored on either a uniform grid [131] or an octree grid [60] depending on

whether speed or memory, respectively, is deemed to be the bottleneck in the subsequent calculations.

Discontinuities across octree levels are treated by constraining the fine grid nodes at gradation

boundaries to take on the values dictated by interpolating from the coarse level, see e.g. [184]. We

use negative values of φ inside the rigid body and positive values of φ outside so that the normal

is defined as N = ∇φ. This embedding provides approximations to the normal throughout space

as opposed to just on the surface of the object allowing us to accelerate many contact and collision

algorithms. A signed distance function can be calculated quickly using a marching method [171, 151]

after initializing grid points near the surface with appropriate small negative and positive values.

This is a one time cost in constructing a rigid body model and is currently used in several systems,

see e.g. [44, 122].

Using both a triangulated surface and a signed distance function representation has many ad-

vantages. For example, one can use the signed distance function to quickly check if a point is inside

a rigid body, and if so intersect a ray in the N = ∇φ direction with the triangulated surface to find

the surface normal at the closest point. This allows the treatment of very sharp objects with their

true surface normals, although signed distance function normals provide a smoother and less costly

representation if desired. For more details on collisions involving sharp objects, see [132].

4.4 Interference Detection

[65, 50] found intersections between two implicitly defined surfaces by testing the sample points of

one with the inside/outside function of the other. We follow the same strategy using the vertices
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of the triangulated surface as our sample points. [53] pointed out that this test is not sufficient

to detect all collisions, as edge-face collisions are missed when both edge vertices are outside the

implicit surface. Since the errors are proportional to the edge length, they can be ignored in a well

resolved mesh with small triangles. However, when substantial, e.g. when simulating cubes with

only 12 triangles, we intersect the triangle edges with the zero isocontour and flag the deepest point

on the edge as an interpenetrating sample point. Since we do not consider time dependent collisions,

fast moving objects might pass through each other. We alleviate this problem by limiting the size

of a time step based on the translational and rotational velocities of the objects and the size of their

bounding boxes, although methods exist for treating the entire time swept path as a single implicit

surface [149].

A number of accelerations can be used in the interference detection process. For example,

the inside/outside tests can be accelerated by labeling the voxels that are completely inside and

completely outside (this is done for voxels at each level in the octree representation as well) so

that interpolation can be avoided except in cells which contain part of the interface. Labeling

the minimum and maximum values of φ in each voxel can also be useful. Bounding boxes and

spheres are used around each object in order to prune points before doing a full inside/outside test.

Moreover, if the bounding volumes are disjoint, no inside/outside tests are needed. For rigid bodies

with a large number of triangles, we found an internal box hierarchy with triangles in leaf boxes to

be useful especially when doing edge intersection tests. Also, we use a uniform spatial partitioning

data structure with local memory storage implemented using a hash table in order to quickly narrow

down which rigid bodies might be intersecting. Similar spatial partitioning was used in, for example,

[118, 189]. Again, we stress our interest in nonconvex objects and refer the reader to [137, 95] for

other algorithms that treat arbitrary nonconvex polyhedral models. For more details on collision

detection methods, see e.g. [182, 18, 70, 102, 143].

4.5 Time Integration

The equations for rigid body evolution are

xt = v, qt = 1
2ωq (4.1)

vt = F/m, Lt = τ (4.2)

where x and q are the position and orientation (a unit quaternion), v and ω are the velocity and

angular velocity, F is the net force, m is the mass, L = Iω is the angular momentum with inertia

tensor I = RDRT (R is the orientation matrix and D is the diagonal inertia tensor in object space),

and τ is the net torque. For simplicity we will consider F = mg and thus vt = g throughout the text,

but our algorithm is not restricted to this case. While there are a number of highly accurate time
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integration methods for noninteracting rigid bodies in free flight, see e.g. [30], these algorithms do

not retain this accuracy in the presence of contact and collision. Thus, we take a different approach

to time integration instead optimizing the treatment of contact and collision. Moreover, we use a

simple forward Euler time integration for equations 4.1 and 4.2.

The standard approach is to integrate equations 4.1 and 4.2 forward in time, and subsequently

treat collision and then contact. Generally speaking, collisions require impulses that discontinuously

modify the velocity, and contacts are associated with forces and accelerations. However, friction can

require the use of impulsive forces in the contact treatment, although the principle of constraints

requires that the use of impulsive forces be kept to a minimum. [11] suggested that this avoidance

of impulsive behavior is neither necessary nor justified and stressed that there are algorithmic ad-

vantages to using impulses exclusively. This naturally leads to some blurring between collision and

contact handling, and provides a sense of justification to the work of [77] where the same algebraic

equations were used for both and the work of [118] who integrated the same nonlinear differential

equations for both. However, other authors such as [120, 155, 97] have noted difficulties associated

with this blurring and proposed that an impulse based treatment of collisions be separated from a

penalty springs approach to contact. They used the magnitude of the relative velocity to differen-

tiate between contact and collision. [118] used the velocity an object at rest will obtain by falling

through the collision envelope (or some threshold in [117]) to identify the contact case and applied

a microcollision model where the impulse needed to reverse the relative velocity is applied as long

as it lies in the friction cone. They showed that this solves the problem of blocks erroneously sliding

down inclined planes due to impulse trains that cause them to spend time in a ballistic phase.

A novel aspect of our approach is the clean separation of collision from contact without the need

for threshold velocities. We propose the following time sequencing:

• Collision detection and modeling.

• Advance the velocities using equation 4.2.

• Contact resolution.

• Advance the positions using equation 4.1.

The advantages of this time stepping scheme are best realized through an example. Consider a

block sitting still on an inclined plane with a large coefficient of restitution, say ε = 1, and suppose

that friction is large enough that the block should sit still. In a standard time stepping scheme,

both position and velocity are updated first, followed by collision and contact resolution. During

the position and velocity update, the block starts to fall under the effects of gravity. Then in the

collision processing stage we detect a low velocity collision between the block and the plane, and

since ε = 1 the block will change direction and bounce upwards at an angle down the incline. Then

in the contact resolution stage, the block and the plane are separating so nothing happens. The

block will eventually fall back to the inclined plane, and continue bouncing up and down incorrectly

sliding down the inclined plane because of the time it spends in the ballistic phase. This is the same



44 CHAPTER 4. CONTACT AND COLLISION FOR RIGID BODIES

phenomenon that causes objects sitting on the ground to vibrate as they are incorrectly subjected

to a number of elastic collisions. Thus, many authors use ad hoc threshold velocities in an attempt

to prune these cases out of the collision modeling algorithm and instead treat them with a contact

model.

Our new time stepping algorithm automatically treats these cases. All objects at rest have zero

velocities (up to round-off error), so in the collision processing stage we do not get an elastic bounce

(up to round-off error). Next, gravity is integrated into the velocity, and then the contact resolution

algorithm correctly stops the objects so that they remain still. Thus, nothing happens in the last

(position update) step, and we repeat the process. The key to the algorithm is that contact modeling

occurs directly after the velocity is updated with gravity. If instead either the collision step or a

position update were to follow the velocity update, objects at rest will either incorrectly elastically

bounce or move through the floor, respectively. On the other hand, contact processing is the correct

algorithm to apply after the velocity update since it resolves forces, and the velocity update is where

the forces are included in the dynamics.

One must use care when updating the velocity in between the collision and contact algorithms

to ensure that the same exact technique is used to detect contact as was used to detect collision.

Otherwise, an object in free flight might not register a collision, have its velocity updated, and then

register a contact causing it to incorrectly receive an inelastic (instead of elastic) bounce. We avoid

this situation by guaranteeing that the contact detection step registers a negative result whenever

the collision detection step does. This is easily accomplished by ensuring that the velocity update

has no effect on the contact and collision detection algorithms (discussed in section 4.6).

We repeated the experiment of a block sliding down an inclined plane from [118] using the

methods for collision and contact proposed throughout this paper and our newly proposed time

step sequencing. We used a coefficient of restitution ε = 1 in order to accentuate difficulties with

erroneous elastic bouncing. Using our new time stepping scheme the decelerating block slides down

the inclined plane coming to a stop matching theory, while the standard time stepping scheme

performs so poorly that the block bounces down the inclined plane as shown in figure 4.3. Of course,

these poor results are accentuated because we both set ε = 1 and do not back up the simulation to

the time of collision (which would be impractical and impossible for our large stacking examples).

Figure 4.4 shows a comparison between theory and our numerical results. For both the acceleration

and deceleration cases, our numerical solution and the theoretical solution lie so closely on top of

each other that two distinct lines cannot be seen. Moreover, our results are noticeably better than

those depicted in [118] even though we do not use a threshold velocity or their microcollision model.
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Figure 4.3: The block and inclined plane test with standard time integration (the block erroneously
tumbling) and our new time integration sequencing (the block correctly at rest).

4.6 Collisions

When there are many interacting bodies, it can be difficult to treat all the collisions especially if

they must be resolved in chronological order. Thus instead of rewinding the simulation to process

collisions one at a time, we propose a method that simultaneously resolves collisions as did [157, 113].

While this does not give the same result as processing the collisions in chronological order, there is

enough uncertainty in the collision modeling that we are already guaranteed to not get the exact

physically correct answer. Instead we will obtain a physically plausible solution, i.e. one of many

possible physically correct outcomes which may vary significantly with slight perturbations in initial

conditions or the inclusion of unmodeled phenomena such as material microstructure.

Collisions are detected by predicting where the objects will move to in the next time step,

temporarily moving them there, and checking for interference. The same technique will be used for

detecting contacts, and we want the objects to be moved to the same position for both detection

algorithms if there are no collisions (as mentioned above). In order to guarantee this, we use the new

velocities to predict the positions of the rigid bodies in both steps. Of course, we still use the old

velocities to process the collisions and the new velocities to process the contacts. For example, for

the collision phase, if an object’s current position and velocity are x and v, we test for interference

using the predicted position x′ = x+ ∆t(v + ∆tg), and apply collision impulses to (and using) the

current velocity v. During contact processing, we use the predicted position x′ = x + ∆tv′ and

apply impulses to this new velocity v′. Since v′ = v + ∆tg was set in the velocity update step, the

candidate positions match and the interference checks are consistent.
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Figure 4.4: Theoretical and our numerical results for two tests of a block sliding down an inclined
plane with friction. The curves lie on top of each other in the figures due to the accuracy of our new
time sequencing algorithm.
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The overall structure of the algorithm consists of first moving all rigid bodies to their predicted

locations, and then identifying and processing all intersecting pairs. Since collisions change the

rigid body’s velocity, v, new collisions may occur between pairs of bodies that were not originally

identified. Therefore we repeat the entire process a number of times (e.g. five iterations) moving

objects to their newly predicted locations and identifying and processing all intersecting pairs. Since

pairs are considered one at a time, the order in which this is done needs to be determined. This can

be accomplished by initially putting all the rigid bodies into a list, and then considering rigid bodies

in the order in which they appear. To reduce the inherent bias in this ordering, we regularly mix

up this list by randomly swapping bodies two at a time. This list is used throughout our simulation

whenever an algorithm requires an ordering.

For each intersecting pair, we identify all the vertices of each body that are inside the other

(and optionally the deepest points on interpenetrating edges as well). Since we do not back up

the rigid bodies to the time of collision, we need a method that can deal with nonconvex objects

with multiple collision regions and multiple interfering points in each region. We start with the

deepest point of interpenetration that has a nonseparating relative velocity as did [120], and use the

standard algebraic collision laws (below) to process the collision. Depending on the magnitude of

the collision, this may cause the separation of the entire contact region. If we re-evolve the position

using the new post-collision velocity, this collision group could be resolved. Whether or not it is

resolved, we can once again find the deepest non-separating point and repeat the process until all

points are either non-interpenetrating or separating. While this point sampling method is not as

accurate as integrating over the collision region as in [79], it is much faster and scales well to large

numbers of objects.

We developed an aggressive optimization for the point sampling that gives similarly plausible

results. As before, one first labels all the non-separating intersecting points and applies a collision

to the deepest point. But instead of re-evolving the objects and repeating the expensive collision

detection algorithm, we simply keep the objects stationary and use the same list of (initially) in-

terfering points for the entire procedure. After processing the collision, all separating points are

removed from the list. Then the remaining deepest nonseparating point is identified and the process

is repeated until the list is empty. In this manner, all points in the original list are processed until

they are separating at least once during the procedure. The idea of lagging collision geometry was

also considered by [14] in a slightly different context.

Each body is assigned a coefficient of restitution, and when two bodies collide we use the minimum

between the two coefficients as did [120] to process the collision. Suppose the relative velocity at

the collision point was originally urel with (scalar) normal and (vector) tangential components,

urel,n = urel · N and urel,t = urel − urel,nN respectively. Then we apply equal and opposite

impulses j to each body to obtain v′ = v ± j/m and ω′ = ω ± I−1(r × j) where r points from their

respective centers of mass to the collision location. The new velocities at the point of collision will
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Figure 4.5: A billiard ball hits one end of a line of billiard balls, and the collision response propagates
to the ball on the far right which then starts to roll.

be u′ = u ± Kj where K = δ/m + r∗T I−1r∗ with δ the identity matrix and the “∗” superscript

indicating the cross-product matrix. Finally, u′rel,n = urel,n + NTKTNjn where KT is the sum of

the individual K’s and j = jnN is our frictionless impulse. So given a final relative normal velocity

u′rel,n = −εurel,n, we can find the impulse j. Immovable static objects like the ground plane can be

treated by setting K = 0 and not updating their velocities.

4.7 Static and Kinetic Friction

The collision algorithm above needs to be modified to account for kinetic and static friction. Each

body is assigned a coefficient of friction, and we use the maximum of the two possible coefficients

when processing a collision as did [120]. Like [77, 120], we first assume that the bodies are stuck at

the point of impact due to static friction and solve for the impulse. That is, we set u′rel,t = 0 so that

u′rel = −εurel,nN allows us to solve u′rel = urel +KT j for the impulse j by inverting the symmetric

positive definite matrix KT . Then if j is in the friction cone, i.e. if |j− (j ·N)N | ≤ µj ·N , the point

is sticking due to static friction and j is an acceptable impulse. Otherwise, we apply sliding friction.

Define T = urel,t/|urel,t| so that the kinetic friction can be computed with the impulse j = jnN−
µjnT . Then take the dot product of u′rel = urel +KT j with N to obtain u′rel,n = urel,n +NTKT j

or −εurel,n = urel,n + NTKT j. Plugging in the definition of j we can solve to find jn = −(ε +

1)urel,n/(NTKT (N − µT )) from which the kinetic friction impulse j is determined.

4.8 Contact

After a few iterations of the collision processing algorithm, the rigid bodies have been elastically

bounced around enough to obtain a plausible behavior. So even if collisions are still occurring, we

update the velocities of all the rigid bodies and move on to contact resolution. Since the contact

modeling algorithm is similar to the collision modeling algorithm except with a zero coefficient of
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restitution, objects still undergoing collision will be processed with inelastic collisions. This behavior

is plausible since objects undergoing many collisions in a single time step will tend to rattle around

and quickly lose energy.

The goal of the contact processing algorithm is to resolve the forces between objects. As in

collision detection, we detect contacts by predicting where the objects will move to in the next time

step disregarding the contact forces, temporarily moving them there, and checking for interference.

For example, objects sitting on the ground will fall into the ground under the influence of gravity

leading to the flagging of these objects for contact resolution. All interacting pairs are flagged and

processed in the order determined by our list. Once again, multiple iterations are needed especially

for rigid bodies that sit on top of other rigid bodies. For example, a stack of cubes will all fall

at the same speed under gravity and only the cube on the bottom of the stack will intersect the

ground and be flagged for contact resolution. The other cubes experience no interference in this first

step. However, after processing the forces on the cube at the bottom of the stack, it will remain

stationary and be flagged as interpenetrating with the cube that sits on top of it in the next sweep

of the algorithm. This is a propagation model for contact as opposed to the simultaneous solution

proposed in [9].

The difficulty with a propagation model is that it can take many iterations to converge. For

example, in the next iteration the cube on the ground is stationary and the cube above it is falling

due to gravity. If we process an inelastic collision between the two cubes, the result has both cubes

falling at half the speed that the top cube was falling. That is, the cube on top does not stop, but

only slows down. Even worse, the cube on the ground is now moving again and we have to reprocess

the contact with the ground to stop it. In this sense, many iterations are needed since the algorithm

does not have a global view of the situation. That is, all the non-interpenetration constraints at

contacts can be viewed as one large system of equations, and processing them one at a time is similar

to a slow Gauss-Seidel approach to solving this system. Instead, if we simultaneously considered

the entire system of equations, one could hope for a more efficient solution, for example by using a

better iterative solver. This is the theme in [113] where an optimization based approach is taken.

We propose a more light-weight method in section 4.8.2.

Similar to the collision detection algorithm, for each intersecting pair, we identify all the vertices

of each body that are inside the other (and optionally the deepest points on edges as well). Although

[9] pointed out that the vertices of the contact region (which lie on the vertices and edges of the

original model) need to be considered, we have found our point sampling method to be satisfactory.

However, since we have a triangulated surface for each object, we could do this if necessary. As in

[77, 118] we use the same equations to process each contact impulse that were used in the collision

algorithm, except that we set ε = 0. We start with the deepest point of interpenetration that

has a non-separating relative velocity, and again use the standard algebraic collision laws. Then

a new predicted position can be determined and the process repeated until all points are either
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non-overlapping or separating. Although the aggressive optimization algorithm that processes all

points until they are separating at least once could be applied here as well, it is not as attractive for

contact as it is for collision since greater accuracy is usually desired for contacts.

For improved accuracy, we propose the following procedure. Rather than applying a fully inelastic

impulse of ε = 0 at each point of contact, we gradually stop the object from approaching. For

example, on the first iteration of contact processing we apply impulses using ε = −.9, on the next

iteration we use ε = −.8, and so on until we finally use ε = 0 on the last iteration. A negative

coefficient of restitution simply indicates that rather than stop or reverse an approaching object, we

only slow it down.

In the collision processing algorithm, we used the predicted positions to determine the geometry

(e.g. normal) of the collision. Although it would have been better to use the real geometry at the

time of collision, the collision time is not readily available and furthermore the accuracy is not

required since objects are simply bouncing around. On the other hand, objects should be sitting

still in the contact case, and thus more accuracy is required to prevent incorrect rattling around of

objects. Moreover, the correct contact geometry is exactly the current position (as opposed to the

predicted position), since the contact forces should be applied before the object moved. Thus, we

use the current position to process contacts.

4.8.1 Contact graph

At the beginning of the contact resolution stage we construct a contact graph similar to [77, 7]

with the intention of identifying which bodies or groups of bodies are resting on top of others. We

individually allow each object to fall under the influence of gravity (keeping the others stationary)

for a characteristic time 4τ (on the order of a time step), and record all resulting interferences

adding a directed edge pointing toward the falling object from the other object. Then we apply a

simple topological sort algorithm that uses two depth first searches to collapse strongly connected

components resulting in a directed acyclic graph. For a stack of cubes, we get a contact graph that

points from the ground up one cube at a time to the top of the stack. For difficult problems such as

a set of dominoes arranged in a circle on the ground with each one resting on top of the one in front

of it, we simply get the ground in one level of the contact graph and all the dominoes in a second

level. Roughly speaking, objects are grouped into the same level if they have a cyclic dependence

on each other.

The purpose of the contact graph is to suggest an order in which contacts should be processed,

and we wish to sweep up and out from the ground and other static (non-simulated) objects in order

to increase the efficiency of the contact propagation model. When considering objects in level i, we

gather all contacts between objects within level i as well as contacts between objects in this level

and ones at lower-numbered levels. With the latter type of contact pairs, the object in level i is,

as a result of the way we constructed the contact graph, necessarily “resting on” the lower level
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Figure 4.6: Although the propagation treatment of contact and collision allows the stacking and
flipping of boxes as shown in the figure, our shock propagation algorithm makes this both efficient
and visually accurate.

object and not the other way around. The contact pairs found for level i are put into a list and

treated in any order iterating through this list a number of times before moving on to the next level.

Additionally, we sweep along the graph through all levels multiple times for improved accuracy.

4.8.2 Shock propagation

Even with the aid of a contact graph, the propagation model for contact may require many iterations

to produce visually appealing results especially in simulations with stacks of rigid bodies. For

example, in the cube stack shown in figure 4.6 (center), the cubes will start sinking into each other if

not enough iterations are used. To alleviate this effect, we propose a shock propagation method that

can be applied on the last sweep through the contact graph. After each level is processed in this last

sweep, all the objects in that level are assigned infinite mass (their K matrix is set to zero). Here,

the benefit of sorting the objects into levels becomes most evident. If an object of infinite mass is

later found to be in contact with a higher-level object, its motion is not affected by the impulses

Figure 4.7: A heavier block on the right tips the see-saw in that direction, and subsequently slides
off. Then the smaller block tips the see-saw back in the other direction. The propagation treatment
of contact allows the weight of each block to be felt, and our shock propagation method keeps the
blocks from interpenetrating without requiring a large number of contact processing iterations.
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applied to resolve contact, and the higher level object will simply have to move out of the way! Once

assigned infinite mass, objects retain this mass until the shock propagation phase has completed. As

in contact, we iterate a number of times over all contact pairs in each level, but unlike contact we

only complete one sweep through all of the levels. Note that when two objects at the same level are

in contact, neither has been set to infinite mass yet, so shock propagation in this case is no different

than our usual contact processing. However, the potentially slow convergence of the usual contact

processing has now been localized to the smaller groups of strongly connected components in the

scene.

To see how this algorithm works, consider the stack of objects in figure 4.6 (center). Starting at

the bottom of the stack, each object has its velocity set to zero and its mass subsequently set to be

infinite. As we work our way up the stack, the falling objects cannot push the infinite mass objects

out of the way so they simply get their velocity set to zero as well. In this fashion, the contact graph

allows us to shock the stack to a zero velocity in one sweep.

In order to demonstrate why the propagation model for contact is used for a few iterations before

applying shock propagation we drop a larger box onto the plank as shown in figure 4.6 (center).

Here the contact graph points up from the ground through all the objects, and when the larger box

first comes in contact with the plank, an edge will be added pointing from the plank to the box. If

shock propagation was applied immediately the box on the ground and then the plank would have

infinite mass. Thus the large falling box would simply see an infinite mass plank and be unable to

flip over the stack of boxes as shown in figure 4.6 (center). However, contact propagation allows

both the plank to push up on the falling box and the falling box to push back down. That is,

even though “pushing down” increases the number of iterations needed for the contact algorithm

to converge, without this objects would not feel the weight of other objects sitting on top of them.

Thus, we sweep though our contact graph a number of times in order to get a sense of weight, and

then efficiently force the algorithm to converge with a final shock propagation sweep. This allows

the stack of boxes to flip over as shown in figure 4.6 (right).

Figure 4.7 shows another test where a heavy and a light block are both initially at rest on top

of a see-saw. When the simulation starts the weight of the heavier block pushes down tilting the

see-saw in that direction. Eventually it tilts enough for the heavy block to slide off, and then the

see-saw tilts back in the other direction under the weight of the lighter block. Our combination of

contact propagation followed by shock propagation correctly and efficiently handles this scenario.

On the other hand, if we run shock propagation only (i.e. omitting the contact propagation phase),

the see-saw either sits still or tips very slowly since it does not feel the weight of the heavy block.
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Figure 4.8: 500 nonconvex bones falling into a pile after passing through a funnel. Exact triangle
counts are given in figure 4.2.

4.9 Rolling and Spinning Friction

Even when a rigid body has a contact point frozen under the effects of static friction, it still has

freedom to both roll and spin. [100, 146] damped these degrees of freedom by adding forces to

emulate rolling friction and air drag. Instead, we propose an approach that treats these effects in

the same manner as kinetic and static friction. Let µr and µs designate the coefficients of rolling

and spinning friction, and note that these coefficients should depend on the local deformation of the

object. This means that they should by scaled by the local curvature with higher values in areas of

lower curvature. Thus for a sphere, these values are constant throughout the object.

Both rolling and spinning friction are based on the relative angular velocity ωrel with normal and

tangential components ωrel,n = ωrel ·N and ωrel,t = ωrel−ωrel,nN . The normal component governs

spinning and the tangential component governs rolling about T = ωrel,t/|ωrel,t|. We modify these by

reducing the magnitude of the normal and tangential components by µsjn and µrjn respectively. To

keep the object from reversing either its spin or roll direction, both of these reductions are limited

to zero otherwise preserving the sign. At this point we have a new relative angular velocity ω′rel,

and since the objects are sticking the relative velocity at the contact point is u′rel = 0. Next, we

construct an impulse to achieve both proposed velocities.

If we apply the impulse at a point, specifying the relative velocity determines the impulse j and

we are unable to also specify the relative angular velocity. Thus, we assume that the impulse is

applied over an area instead. We still have v′ = v ± j/m for the center of mass velocity, but the
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angular velocity is treated differently. First we explicitly write out the change in angular momentum

(about our fixed world origin) due to an angular impulse jτ as x ×mv′ + Iω′ = x ×mv + Iω ± jτ

which can be rearranged to give ω′ = ω ± I−1(jτ − x × j). When jτ is equal to the cross product

of the point of contact and j, this reduces to ω′ = ω ± I−1(r × j) as above, but here we consider

the more general case in order to get control over the angular velocity. The new velocities at the

point of collision will be u′ = u ± (K1j + K2jτ ) where K1 = δ/m + r∗I−1x∗ and K2 = −r∗I−1.

Then u′rel = urel + K1,T j + K2,T jτ where the Ki,T ’s are the sum of the individual Ki’s. Similar

manipulation gives ω′rel = ωrel +K3,T j +K4,T jτ , where K3 = −I−1x∗ and K4 = I−1. This is two

equations in two unknowns, j and jτ , so we can solve one equation for j, plug it into the other, and

solve for jτ . This requires inverting two 3× 3 matrices.

4.10 Results

Besides the basic tests that we discussed throughout the text, we also explored the scalability of

our algorithm addressing simulations of large numbers of nonconvex objects with high resolution

triangulated surfaces falling into stacks with multiple contact points. While the CPU times for the

simple examples were negligible, the simulations depicted in figures 4.1, 4.8 and 4.9 had a significant

computational cost. Dropping 500 and 1000 rings into a stack averaged about 3 minutes and 7

minutes per frame, respectively. Dropping 500 bones through a funnel into a pile averaged about

7 minutes per frame, and we note that this simulation had about 2.8 million triangles total. All

examples were run using 5 collision iterations, 10 contact iterations, and a single shock propagation

iteration, and all used friction.

4.11 Conclusions and Future Work

We proposed a mixed representation of the geometry combining triangulated surfaces with signed

distance functions defined on grids and illustrated that this approach has a number of advantages. We

also proposed a novel time integration scheme that removes the need for ad hoc threshold velocities

and matches theoretical solutions for blocks sliding and stopping on inclined planes. Finally, we

proposed a new shock propagation method that dramatically increases the efficiency and visual

accuracy of stacking objects. So far, our rolling and spinning friction model has only produced good

results for spheres and we are currently investigating more complex objects.

After the positions have been updated, interpenetration may still occur due to round-off errors

and in-level contact between objects. We experimented with the use of first order physics (similar

to [14]) to compute a “first order impulse” to apply to the objects’ positions and orientations to

effect separation (without modifying their velocities). As in shock propagation, we proceeded level

by level through the contact graph doing multiple iterations of separation adjustments within each
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Figure 4.9: The complexity of our nonconvex objects is emphasized by exposing their underlying
tessellation.

level before assigning infinite masses to each level in preparation for the next. To reduce bias, we

gradually separated objects within a level, each iteration increasing the fraction of interpenetration

that is corrected. We plan to investigate this further in future work.
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Chapter 5

Mesh Generation

This chapter is concerned with the generation of tetrahedral meshes, and specifically how to deal

with problems that arise at or near the surface when such volumetric meshes are deformed. The

algorithm for creating meshes presented here (from our paper [119]) dynamically deforms the surface

of a semi-structured candidate mesh to match specified geometry, with the interior of the mesh

dragged along automatically. Thus by necessity we discovered and fixed specific problems that

occur in large surface deformations, and thus argue that our technique is perhaps the best technique

for generating meshes for simulations of large deformations. Other meshing algorithms make no

guarantees about the suitability of their results for such simulations, and may produce initial meshes

with good quality measures but with hidden deficiencies that cause poor accuracy or even element

collapse in subsequent simulation.

Tetrahedral meshes are used in a number of areas including fracture [129, 128], haptics [48], solid

modeling [44], surgical simulations [63], and the modeling of biological tissue including the brain

[72], the knee [79] and fatty tissue [88]. We emphasize and concentrate on their use in simulations of

highly deformable bodies in graphics, biomechanics, virtual surgery, etc. The most developed area

of mesh generation, in contrast, is for static or barely deforming meshes used for fluid dynamics,

heat flow, small deformation solid mechanics, electromagnetism, etc. The requirements in these

domains are quite different. For example an optimal mesh for a fluid flow simulation should include

anisotropically compressed elements in boundary layers, e.g. [64, 106], but stretched elements in

deformable bodies tend to be ill-conditioned, bad for both accuracy and efficiency.

The objects that we want to mesh, mostly of biological origins, are also different from the geom-

etry typically considered in the meshing literature. There, CAD packages provide exact geometry

made of polygonal faces and/or spline surfaces with sharply defined edges and corners, which must

be matched by the mesh. On the other hand, objects such as muscles, organs, bones, etc. are

smooth and their geometry is not known exactly precisely (and maybe cannot be defined precisely

in some sense, since it is constantly changing[78]): the mesh just needs to approximate this geometry

57
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reasonably.

We use level sets as the representation for input geometry, that is a function φ sampled on a

regular grid giving signed distance to the surface. Motivated by crystallography, we use a body-

centered cubic (BCC) background mesh (see e.g. [29]), adaptively refined with a red-green strategy,

from which we carefully select a topologically-robust subset of tetrahedra that roughly match the

level set. This candidate mesh is then “compressed” to match the level set boundary as closely as

possible while maintaining element quality. See figure 5.1 for an example of this semi-structured

approach.

Additional advantages of our method over existing three-dimensional meshing algorithms include

the relative simplicity of implementation—it is a fully robust method that doesn’t require lots of

special cases, careful handling of round-off error or the use of exact arithmetic, complex acceleration

structures, etc.—and the fact that it generates semi-structured meshes. The underlying grid struc-

ture can be an advantage when constructing preconditioners for iterative solvers, writing multigrid

algorithms, saving storage and increasing performance by reducing pointer indirection with implicit

indexing, etc.

5.1 Related Work

Delaunay methods have not been as successful in three spatial dimensions as in two, since they

admit flat sliver tetrahedra of negligible volume. Shewchuk[153] provides a nice overview of these

methods, including a discussion of why some of the theoretical results are not reassuring in practice,

but discusses how the worst slivers can often be removed. Sliver removal is also discussed in [37],

but the theorem presented there gives a “miserably tiny” estimate of quality.

Advancing front methods start with a boundary discretization and march a “front” inward form-

ing new elements attached to the existing ones, see e.g. [148]. While they conform well to the

boundary, they have difficulty when fronts merge, which unfortunately can occur very near the im-

portant boundary in regions of high curvature, see e.g. [64, 106]. In [141], the authors start with

a face-centered cubic (FCC) lattice defined on an octree and use an advancing front approach to

march inward from a surface mesh, constructing a Delaunay mesh with the predetermined nodes of

the FCC lattice. Their motivation for choosing FCC over BCC structure was a slight improvement

in a specific finite element error bound; we believe that the more regular connectivity of the BCC

lattice is preferable for deformation, since those bounds will be changed significantly then anyhow

(especially since they discard the original FCC tetrahedra when reconnecting the deformed nodes)

Shimada and Gossard[154] packed spheres (or ellipsoids [188]) into the domain with mutual

attraction and repulsion forces, and generated tetrahedra using the sphere centers as sample points

via either a Delaunay or advancing front method. However, ad hoc addition and deletion of spheres

is required in a search for a steady state, and both local minima and “popping” can be problematic.
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Figure 5.1: Tetrahedral mesh of a cranium (100K elements) with cutaway views showing element
regularity and gradation to very coarse tetrahedra in the interior.
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This led [101] to propose the removal of the dynamics from the packing process, instead marching

in from the boundary removing spherical “bites” of volume one at a time, which gets back to the

problems of marching front algorithms.

Cutler et al.[44] start with either a uniform grid or a graded octree mesh and subdivide each

cell into five tetrahedra. Tetrahedra that cross an internal or external interface are simply split,

possibly forming poorly shaped elements for simulation. Neighboring tetrahedra are also split to

avoid T-junctions. The usual tetrahedral flips and edge collapses are carried out in an attempt to

repair the ill-conditioned mesh.

Adaptive three-dimensional meshes have been problematic. Debunne et al.[48] carried out finite

element simulations on a hierarchy of tetrahedral meshes switching to the finer meshes only locally

where more detail is needed. They state that one motivation for choosing this strategy is the

difficulty in preserving mesh quality when subdividing tetrahedral meshes. Grinspun et al.[72]

proposed a basis refinement viewpoint, partly as a way to avoid having to resolve T-junctions in

adaptive three-dimensional meshes. Our red-green method alleviates both of these concerns: it

provides high quality elements (in fact, when our BCC mesh is subdivided, we get exactly the BCC

mesh with half the edge length) and is straightforward to implement.

Our compression phase moves the nodes on the boundary of our candidate mesh to the implicit

surface providing boundary conformity. Related work includes [23] which attracted particles to

implicit surfaces for visualization, [172, 173] which used particles and repulsion forces to sample and

retriangulate surfaces, [47, 42] which used the same idea to triangulate implicit surfaces, [162] which

modeled surfaces with oriented particles, and [186] which used particle repulsion to sample (and

control) implicit surfaces.

This wrapping of our boundary around the level set is related to snakes [93] or GDM’s [114]

which have been used to triangulate isosurfaces, see e.g. [145]. [125] started with a marching cubes

mesh and moved vertices to the centroid of their neighbors before projecting them onto the zero

level set in the neighboring triangles’ average normal direction. [74] improved this method using

internodal springs instead of projection to the centroid, incremental projection to the zero isocontour,

adaptive subdivision, edge collapse and edge swapping. [96] used related ideas to wrap a mesh with

subdivision connectivity around an arbitrary one (other interesting earlier work includes [82, 81]),

but had difficulty projecting nodes in one step, emphasizing the need for slower evolution. Similar

techniques were used by [20, 83] to wrap subdivision surfaces around implicit surfaces. To improve

robustness, [187] adaptively sampled the implicit surface on the faces of triangles, redistributed the

isovalues times the triangle normals to the vertices to obtain forces, and replaced the spring forces

with a modified Laplacian smoothing restricted to the tangential direction. [130] advocated moving

the triangle centroids to the zero isocontour instead of the nodes, and matching the triangle normals

with the implicit surface normals.

Although we derive motivation from this work, we note that our problem is significantly more
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difficult since these authors move their mesh in a direction normal to the surface, which is orthogonal

to their measure of mesh quality (shapes of triangles tangent to the surface). When we move our

mesh normal to the surface, it directly conflicts with the quality of the surface tetrahedra. In two

dimensions, [68] did move the mesh in a direction that opposed the element quality. They started

with a uniform Cartesian grid bisected into triangles, threw out elements that intersected or were

outside the domain, and moved nodes to the boundary in the direction of the gradient of the level

set function using traditional smoothing, edge-swapping, insertion and deletion techniques. In three

dimensions, [47] evolved a volumetric mass spring system in order to align it with (but not compress

it to) the zero isocontour, but the measure of mesh quality was again perpendicular to the evolution

direction since the goal was to triangulate the zero isocontour. Later, however, [175] proposed the

basic idea behind our algorithm, pushing in a direction conflicting with mesh quality. They deformed

a uniform-resolution Freudenthal lattice to obtain tetrahedralizations using a mass spring model, but

were restricted to simple geometries mostly because they did not deal with the topological problems

for deformation that we identify and fix here.

5.2 The BCC Background Mesh

Our algorithm begins with a background tetrahedral mesh tiling space. Unlike in two dimensions,

it is impossible to tile three-dimensional space with equilateral simplices. Of the several methods

for tiling space (see e.g. [29, 33]) the body-centered cubic (BCC) lattice structure is one of the most

regular. This structure is fundamental in nature, forming the basis of crystals such as iron and

lithium[29]. It consists of two interlaced cubic grids, the nodes of one located at the centers of

the cells of the other, with additional edges between a node and its eight closest neighbors in the

other grid. Each tetrahedron is formed from two adjacent nodes of one grid and two of the nearest

adjacent nodes in the other grid (see figure 5.2).

Among the desirable properties of this mesh, one can list:

• all tetrahedra are congruent to each other

• all faces of all tetrahedra are congruent to each other

• all edges are of two lengths, only differing by a factor of
√

3/4 ≈ 0.866

• the faces are isosceles, with two angles ≈ 54.7◦ and one ≈ 70.5◦

• the dihedral angles are 60◦ and 90◦

• it is Delaunay

• the node locations are optimal for sampling in the sense that their Fourier transform is a

(FCC) close-packing of spheres[167]

• the maximum degree (and only degree) of a node is just 14
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Figure 5.2: A portion of the BCC lattice with a tetrahedron highlighted. The two black cubic grids
are interlaced together with the blue edges.

• it is homogeneous and isotropic in the sense that the mesh is invariant under translations

between two nodes and rotations of multiples of 90◦ around the grid axes

For simulation these properties give rise to accurate force calculations and well-conditioned, highly-

structured matrices to be solved, and avoid error artifacts such as preferred directions (anisotropy)

or “checkerboarding” (alternate grid nodes behaving differently).

In addition, as discussed in the next section, the tetrahedra of the BCC lattice can be regularly

refined, unlike most meshes. If each tetrahedron is split 1:8 into eight smaller tetrahedra the correct

way, the resulting mesh is a BCC mesh of twice the resolution. In fact, if 1:8 subdivision is used on

an arbitrary tetrahedral mesh, in the limit almost every part of the mesh will have the connectivity

of the BCC mesh (but not necessarily its regular geometry).

5.3 Red-Green Refinement

Many applications do not require and cannot afford (due to computation time and memory re-

strictions) a uniformly high resolution mesh. For example, many graphical simulations can tolerate

low accuracy in the unseen interior of a body, and many phenomena such as contact and fracture

Figure 5.3: The standard red refinement (depicted in red, far left) produces eight children that reside
on a BCC lattice one half the size. Three classes of green refinement are allowed (depicted in green).
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show highly concentrated stress patterns, often near high surface curvature, outside of which larger

tetrahedra are acceptable. Thus, we require the ability to generate adaptive meshes. A significant

advantage of the BCC mesh is that it is easily refined in a regular way, initially or during the cal-

culation. Each regular BCC tetrahedron can be refined into eight tetrahedra, shown in red in figure

5.3, with a 1:8 refinement. When the shortest of the three possible choices for the edge internal to

the tetrahedron is taken, the newly formed tetrahedra are exactly the BCC tetrahedra that result

from a mesh with cells one half the size, guaranteeing element quality.

As the BCC lattice is built from cubic grids, one natural approach to adaptivity is to build

its analog based on an octree. We implemented this by adding body centers to the octree leaves,

after ensuring the octree was graded with no face- or edge-adjacent cells differing by more than one

level. The resulting BCC lattices at different scales were then patched together with special case

tetrahedra. For more on octrees in mesh generation, see e.g. [152, 141].

However, we found that red-green refinement (see e.g. [21, 75, 46]) is more economical, simpler to

implement, more flexible, and gives higher quality elements. The initial BCC lattice tetrahedra are

labeled red, as are any children obtained with 1:8 subdivision shown in red in figure 5.3. Performing a

red refinement on a tetrahedron creates inconsistent T-junctions at the newly-created edge midpoints

where neighboring tetrahedra are not refined to the same level. To eliminate these, the red tetrahedra

with T-junctions are irregularly refined into fewer than eight children after introducing some of their

midpoints. These children are labeled green. They are of lower quality than the red tetrahedra, and

thus we never refine them further: to do so would ultimately create slivers. When higher resolution is

desired in a region occupied by a green tetrahedron, the entire family of green tetrahedra is removed

from its red parent, and the red parent is refined regularly to obtain eight red children that can then

undergo subsequent refinement.

A red tetrahedron that needs a green refinement can have between one and five midpoints on its

edges (in the case of all six midpoints we use red refinement). We reduce the possibilities for green

refinement to those shown in figure 5.3, adding extra edge midpoints if necessary. Note that adding

these extra midpoints may in fact result in red refinement. This restriction (where all triangles are

either bisected or quadrisected) smooths the gradation further and guarantees higher quality green

tetrahedra, as shown in figure 5.4. While there can of course be a cascading effect as the extra

midpoints may induce more red or green refinements, it is a small price to pay for the superior mesh

quality and seems to be a minor issue in practice.

A significant advantage of the red-green framework is the possibility for refinement during simu-

lation based on a posteriori error estimates, with superior quality guarantees derived from the BCC

lattice instead of an arbitrary initial mesh. The lower quality green tetrahedra can be replaced by

finer red tetrahedra which admit further refinement, if we maintain the red-green structure from the

initial BCC mesh.

Any criteria may be used to drive refinement. In this exploratory work we investigated using
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Figure 5.4: Tetrahedral mesh of a sphere (18K elements). The cutaway view illustrates that the
interior mesh can be fairly coarse even if high resolution is desired on the boundary.

surface curvature: whenever a tetrahedron that intersects the level set surface is of a length scale

much larger than the radius of curvature of the level set, we refine. The principal curvatures of a level

set are easy to evaluate at any point in space with finite differences[3]. Note that the mean curvature

(the average of the principal curvatures and the simplest quantity to compute) is not sufficient, as

it may be close to zero near saddle points of the surface even when the principal curvatures are very

large but of opposite sign. Figure 5.5 illustrates how the sum of the absolute values of the principal

curvatures may be used to drive a priori refinement, with the inner ring of the torus refined more

even though it consists of saddle points with low mean curvature.

Many of our examples used noisy data, for which a second derivative quantity such as curvature

may be unreliable. We used the power of the level set framework to smooth the rough geometry

with motion by mean curvature (see e.g. [131]), but remaining spurious small-scale features may still

baffle a curvature-driven refinement scheme. Thus in these cases we instead used an error metric

similar to [60, 136], where we compare the linear interpolation of the level set function φ from the

Figure 5.5: Tetrahedral mesh of a torus (8.5K elements). The principal curvatures were used to
increase the level of resolution in the inner ring.
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vertices of a tetrahedron that intersects the surface to the actual values on the grid, and refine only

when there is a large discrepancy.

5.4 Selecting a Topologically Robust Sub-Mesh

In the previous sections we described the BCC lattice and a red-green refinement strategy. This

section explains how to use these to generate a rough candidate mesh for the object (as a subset of

a background mesh) that is ready for the final “compression” stage which will match the geometry

of the level set without changing the connectivity of the mesh.

The first step is to cover an appropriately sized bounding box of the object with a coarse BCC

mesh. Then we use a conservative discard process to remove tetrahedra that are guaranteed to lie

completely outside of the zero isocontour: tetrahedra with four positive φ values all larger than the

maximum edge length are removed, since if φ is signed distance to the surface, such a tetrahedron

must be completely outside the object.

In the next step, the remaining tetrahedra are refined according to any user defined criteria, such

as a posteriori error estimates, indicator variables or geometric properties. The previous section

discussed some of the simple geometric refinement schemes we investigated. We limit refinement to

a user-specified number of levels.

From the adaptively refined lattice we will select a subset of tetrahedra that closely matches the

object. However, there are specific topological requirements necessary to ensure a valid mesh that

behaves well under deformation:

• the boundary of the subset must be a manifold

• no tetrahedron may have all four nodes on the boundary

• no interior edge may connect two boundary nodes.

The first requirement is clear—if the boundary mesh of the tetrahedra is topologically not a manifold,

it cannot possibly be matched to the level set manifold. The other two requirements deal with

subsequent deformation.

A useful intuition for understanding discretization in continuum mechanics is that instead of

simply approximating a PDE with numerical calculations, we actually are doing experiments with

a real continuum that happens to be subject to a number of constraints which reduce the allowed

deformations to a finite dimensional subspace. These constraints make the material stiffer. This is

well known in finite element analysis, leading to rules of thumb such as the use of lower order accurate

quadrature formulas that actually lead to smaller errors since they underestimate, lowering the

effective stiffness, and thus partially cancel out the artificial extra stiffness due to discretization[160].

A more extreme example is the phenomenon of locking, where if care is not taken in the finite element

discretization of incompressible materials, the constraints may interact to artificially eliminate all

deformations.
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The topology, i.e. connectivity, of the mesh defines the character of the constraints implied by

discretization. If either of the latter two conditions above were violated in the mesh, there are serious

consequences for the possible surface deformations of the mesh. If a tetrahedron has all four nodes

on the boundary, then it is impossible (without crushing or inverting the tetrahedron) to flatten

or indent that part of the surface. If an interior edge of the mesh connects two boundary nodes,

then it is similarly impossible to flatten or indent the surface between those nodes (without crushing

or inverting the tetrahedra that lie in between). Thus any mesh generation algorithm that does

not take care of these cases may produce meshes that simply cannot support interesting surface

deformations.1

To satisfy the three conditions on the subset we choose a set of “enveloped” nodes from the

background mesh and select all tetrahedra incident on these. This guarantees we will satisfy the

second condition, since every tetrahedron will be incident on at least one of these interior nodes.

The enveloped nodes are chosen to be those where φ < 0 (i.e. nodes that are inside the object)

that have all their incident edges at least 25% inside the zero isocontour as determined by linear

interpolation of φ along the edge. In this manner, we expect the isocontour to cut roughly halfway

through the surface layer of selected tetrahedra, giving us a good approximation to the object when

we begin compression.

In reasonably convex regions, i.e. regions where the geometry is adequately resolved by the nodal

samples, this strategy also tends to satisfy the other two requirements. However, we need additional

processing to guarantee them. In a first pass, all edges incident on non-manifold nodes and all

bad interior edges are bisected, and the red-green structure is updated to further refine the nearby

tetrahedra. If any edges were bisected, we recalculate the set of enveloped nodes. In subsequent

passes, we add to the enveloped set any non-manifold node and one node from every bad interior

edge (the node with the smaller φ value), stopping once all problems have been resolved. Optionally

we may also add any nodes with surface degree equal to three to the set of enveloped nodes, since

if these nodes were to remain on the surface the final surface mesh would typically contain obtuse

angles over 120◦. Typically at most two passes are required, after which we have a candidate mesh

of high quality elements that approximates the level set object fairly well, and that has connectivity

suitable for large deformation simulations. See figure 5.6 for example. All that remains is to better

match the surface of the mesh to the level set without degrading element quality too much.

1There is in fact one additional degeneracy that may occur in theory, an interior triangle that connects three
boundary nodes (which would prohibit some extraordinarily severe deformations). Fortunately this is very rare
in practice, and would indicate that the mesh is woefully under-resolved. Larger problems with simple numerical
accuracy, demanding refinement thus eliminating the degeneracy, would be apparent before the topological constraint
comes into effect. Therefore we do not explicitly check for this case.
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Figure 5.6: The initial candidate mesh for the cranium (a subset of the tetrahedra of the refined
background mesh) before the compression phase deforms the surface to match the level set.

5.5 Compressing the Surface Mesh to the Level Set

In [119] we experimented with three techniques for compressing the surface of the candidate mesh

to the level set, adjusting interior nodes to maintain quality elements. The first two methods were

based in physics, actually simulating the evolution of the mesh as if it were an elastic object subject

to boundary forces which ensure conformity to the level set. I will briefly describe these before

concentrating on currently the most useful third technique based on direct optimization of element

quality.

In the physics-based methods we apply boundary forces or set boundary velocity constraints, in

the normal direction, proportional to the value of −φ. That is, the further from the zero isocontour

a surface node is, the more it is pushed toward the level set, coming to stable equilibrium on the

level set. There are no forces or constraints in the tangential direction, allowing more freedom to

maintain high quality elements. It is important to compute the normal direction based on the mesh

(e.g. as an average of triangle normals), not on the level set: this way the motion tends to smooth

out jagged parts of the mesh, not fold them over onto the level set collapsing elements in the process.

The two physics-based methods differ in how internal forces in the mesh are calculated. These

forces resist distortion of elements, so the equilibrium state maintains high quality tetrahedra. The

first method uses a mass-spring network containing both edge springs and altitude springs. The use

of springs in mesh smoothing dates back to at least [69] as a generalization of Laplacian smoothing

(iteratively moving nodes to the centroid of their neighbors). They are a substantial improvement
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over Laplacian smoothing, since they can repel concentrations of nodes away from each other as

pointed out in [25]. The addition of altitude springs greatly improves element quality, since these

more directly resist element collapse, as discussed in [41].

The second, more promising, physics-based method uses a full finite element discretization of the

equations of elasticity to compute internal forces. Though a little more complicated to implement

(possibly explaining why finite elements apparently haven’t been used before in mesh generation),

they are more robust and give rise to higher quality meshes. They are a more natural way of describ-

ing and resisting three-dimensional distortions of elements, and allow for interesting generalizations.

For example, one idea for future work is to use the actual constitutive model of the material to be

simulated in the mesh generation phase, or perhaps some sort of adjoint or dual to it, in an effort

to get a mesh optimally suited for the simulation.

Currently the most useful technique (in terms of speed and mesh quality) is a direct optimization

of element quality. Freitag and Ollivier-Gooch[59] demonstrated that optimizing node positions in

a smoothing sweep, i.e. considering one node at a time and placing it at a location that maximizes

the quality of incident elements, is far superior to Laplacian smoothing in three spatial dimensions.

We combine this optimization sweeping with boundary constraints by first moving boundary nodes

in the incident triangles’ average normal direction by an amount proportional to the local signed

distance value. Then the optimization is constrained to only move boundary nodes in the tangential

direction. It is important to move boundary nodes gradually over several sweeps just as with physical

simulation, since otherwise the optimization gets stuck in local extrema. We also found it helpful

to order the nodes in the sweep with the boundary nodes first, their interior neighbors next, and

so on into the interior. Then we sweep in the reverse order and repeat. This efficiently transfers

information from the boundary compression to the rest of the mesh. Typically we do five sweeps of

moving the boundary nodes 1/3 of the signed distance in the mesh normal direction, then finish off

with five to ten sweeps moving boundary nodes the full signed distance to ensure a tight boundary

fit. To speed up the sweeps, we do not bother moving nodes that are incident on tetrahedra of

sufficiently high quality relative to the worst tetrahedron currently in the mesh. In the initial sweeps

we end up only optimizing roughly 10% of the nodes, and in the final sweeps we optimize 30%-50%

of the nodes.

While more efficient gradient methods may be used for the nodal optimization, we found a simple

pattern search (see e.g. [169]) to be attractive for its robustness, simplicity of implementation, and

flexibility in easily accommodating any quality metric. For interior nodes we used seven fairly well

spread-out directions in the pattern search (see table 5.1). We implemented the normal direction

constraint on boundary nodes simply by choosing five equispaced pattern directions orthogonal to

the average mesh normal at the node. The initial step size of the pattern search was 0.05 times the

minimum distance to the opposite triangle in any tetrahedron incident on the node (so we would be

sure that we wouldn’t waste time on steps that crush elements). After four “strikes” (searches at a
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x y z
1, 0, 0
0.2188, 0.9758, 0
0.2188, -0.5972, -0.7717
-0.0541, 0.2364, 0.9701
-0.9017, -0.3457, 0.2596
0.2186, -0.8664, 0.4489
-0.5882, 0.3562, -0.7260

Table 5.1: The vectors used for pattern search in optimizing the internal nodes of the mesh.

given step size that yielded no improvement in quality, causing the step size to be halved) we give

up on optimizing the node. For interior nodes we used as a quality metric the minimum of

a

L
+

1
4

cos(θM )

over the incident tetrahedra, where a is the minimum altitude length, L is the maximum edge length,

and θM is the maximum angle between face normals. This is a simple combination of the inverse

aspect ratio and the minimum dihedral angle: the larger it is, the better. For surface nodes we added

to this quality metric a measure of the quality of the incident boundary triangles, the minimum of

at

Lt
+

1
ψM

where at is the minimum triangle altitude, Lt is the maximum triangle edge, and ψM is the maximum

triangle angle. We found that including the extra terms beyond the tetrahedron aspect ratios helped

guide the optimization out of local minima and actually resulted in better aspect ratios.

5.6 Results

Meshes generated using this algorithm have been successfully used to simulate highly deformable

volumetric objects with a variety of constitutive models, e.g. the muscles in [163], as well as two

dimensional shells [28] (the “cloth” Buddha earlier in this thesis was a surface mesh taken from an

adaptive tetrahedral mesh with additional smoothing). Included here are three example meshes,

figures 5.1 (the cranium), 5.7 (the dragon), and 5.8 (the Buddha) in order of increasing complexity.

We track a number of quality measures including the maximum aspect ratio (defined as the

tetrahedron’s maximum edge length divided by its minimum altitude), minimum dihedral angle, and

maximum dihedral angle. The worst aspect ratios of our candidate mesh start at about 3.5 regardless

of the degree of adaptivity, emphasizing the desirability of our combined red-green adaptive BCC

approach. This number is reached by the green tetrahedra (the red tetrahedra have aspect ratios

of
√

2). In the more complicated models, the worst aspect ratio in the mesh tends to increase to
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Figure 5.7: Tetrahedral mesh of a model dragon (500K elements). The final compression stage can
be carried out with masses and springs, finite elements, or an optimization based method.
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Optimization results
Example Cranium Dragon Buddha
Max. aspect ratio 4.5 5.3 5.9
Avg. aspect ratio 2.3 2.3 2.3
Min. dihedral 18◦ 16◦ 16◦

Max. dihedral 145◦ 150◦ 150◦

Max./min. edge 94 94 100
Finite element results

Example Cranium Dragon Buddha
Max. aspect ratio 6.5 7.6 8.1
Avg. aspect ratio 2.1 2.2 2.3
Min. dihedral 17◦ 13◦ 13◦

Max. dihedral 147◦ 154◦ 156◦

Max./min. edge 94 94 100

Table 5.2: Quality measures for the example meshes. The aspect ratio of a tetrahedron is defined
as the longest edge over the shortest altitude. The max/min edge length ratio indicates the degree
of adaptivity.

around 6–8 for the physics based compression methods and to around 5–6 for the optimization based

compression. Dihedral angles typically range between 16◦ and 150◦ for optimization, but slightly

worse for physics-based methods.

Finite element compression takes slightly longer (ranging from a few minutes to a few hours

on the largest meshes) than the mass-spring method, but produces a slightly higher quality mesh.

While mass-spring networks have a long tradition in mesh generation, the finite element approach

offers greater flexibility and robustness that we anticipate will allow better three-dimensional mesh

generation in the future. However, the best method is currently the optimization based compression,

faster roughly by a factor of ten and producing higher quality meshes. Quality metrics are given in

table 5.2, along with an indication of the degree of adaptivity: the smallest elements in the meshes

were roughly 100 times smaller than the largest elements. Note that for optimization, the aspect

ratios are all below 6, i.e. less than twice the initial values from the red-green hierarchy.

5.7 Generalizations

The general theme of our algorithm—tile ambient space as regularly as possible, select a subset of

elements that are nicely connected and roughly conform to the object, then deform them to match

the boundary—is applicable in any dimension and on general manifolds. Figure 5.9 shows the result

of triangulating a two-dimensional manifold with boundary. We began with a surface mesh of the

dragon actually created as the boundary of a tetrahedral mesh from our method (with additional

edge-swapping and smoothing), and a level set indicating areas of the surface to trim away. We

kept a subset of the surface triangles inside the trimming level set and compressed to the trimming
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Figure 5.8: Tetrahedral mesh of a model Buddha (900K elements), adaptively refined to resolve
features on multiple scales.
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Figure 5.9: Our method is easily extended to create a triangle mesh of a manifold with boundary.
The peeled away regions of the dragon were modeled with a second level set.

boundary, making sure to stay on the surface. Note that quality two-dimensional surface meshes

with boundary are important for cloth simulation, especially when considering collisions.
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Chapter 6

A Sparse Level Set Structure

Level sets have been used in several places in this thesis: for representing collision objects in cloth and

rigid body simulations, giving the input to a tetrahedral mesh generation algorithm, and specifying

how to trim a surface mesh. To quickly review, by level set I mean an implicit representation

of a surface, defined as the set of points where some function φ(x, y, z) defined over all of space

is zero. This function is not given analytically but instead is discretely sampled on a grid and

reconstructed with interpolation. Usually it is preferable to make φ a signed distance function,

positive outside the object and negative inside with the magnitude equal to the distance to the

surface. This is typically only enforced approximately with numerical algorithms that seek to make

a finite difference approximation of ∇φ equal to one. The recent book by Osher and Fedkiw[131]

contains a detailed overview of level set algorithms and applications.

One of the major difficulties that level sets present is their storage requirements. Storing signed

distance on a full three dimensional grid is highly redundant, as typically only values very close to

the surface are actually referenced. Local level set methods[1, 134] reduce the computational cost

by only ever dealing with these nearby values, but still use the full grid representation and thus have

the same storage problem.

While many geometric applications such as those in this thesis incur large overheads by using

three-dimensional grids, it should be mentioned that in some applications, notably involving fluid

flow, there are several other variables such as velocity which must be stored on three-dimensional

grids and thus the level set signed distance function is a relatively small overhead. However, standard

level set algorithms have a difficult time maintaining sharp features. This has been resolved for

certain classes of flows (namely those where the level set characteristics aren’t destroyed in shocks

or created in rarefactions) with the hybrid particle-level set algorithm of [56, 57], but for other uses

of level sets in physics, the best route currently may be to refine the level set grid beyond the other

variables. This again necessitates the use of efficient storage for the level set to avoid large overhead.

The most popular approach to reduce storage is the use of an octree instead of a uniform grid

75
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(see e.g. [158, 159, 60, 136]). Assuming that in any O(n3) grid there are only O(n2) cells close to the

surface, as is the case for smooth enough geometry1, it can be seen that an octree grid uses optimal

O(n2) storage.

Unfortunately, the overhead involved in an octree representation isn’t negligible. Random queries

(as may occur in collision detection, ray-tracing, etc.) are O(logn) instead of O(1), though if there

is some spatial coherency in a sequence of queries, paths through the octree may be cached to

substantially improve this. More fundamental is the overhead implied by the pointer structures,

hidden in the asymptotic O() notion: even with careful memory management there are lots of extra

pointers required. For static octree level sets, one can make do with just one pointer per cell (pointing

to an array of the children), and possibly even eliminate that pointer for the maximum depth cells

using some additional special case code. However, for dynamic level sets, or operations on octrees

such as ensuring gradual gradations from coarse cells to fine cells, other pointers are needed, such

as pointers to neighboring cells. The worst overhead, however, is computational cost on modern

architectures: the amount of indirection required and the lack of sequential memory access makes

cache pre-fetching largely ineffective.

The other problem with octrees is that many dynamic level set algorithms cannot easily be

implemented, motivating the work on alternatives in [158, 159]. For advecting or reinitializing level

sets, it is important to use a high resolution Hamilton-Jacobi method (e.g. 5th order WENO[89]),

but these usually require several uniformly spaced values on either side of the surface. Again, at

the expense of additional code and more storage overhead, the octree could be arranged to include

a larger band of cells around the surface, but it is awkward.

Another data structure that has been used to reduce storage requirements is the run-length

encoded volume of Curless and Levoy[43]. Long runs of voxels outside or inside the surface are

compressed to just the length of the run. While the double buffering algorithm in that paper allowed

efficient updates when proceeding in the scanline order, it is not as efficient for other operations such

as random point queries (e.g. in the collision algorithms presented in this thesis), the fast marching

method, or local updates as in the sculpting application below. On the other hand, the structured

operations of finite difference methods for PDE’s would require only a simple generalization of the

double buffering technique to handle larger stencils: this may be an attractive alternative in the

future for computational physics.

6.1 Sparse Block Grids

I propose a different approach: the sparse block grid. Instead of the octree’s many levels of resolution,

just two levels are used. A coarse grid contains flags for inside/outside in cells (or optionally, an

1This assumption is useful for heuristics, but is not necessarily true, particularly in computer graphics. Typically
the grid size is not an independent variable, but instead is chosen to be as coarse as possible while still representing
the geometry faithfully. Thus it can be expected that a bit more than O(n2) cells will be close to the surface.
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approximate signed distance for use far from the surface), and pointers to fine subgrids near the

surface. Another way of thinking about this is as a large grid divided into blocks, but made sparse

so only some of those blocks, the ones near the level set surface, actually exist.

The fundamental question that needs to be answered is how large the fine subgrids, the blocks,

should be. For reasons of efficiency, they should be large enough to make the pointer overhead

negligible and to fill cache lines so that pre-fetching can be exploited: a reasonable minimum is

5 × 5 × 5. However, they cannot be too large or memory will be wasted. For a c3 coarse grid with

blocks of size f3, the total memory scales like

c3 + c2f3

accounting for the coarse grid in the first time, and the O(c2) populated blocks in the second. To

achieve a resolution equivalent to an n3 full grid, we need n = cf . Minimizing the above expression

then gives c = n3/4 and f = n1/4, with memory scaling like n2+1/4. This is a little more than an

octree, but not far off, and after accounting for overhead is very competitive for the size of structures

in use today. As an example, for n ≈ 1000 this suggests blocks of size 63 and a coarse grid of size

1673.

As an aside, to handle very high resolution where the O(n2.25) scaling isn’t good enough, it is

simple to add one extra level of grid—that is, very fine sub-grids inside the intermediate sub-grids. A

simple scaling analysis shows that for three levels, one wants a coarse grid of size n9/13, intermediate

sub-grids of size n3/13, and fine sub-grids of size n1/13, for a total memory use scaling like n2+1/13.

Adding further levels pushes this down to n2+1/40, n2+1/121, . . . . It is questionable whether in the

foreseeable future n will ever be large enough to warrant going to four or more levels.

Another option that should be mentioned is to replace the coarse grid with a hash-table that

stores pointers to the fine sub-grids and flags for the unpopulated blocks inside the object (but not

outside, since there are of course infinitely many such blocks). This allows for easy extension of the

domain without a priori limits, and since most of the computation will be done with reasonably

sized blocks the constant factor overhead for the hash look-up instead of a simple array look-up

should be negligible. I have not tested this yet.

Updates to the structure are straightforward. When a block’s minimum distance to the surface

is too large after a modification of the level set, it is deallocated and replaced with a null pointer and

an inside/outside flag determined by the sign of the block’s values. When the boundary values of a

block next to an unpopulated block are sufficiently close to zero, the neighboring block is allocated

and initialized. This initialization uses the existing neighboring blocks for boundary conditions, say

with the fast marching method[171, 151] or fast sweeping method[170] applied locally. Due to the

hyperbolic nature of the Eikonal equation defining signed distance functions, this is correct: those

boundary conditions are all the information that is required for initialization, and the new block

should not influence the values in existing blocks.
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The one difficulty is when two or more neighboring blocks are created simultaneously: their

initialization might not be independent mathematically, with information needing to be transferred

either or both ways across the shared boundaries. There are two approaches I suggest. The first is

to initialize the blocks in an arbitrary order, effectively allowing information transfer only one way

across the shared boundaries. This may lead to discontinuities at the boundaries where information

needs to flow the other way, so in a second pass, a PDE-based reinitialization (e.g. [161]) corrects

the problem while using the first pass as a good initial approximation for efficiency. The second

approach, where higher order accuracy isn’t critical but speed is (such as the interactive sculpting

tool presented below), is to couple neighboring blocks in the fast sweeping method, as in domain

decomposition: sweeps are performed on the blocks alternately, with information passed across the

common boundary each time. If convergence is required this may take many more sweeps than a

single block would need, but the answer after the usual number of sweeps is generally good enough.

If the level set function is periodically reinitialized as a matter of course, problems in the original

initialization are quickly eliminated anyhow.

The standard numerical algorithms for local level sets can be rewritten to use this structure with

no mathematical changes. The code becomes slightly more complex as a result of having to proceed

in blocks, but if the blocks are large enough (say 5 × 5 × 5) so that stencils cannot overlap more

than two blocks in any direction, it is quite manageable and definitely preferable compared to octree

structures.

6.2 Example Application: Sculpting

This section outlines a use of the sparse block grid structure for interactive sculpting of level sets.

While most modeling is done with parametric surfaces, implicit surfaces are a useful complement.

Large deformations, topology changes, and boolean CSG operations which be difficult with param-

eterized models are transparently handled by level sets, and PDE methods provide robust surface

operations such as smoothing through curvature motion.

Previous work begins with Galyean and Hughes[61] who used a smoothed characteristic function

(instead of signed distance) on full grids with local updates from various abstract tools that smoothly

modify the surface locally, controlled by a 3D input device. Wang and Kaufman[181] developed

alternative sharp carving and sawing tools controlled by a simple mouse, again operating on a full

grid. Bærentzen[8] supported CSG and smooth tools with an octree representation. Frisken et

al.[60, 136] moved to signed distance functions on octrees. Bönning and Müller[24] removed the

limitation of a pre-determined bounding box with a structures inspired by virtual memory paging.

Museth et al.[123] added to a full grid representation advanced surface editing operators based on

PDE’s.

The tool developed here implements very simple PDE-based operators on top of the sparse block
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Figure 6.1: A screenshot from the interactive level set sculpting application (at 2403 resolution).

grid data structure. The mouse is used as the input device: a ray is cast from the eye through the

mouse pointer on the screen to the level set surface, and the intersection is used as the base of the tool

in use. Raise and lower tools are computed as motion in the normal direction with speed determined

by radial distance (a hat function) from the intersection point. Smoothing and roughening tools

also use a hat function of radial distance to modulate motion by mean curvature. The level set

is continually reinitialized to signed distance using the fast sweeping method on a block-by-block

basis, as discussed in the previous section, so that the PDE approximations of the tools stay first

order accurate. The radius and magnitude of the hat function controlling the different tools is fully

adjustable.

For the interactive rendering, frustum culling is done on the coarse grid, and then an estimate of

screen size for each coarse voxel are used to select the rendering method. Coarse voxels far away are

rendered with a single point splat of the appropriate size, with the location taken by projecting the

center of the voxel onto the level set surface with a normal determined by a central finite difference,

and at intermediate distances, each fine grid cell intersected by the level set is rendered with a

point splat (see [144] for a more sophisticated multiresolution point splatting algorithm). For close

distances, a variation of Surface Nets[66] (an alternative to Marching Cubes[108] for triangulating

isosurfaces) is used. This was enough to achieve interactive rates for grids equivalent to 20003 on

a standard desktop PC, but is certainly not optimal: the triangulation is computed from scratch

every frame when most of the time it has only changed locally or simply has been rotated.

An interactive rendering technique that was explored for close-up rendering of isosurfaces is
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camera space Marching Cubes: the signed distance function is resampled on a grid in camera space

aligned with the view frustum (similar to [142]) and Marching Cubes is performed there. This

automatically gives a level-of-detail rendering where the sampling density in world space depends

on distance to the camera, and gets finer as the camera zooms in. In effect, this is ray-casting

on a coarse screen grid with informed interpolation between rays, and thus can very easily benefit

from the accelerations natural to ray-casting signed distance functions (frustum culling; occlusion

culling; acceleration by taking large steps, i.e. skipping grid cells, when the distance to the surface is

large). Unfortunately this suffers from severe resampling problems when the camera is not zoomed

in: without prefiltering the signed distance function, disastrous errors may be introduced in the

isosurface including spurious holes. Simple convolution filters do not cure this problem, though

a nonlinear local minimum filter[83] can at least prevent the introduction of holes though it may

significantly overestimate the extent of the isosurface. However, this approach is still useful in

debugging level set algorithms, allowing the user to zoom in and see the details of the isocontour of

the polynomial reconstruction of the signed distance function between samples.

The final addition to the application is a simple refinement procedure: if more resolution is

desired, either the coarse grid or the fine sub-grid size is doubled (the selection is made based on

which will use less memory). The tricubic B-spline subdivision rule is used to determine new sample

values.

See figure 6.1 for a screenshot of sculpting. Subjectively the tools make it very simple and fairly

intuitive to quickly rough out objects, but it is unwieldy for finishing them off and for texturing.

This is probably much better done in a parametric modeler.

Final renderings (see figure 6.2) were made with a ray-tracer. Instead of trilinear interpolation,

a C2 tricubic interpolation was used to get a smooth surface without needing to nonphysically

adjust normals. Marschner and Lobb[111] explored several possibilities for tricubic interpolation;

here I instead used an interpolating C2 tricubic spline. Starting with the Catmull-Rom C1 Hermite

cubic spline as an initial guess, I used Gauss-Seidel iteration to quickly solve the strongly diagonally

dominant linear system for the derivative values needed for C2 smoothness. As an option in the

renderer, the signed distance function was perturbed with noise at a sub-pixel resolution to directly

simulate micro-faceted glossy surfaces.
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Figure 6.2: A sculpted sparse level set, composited into a real photograph.
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[146] J. Sauer and E. Schömer. A constraint-based approach to rigid body dynamics for virtual

reality applications. In Proc. ACM Symp. on Virtual Reality Software and Technology, pages

153–162, 1998.

[147] H. Schmidl and V. J. Milenkovic. A fast impulsive contact suite for rigid body simulation.

Transactions in Visualization and Computer Graphics, in review, 2002.
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