
ORDERING FOR FACTORED APPROXIMATE INVERSE
PRECONDITIONERS∗

ROBERT BRIDSON† AND WEI-PAI TANG†

1. Summary. We highlight how ordering can play an important role in the per-
formance of factored approximate inverse preconditioners, concentrating on the AINV
scheme of Benzi and Tůma ([1],[2]). After discussing some theory and heuristics for
structure-based ordering schemes, we demonstrate that several practical algorithms
can dramatically speed up the calculation of the preconditioner. Furthermore, these
orderings generally improve convergence of Krylov subspace methods, especially Min-
imum Inverse Priority, a new algorithm we propose here.
Recalling the problems anisotropy can pose for ILU (e.g. [6], [7], [8]) and notic-

ing some discrepancies in testing data with highly anisotropic matrices, we are lead
to consider the benefit of weighted orderings. These are algorithms that take into
account the magnitude of entries in the original matrix as well as its structure. A
simple demonstration problem shows the potential of weighted orderings, significantly
improving both the speed of preconditioner calculation and the convergence to solu-
tions. We finish by proposing a weighted version of Nested Dissection which shows
promise for a robust high-performance ordering.

2. Context. Iterative methods for solving sparse linear systems rely on good
preconditioners—the preconditioner not only must speed convergence, but also must
be relatively inexpensive to calculate and apply. Sparse approximate inverse precon-
ditioners are of particular interest today, since their application only requires (easily
parallelized) matrix-vector multiplication. These methods can be divided into two
classes: those that form an approximation to the inverse matrix (e.g. [4], [11], [14])
and those that approximate the inverses of the matrix’s LU factors (e.g. [1], [2], [12]).
This second class has the benefit of guaranteeing that that the preconditioner is non-
singular, and more importantly it seems that the factored form is more effective per
nonzero[3]. However, the inverse factors are critically dependent on the ordering of
the matrix—indeed, in general they will not even exist for some orderings.

In this paper we focus our attention on the AINV algorithm[2], which, via implicit
Gaussian elimination with small-element dropping, constructs a factored approximate
inverse:

A−1 ≈ ZD−1W T

where Z and W are unit upper triangular, and D−1 is diagonal. In [2] Benzi and
Tůma began an investigation of ordering schemes for AINV, which we elaborate here.
Notice that many of the results found here should apply to other factored approximate
inverse schemes (e.g. see [12]).

3. Goals. Intuitively, for a more effective preconditioner we need a more accurate
approximation to the true inverse factors. However, sparsity constraints do not allow

∗ The work was supported by the Natural Sciences and Engineering Council of Canada, the Infor-
mation Technology Research Centre (which is funded by the Province of Ontario), and RIACS/NASA
Ames NAS 2-96027.

†Department of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
email: rebridso@yoho.uwaterloo.ca, wptang@yoho.uwaterloo.ca

1



us to simply retain more nonzeros, and thus there are two basic goals behind the
ordering schemes:

1. reduce the number of nonzeros in the true inverse factors, so we will be
dropping less of them, and

2. reduce the magnitude of the nonzeros in the true inverse factors, so what we
drop will be of less importance.

We address the first goal in section 4, and the second in section 5. The theory in
section 4 will also show a more dramatic effect of the first goal: if an ordering reduces
the number of nonzeros in the true inverse factors, the calculation of the preconditioner
can correspondingly be accelerated.

4. Structural Orderings. We restrict our discussion to symmetric positive-
definite matrices, although our orderings may of course be applied to the symmetric
part of any matrix.

Definition 4.1. Let A be a square matrix with a triangular factorization A =
LU . The IF fill of A is defined to be the total number of nonzeros in the inverses of
L and U, assuming no cancellation in the forming of those inverses.

From Gilbert[10] and Liu[13], we have the following graph theoretic characteriza-
tion of the structure of the inverse Cholesky factor:

Theorem 4.2. Let A be a SPD matrix with Cholesky factor L. Then assuming
no cancellation the structure of Z = L−T corresponds to the transitive closure of the
graph of LT , that is, for i < j we have (L−1)ij 6= 0 if and only if there is a dipath from
j to i in the (directed acyclic) graph of LT . Furthermore, this is the same structure
as given by the transitive closure of the upper triangular part of A, or as given by the
transitive closure of the elimination tree of A.

Notice that the last structure characterization simply means that Zij 6= 0 if and
only if j is an ancestor of i in the elimination tree. This allows us to significantly
speed the computation of the preconditioner given a bushy elimination tree, as well
as allowing for parallelism—for the calculation of column j in the factors, only the
ancestor columns need be considered.
These results suggest orderings that delay long dipaths in the triangular part of

A (i.e. paths in A with monotonically increasing node indices), as these cause lots of
IF fill, or alternatively orderings which give short and bushy elimination trees.
Another useful characterization of IF fill using notions from [9] allows us to calcu-

late the number of nonzeros in each column of the inverse factors very cheaply during
a symbolic factorization:

Theorem 4.3. Zij 6= 0 if and only if j is reachable from i strictly through nodes
eliminated previous to i—or in terms of the quotient graph model, if i is contained in
a supernode adjacent to j at the moment when j is eliminated.

There are several existing ordering methods which might do well in reducing IF
fill, based on the results above: e.g. Red-Black, Minimum Degree, Nested Dissection.
Our new ordering is based on theorem 4.3:

Minimum Inverse Penalty (MIP). The minimum degree methods are built
around a symbolic Cholesky factorization of the matrix, at each step selecting the
node(s) of minimum penalty (meaning degree, external degree, or various estimates)
for elimination. In MIP, we base the penalty of a node i on the number of nonzeros
created in the inverse factor L−T if i were ordered next. Letting this quantity be

2



Table 4.1

Comparison of unweighted orderings. IF fill is how many thousands of nonzeros in the
true inverse factors of the symmetric part, Pre-T is the time to compute the preconditioner, Its is
the number of iterations for convergence, Sol-T is the time taken by the iterations, and Total-T is
the total time taken including ordering. ‘N/o’ indicates no re-ordering of the given matrix.

IF fill Pre-T Its Sol-T Total-T
Matrix n/o MIP n/o MIP n/o MIP n/o MIP n/o MIP

ADD32 9083 52 33.9 3.7 6 5 0.6 0.5 34.5 4.3
ALE3D 365 404 14.3 15.9 126 33 18.4 4.9 32.7 21.2
BSSTK14 1554 573 6.2 3 77 64 9.3 7.9 15.5 11.3
MEMPLUS 156022 1736 832 54 135 21 67.7 11.8 900 66.5
ORSREG1 2432 643 7.6 3.3 43 42 2.4 2.4 10 5.9
SAYLR4 6352 2182 8.5 4.1 1386 158 71.8 8.3 80.3 12.9
WATT2 1723 583 7.4 2.8 77 7 3.5 0.3 10.9 3.3

Zdeg i, and the current number of uneliminated neighbours (not counting supernodes)
of i be Udeg i, we found Penalty i = 2Zdeg i + Udeg i to be a fairly effective penalty
function.
We tested these orderings on 25 matrices from a variety of fields, mostly from

the Harwell-Boeing collection, with a 180MHz Pentium Pro. As a sample of these
results, table 4.1 compares the performance of the given ordering versus MIP on a
few matrices. In all cases we chose a threshold for AINV so that the preconditioner
would have roughly the same number of nonzeros as the original matrix. Our test
solve with BiCGSTAB used the vector of all ones as the solution, stopping when the
residual norm was reduced by a factor of 10−9.
Although the improvement in performance is considerable for most of our test

matrices, we must warn that ordering didn’t seem to solve the robustness problem—a
few matrices remained insoluble even after ordering.

5. Weighted Orderings. We discovered several discrepancies in the general
trend that reducing IF fill gives faster convergence. This happens with anisotropic
matrices in particular—hardly surprising recalling the problems anisotropy poses for
ILU. Thus a heuristic for handling anisotropy is needed for factored approximate
inverses.
For this we concentrate on our second goal, reducing the magnitude of the entries

in the true inverse factors. As in [5] we expect that strong connections should be
delayed in the ordering, that is, we should order so that large off-diagonal entries
appear as far to the end of the matrix as possible. In our research we evaluated
the size of an off-diagonal entry Aij simply by the magnitude Mij = |Aij |/

√

|AiiAjj
(assuming A has already been symmetrized).
Before considering weighted ordering algorithms, a simple demonstration of the

effect of anisotropy is called for. The matrix SINGLEANISO comes from a 5-point
finite difference discretization on a regular 31× 31 grid of the PDE:

uxx + 1000uyy = F

Here the edges of A corresponding to the y-direction are 1000 times heavier than
those corresponding to the x-direction. The first ordering (“Strong-first”) we consider
block-orders the grid columns with nested dissection, and then internally orders each
block with nested dissection—this brings the strong connections close to the diagonal.
The second (“Weak-first”) block-orders the grid rows instead, pushing the strong
connections away from the diagonal, delaying them until the last. These are illustrated

3



Fig. 5.1. The two orderings of SINGLEANISO, depicted on the domain. Lighter
shaded boxes indicate nodes ordered later.

Strong−first ordering Weak−first ordering

Table 5.1

Performance of strong-first ordering versus weak-first ordering for SINGLEANISO.

Pre-T is the time to compute the preconditioner, Its is the number of iterations required for solution,
and Sol-T is the time taken by the iterations.

Ordering Pre-T Its Sol-T

Strong-first 0.51 29 0.4
Weak-first 0.38 25 0.25

in figure 5.1 where each square of the grid is shaded according to its place in the
ordering. Both orderings produce a reasonable IF fill of 103,682, with isomorphic
elimination trees. However, they give very different performance—see table 5.1. In
all respects the weak-first ordering is significantly better than the strong-first one. In
figure 5.2 we plot the decay of the entries in the inverse factors resulting from the
two orderings, and show parts of those factors. The much smaller entries from the
weak-first ordering confirm our heuristic.

In creating weighted orderings to implement the heuristic on general matrices, we
simply tried modifying the successful structural orderings. Our most promising one
was based on a multi-level/spectral nested dissection algorithm:

Weighted Nested Dissection (WND). Consider the spectral bipartition algo-
rithm. Finding the Fiedler vector is equivalent to minimizing (over a space orthogonal
to the constant vectors):

∑

(i,j) is an edge

(xi − xj)
2

We then make the bipartition depending on which side of the median each entry lies.
Notice that the closer together two entries are in value—i.e. the smaller (xi − xj)

2

is—the more likely those nodes will be ordered on the same side of the cut. We would
like weakly connected nodes (where Mij is small) to be in the same part and the
strong connections to be in the edge cut, so we instead try minimizing the following
weighted quadratic sum:

∑

(i,j) is an edge

(xi − xj)
2

Mij

4



Fig. 5.2. Comparison of the magnitude of entries in inverse factors for the different
orderings of SINGLEANISO. The close-up images of the actual factors are shaded according to
the magnitude of the non-zeros—darker means bigger.

  0  10000 20000 30000 40000 50000
10

−15

10
−10

10
−5

10
0

Entries sorted by magnitude

M
ag

ni
tu

de
s

Comparing decay in factors

Strong−first

Weak−first

Close−up of strong−first

Close−up of weak−first

Table 5.2

Comparison of weighted orderings. IF fill is how many thousands of nonzeros in the true
inverse factors of the symmetric part, Pre-T is the time to compute the preconditioner, Its is the
number of iterations for convergence, and Sol-T is the time taken by the iterations.

IF fill Pre-T Its Sol-T
Matrix ND WND ND WND ND WND ND WND

ADD32 134 669 3.2 2.9 5 6 0.5 0.6
ALE3D 197 639 6.4 15.7 68 34 10 5
BSSTK14 402 1526 2 3.6 107 85 13 10.3
MEMPLUS 2362 113777 59.4 54.7 17 19 9.7 15
ORSREG1 502 1913 2.7 4.6 39 35 2.2 2
SAYLR4 1153 5091 2.3 2.3 173 92 8.9 4.8
WATT2 353 1251 1.8 1.9 8 6 0.4 0.3

This corresponds to finding the second smallest eigenvalue of the weighted Laplacian
matrix for the graph defined by:

(i, j) is an edge if and only if Aij 6= 0, weight(i, j) =M−1ij

Thus we modify Nested Dissection simply by changing the Laplacian used in the
bipartition step (at the coarsest level) to this weighted Laplacian.
In table 5.2 we show the difference in Nested Dissection’s performance with this

weight scheme. We do not include the total time here, since our ordering algorithms
ran in interpreted MATLAB code. Though the comparison is not as dramatic as be-
tween no ordering and good structural orderings, WND typically does improve conver-
gence. Sometimes this is offset by the increased time to compute the preconditioner—
probably due to WND’s poor IF fill reduction, roughly four times worse than ND.
However, the key observation is that WND still performs far better than one would
expect based on the IF fill. This indicates we are getting much faster decay, just as
our heuristic suggested. There is clear promise for a more sophisticated version of
WND which, while keeping the same superior rate of decay, wouldn’t suffer so much
IF fill and thus could outperform any structural ordering.

5



REFERENCES

[1] M. Benzi, C. Meyer, and M. Tůma, A sparse approximate inverse preconditioner for the con-
jugate gradient method, SIAM J. of Sci. Comput., 17 (1996) pp. 1135-1149.

[2] M. Benzi and M. Tůma, A sparse approximate inverse preconditioner for nonsymmetric linear
systems, Tech. Rep. TR-PA-96-15, CERFACS, 1996. To appear in SIAM J. Sci. Comput.,
19 (1998).

[3] E. Chow and Y. Saad, Approximate inverse techniques for general sparse matrices, Colorado
Conference on Iterative Methods, April 5–9, (1994).

[4] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM
J. Sci. Comput., 19 (3), May 1998.

[5] S. Clift, H. Simon, and W.-P. Tang, Spectral ordering techniques for incomplete LU precondi-
tioners for CG methods, manuscript.

[6] S. Clift and W.-P. Tang,Weighted graph based ordering techniques for preconditioned conjugate
gradient methods, BIT, 35 (1995), pp. 30–47.

[7] E. D’Azevedo, P. Forsyth, W.-P. Tang, Towards a cost-effective ILU preconditioner with high
level fill, BIT, 32 (1992), pp. 442–463.

[8] I. Duff and G. Meurant, The effect of ordering on preconditioned conjugate gradients, BIT, 29
(1989), pp. 635–637.

[9] A. George and J. Liu, The evolution of the minimum degree ordering algorithm, SIAM Review,
31 (1989), pp. 1–19.

[10] J. Gilbert, Predicting structure in sparse matrix computations, SIAM J. Matrix. Anal. Appl.,
15 (1994), pp. 62–79.

[11] M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM J.
Sci. Comput., 18 (1997), no. 3, pp. 838–853.

[12] L. Kolotilina and A. Yeremin, Factorized sparse approximate inverse preconditionings I. theory,
SIAM J. Matrix Anal. Appl., 14 (1993), pp. 45–58.

[13] J. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix. Anal. Appl., 11
(1990), pp. 134–172.

[14] W.-P. Tang, Towards an effective sparse approximate inverse preconditioner. To appear in
SIAM J. Matrix. Anal. Appl., 1998.

6


