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Figure 1: Frames from an animation of developable cloth, with complex collisions.

Abstract

We present a new discretization for the physics-based animation
of developable surfaces. Constrained to not deform at all in-plane
but free to bend out-of-plane, these are an excellent approximation
for many materials, including most cloth, paper, and stiffer ma-
terials. Unfortunately the conforming (geometrically continuous)
discretizations used in graphics break down in this limit. Our non-
conforming approach solves this problem, allowing us to simulate
surfaces with zero in-plane deformation as a hard constraint. How-
ever, it produces discontinuous meshes, so we further couple this
with a “ghost” conforming mesh for collision processing and ren-
dering. We also propose a new second order accurate constrained
mechanics time integration method that greatly reduces the numer-
ical damping present in the usual first order methods used in graph-
ics, for virtually no extra cost and sometimes significant speed-up.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation
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1 Introduction

Many deformable surfaces, ranging from most types of cloth to pa-
per [Kergosien et al. 1994; Bo and Wang 2007] and stiffer materi-
als, are well approximated as developable: they bend out-of-plane
but do not visibly stretch or compress in-plane. Even for materials
which do allow some in-plane deformation, e.g. small amounts of
shearing in a fabric relative to the warp and weft directions, if the
simulator cannot handle the developable limit there are bound to be
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numerical problems as users attempt to approach it. We thus restrict
our attention in this paper to the fully developable case, imposing
zero in-plane deformation as a hard constraint, though of course our
technique is easily generalized to stretchy or shearable materials.

Unfortunately, standard graphics simulators break down precisely
at this limit. For example, for a triangle mesh with the usual piece-
wise linear elements, developability implies that each triangle re-
main rigid. For any nontrivial bending this constraint must be vi-
olated: the mesh can essentially only crease along straight lines
already present in the mesh as edges: it locks.

The general phenomena of locking, i.e. the inability of a given finite
element space to approximate solutions [Brenner and Scott 2002;
Hauth 2004], was recently brought to light in graphics for volume-
conserving volumetric simulations by Irving et al. [2007]. In the
developable surface case, Liu et al.’s rigorous analysis shows that
a general n-triangle conforming mesh only has O(

√
n) degrees of

freedom [2007], with significant mesh-dependent artifacts. Simi-
lar arguments show that quad meshes with bilinear elements suffer
from the same locking problem, as do many higher order polyno-
mial elements. For stiff but not fully constrained cloth models, e.g.
where edges may change their length slightly, locking manifests as
a spurious increased resistance to bending, proportional to the in-
plane stiffness rather than the true bending stiffness.

The classic solution to the locking problem for volume-conserving
deformations is to use nonconforming elements [Brenner and Scott
2002]. Rather than reduce the number of constraints by averaging
over larger regions as Irving et al. propose, finite element practi-
tioners traditionally increase the number of variables, by putting
the variables at the midpoints of edges (in 2D) or faces (in 3D).1

We adopt this approach for the deformable surface case, putting
our position variables at the midpoints of the edges rather than the
vertices in the mesh (see figure 2). This now gives us 3e ≈ 9v vari-
ables, and to make each linear triangle rigid only implies 3t ≈ 6v
constraints, leaving us with approximately 3v true degrees of free-
dom for bending—allowing the method to accurately approximate
developable surfaces. The first part of our paper gives the details
on this approach: how to enforce developability, special treatment
of boundary elements, and a simple bending model.

However, the discrete surfaces we work with are nonconforming,
i.e. no longer necessarily continuous: adjacent triangles only have
to meet at the midpoint of the common edge, not necessarily at ver-
tices. This clearly poses a problem for robust collision processing

1This may be identified as the lowest order Crouzeix-Raviart element.



Figure 2: Schematic of nonconforming variables, located at mid-
points of edges between triangles. While continuous at these points,
the surface may be discontinuous along the rest of each edge.

and rendering. We therefore couple a “ghost” conforming mesh
(with the usual vertex variables) to the simulation, used just for col-
lisions and rendering.

Finally, since we impose developability as a hard constraint, we turn
to time integration of constrained mechanics. The usual schemes in
graphics unfortunately suffer from strong numerical damping with
nonlinear constraints, as energy is erroneously transferred to con-
strained modes and projected out. We propose a new second order
accurate multistep method, based on BDF2 and simple position-
based constraint projection. This both reduces numerical damp-
ing and speeds projection (since we remain closer to the constraint
manifold), without need for stabilization or velocity projection.

2 Previous Work

Cloth simulation has a long history within computer graphics; we
highlight here just a sampling of the relevant papers from the stand-
point of the developable limit.

Provot [1995] worked with mass-spring models, introducing a loose
constraint on edges to not deform by more than 10% with a sim-
ple Gauss-Seidel iteration. Bridson et al. [2003] demonstrated im-
proved buckling behavior if edges were (loosely) constrained to not
compress at all, just stretch. The critical aspect of this approach,
though not identified at the time, was that triangles were left with
some freedom to deform, fortuitously avoiding the locking prob-
lem. Of course, this can’t realistically handle the many materials
which more severely limit strain, and the Gauss-Seidel constraint
iteration tends to induce mesh-dependent artifacts. This paper also
makes use of the robust collision processing algorithm (for con-
forming triangle meshes) developed by Bridson et al. [2002] from
earlier work by Provot [1997].

Baraff and Witkin [1998] instead proposed a semi-implicit Back-
wards Euler integrator to avoid the stability time step restriction
plaguing explicit time integration of stiff models. Later authors ar-
gued that the strong numerical damping present in Backwards Eu-
ler was responsible for the fairly smooth appearance of Baraff and
Witkin’s results; we suspect a large share of the problem was lock-
ing, as very stiff in-plane forces brought the material model close
to developable, causing spurious numerical resistance to bending.

Choi and Ko [2002] introduced the second order accurate BDF2
method to cloth simulation, which features much reduced damping
yet still has stiff decay [Ascher and Petzold 1998], of crucial impor-
tance for dealing with stiff systems.2 They also fortuitously avoided
locking with their implicit model of the buckling instability, allow-
ing edges in their model to compress easily while still offering stiff
resistance to stretch. (This can also be viewed as using biphasic
springs, with lower resistance to compression than stretch.) This

2By contrast, implicit symplectic integrators, such as certain Newmark

schemes, cannot possess stiff decay and thus exhibit objectionable temporal

aliasing of high frequency modes into low frequency modes when using

large time steps.

is an attractive solution for much of the large-scale motion of the
cloth, but the buckling model causes small-scale details to remain
implicit—i.e. not visible in the simulation mesh. Attempts at pro-
cedurally adding in the missing detail have met with mixed success
(e.g. [Volino and Magnenat-Thalmann 1999; Kang and Cho 2002;
Tsiknis 2006]).

More recently Goldenthal et al. [2007] demonstrated an effective
approach to constraining a quad-dominant cloth mesh to zero de-
formation along the warp and weft directions. They avoid locking
by requiring most of the mesh to use quad elements, and by not
constraining shearing: this leaves enough degrees of freedom to
accurately and beautifully capture many fabrics of interest, but it
cannot be extended to the developable no-shear limit or to triangle
meshes. Our new constrained mechanics time integration scheme is
a multistep extension of Goldenthal et al.’s fast projection method.

Bergou et al. [2006] introduced the nonconforming elements we
use in the context of deriving a compact stencil for bending forces
on conforming meshes; our work generalizes this to use them for
in-plane dynamics to solve locking.

Liu et al. [2007] imposed developability as a constraint on con-
forming triangle meshes, proving that n triangles give you O(

√
n)

degrees of freedom. Unfortunately, those degrees of freedom suffer
from mesh-dependent artifacts which do not vanish under refine-
ment: this is the clearest illustration in the literature of the locking
problem we face, and motivates why we need a new method.

3 A Nonconforming Element Discretization

We begin with a regular triangle mesh in parameter or “object”
space, with the midpoint of each edge i at parameter space posi-
tion pi as in figure 2. Each edge variable also has a world space
position xi, a velocity vi, etc. Within a triangle with edges i, j, and
k, we extend variables with linear interpolation/extrapolation: e.g.
from geometric similarity the world space position of the vertex lo-
cated at the corner opposite edge i is xj + xk − xi. We can also
phrase this in terms of piecewise linear basis functions {φi}, where
φi(p) is 1 all along edge i and zero at the midpoints of all other
edges: x(p) =

P

i
xiφi(p).

The mass mi associated with edge i is simply a third of the mass
of the sum of the masses of the incident triangles; these can be
assembled into a diagonal mass matrix M , with each mass repeated
three times. Newton’s law is then d2x/dt2 = M−1F , where F is
a vector of the net forces on each edge.

For a regular elastic material, we could use the usual Galerkin fi-
nite element discretization (see Brenner and Scott [2002] for ex-
ample), integrating gradients of the nonconforming basis functions
over each triangle as appropriate to get a stiffness matrix, but—
crucially—avoiding integrating over the jump discontinuities on the
edges between triangles.

However in the developable limit we take, an equivalent but simpler
formulation is possible. The deformation gradient in each trian-
gle is the gradient of world space position w.r.t. parameter values.
For linear elements, this is constant in each triangle; to avoid in-
plane deformation, this gradient matrix must be orthogonal, i.e. the
world space pose of each triangle must be a rigid transformation
of the parameter space pose. A triangle is rigid if and only if the
distance between any two edge midpoints remains constant, giving
three constraints per triangle of the form

cij(x) = ‖xi − xj‖2 − d2
ij = 0 (1)

where dij is the parameter space distance between edge midpoints
i and j. We assemble all of these constraints in one column-vector-
valued function C(x).



Figure 3: On the left is a square of developable surface pinned
at two corners: we enforce zero in-plane deformation to a relative
error tolerance of 10−4, giving virtually no sag along the top edge.
Extra constraints ensure realistic behavior at the boundaries. To
the right is a irregularly meshed nonplanar shirt worn by a moving
character.

This is now a discrete constrained mechanics problem, with La-
grange multiplier constraint forces of the form

Fc =

„

∂C

∂x

«T

λ = JT λ, (2)

where J = ∂C/∂x is the Jacobian of the constraint function and
λ is a vector containing one Lagrange multiplier per constraint. In
section 5 we will discuss methods for integrating this motion.

3.1 Boundary Constraints

While this model is robust when the motion of the triangles along
the edges of the mesh is prescribed, for more typical free bound-
ary situations artifacts do arise: the per-triangle rigidity constraints
aren’t quite enough here. For example, a corner triangle with
two boundary edges—and thus only one edge shared with another
triangles—is free to rotate arbitrarily, independent of the orienta-
tions of nearby triangles. Even if a triangle only has one boundary
edge, and is connected to the rest of the mesh at two edge mid-
points, it is also free to spin around one axis independently of the
orientations of nearby triangles. In fact, even when restricted to
planar motion the model fails: the only planar developable motions
are globally rigid, yet this model allows additional deformations. In
the planar elasticity context, this is a known instability due to free
traction boundary conditions (as opposed to displacement boundary
conditions, i.e. prescribed positions): see e.g. Falk [1991].

We thus need further boundary constraints: we require that for each
boundary vertex the corresponding vertices on the incident noncon-
forming elements match up. As a result these elements are also C0

along their shared edges, have their orientations properly coupled,
and no longer have spurious rotational freedom: the outer “ribbon”
of triangles, i.e. all those that touch the boundary, are forced to be
conforming while the interior of the mesh is still free to be noncon-
forming. Figure 3, showing a rectangle pinned at two corners, illus-
trates the robustness of this approach. This also resolves the planar
deformation problem, since the only solution for the conforming
outer ribbon is globally rigid motion, which induces a rigid position
boundary condition on the interior nonconforming elements which
in turn has been proven to only have the expected rigid motion as a
solution [Brenner and Scott 2002].

3.2 Bending Forces

While discretization of bending forces is not the focus of this paper,
obviously conforming mesh methods based on vertex unknowns

can’t be directly applied. However, Wardetzky et al. [2007] pre-
sented a discretization of bending forces on conforming triangle
meshes which uses our nonconforming elements as an intermedi-
ary. We thus use this model, without the projection to conforming
meshes, to arrive at a consistent discretization on the nonconform-
ing mesh.

4 Collisions and Rendering

The nonconforming surface may have jump discontinuities along
edges, apart from at the midpoints. Rendering this surface directly
shows undesirable cracks between triangles. Similarly if the cloth
collision algorithm were run on it potentially fatal scenarios could
arise as the exposed edges of the nonconforming elements would
allow the elements to tangle with or pass through one another.

Our solution to these problems is to maintain a ghost conform-
ing mesh (with vertex-based positions, see figure 4) of the same
topology as the nonconforming mesh, initialized with the same ge-
ometry. We begin a time step by computing candidate new edge
positions xn and velocities vn for the nonconforming mesh based
on non-collision forces (gravity, internal constraints, bending, etc.).
We then transfer these to candidate new vertex positions xc and ve-
locities vc for the conforming mesh, by taking the average at each
vertex of the nonconforming values extrapolated from all incident
triangles. We represent this with an averaging matrix A:

xc = Axn. (3)

These give candidate conforming mesh trajectories, from the posi-
tions at the end of the last time step xold

c (which are guaranteed to be
non-interpenetrating) to the new conforming positions xc, with new
velocities vc = Avn. We feed this into a standard cloth collision
code [Bridson et al. 2002] to solve for the final conforming posi-
tions x′

c and velocities v′
c, which should be non-interpenetrating.

This new intersection-free conforming mesh is saved for later ren-
dering and collision processing in the following step.

Once operations on the conforming mesh are complete we update
the nonconforming mesh to its final positions x′

n, coupling the ef-
fect of collisions back into the main simulation. We assume a La-
grange multiplier form for the nonconforming correction:

x′
n = xn + AT λ (4)

where λ is chosen so that averaging the final nonconforming po-
sitions x′

n back to the conforming mesh vertices returns the final
conforming positions:

Ax′
n = x′

c. (5)

This gives a simple symmetric positive definite linear system to
solve, which simplifies to:

AAT λ = x′
c − xc. (6)

Note that the coefficient matrix AAT is constant, thus we can run
Cholesky factorization once and then very efficiently solve this at
every subsequent time step. Also note that if no collisions occur,
we do not modify the nonconforming positions at all, as one would
expect. We finish by updating the nonconforming velocities in a
consistent manner:

v′
n = vn +

x′
n − xn

∆t
(7)

also noting here that in the absence of collisions we do not modify
the velocities at all.

In summary, after advancing the nonconforming mesh, we update
the conforming mesh by averaging vertices, run collision handling,



Figure 4: The ghost mesh (left) closely tracks the nonconforming
mesh (right) while maintaining a penetration free state with itself
and the orange obstacle.

and then use Lagrange multipliers to update the nonconforming
mesh. Figures 1 and 5 show the robustness of this scheme, guar-
anteeing an intersection-free conforming mesh that closely tracks
the simulation even in complex self-folding scenarios.

While this method has produced reasonable results, we highlight
some unresolved issues. The first is that simply averaging to get
the conforming mesh often doesn’t provide as smooth a surface as
might be desired, as might be expected since the sampling density
of the conforming mesh is in fact lower. The rendered conform-
ing mesh is also only approximately developable, of course, though
its motion does reflect the developable dynamics of the underly-
ing nonconforming mesh. We expect edge subdivision schemes
(e.g. [Peters and Reif 1997]) may help with both these issues. Fi-
nally, collisions are handled after internal dynamics, introducing an
O(∆t) splitting error which can perturb developability. We have
not noticed any obvious artifacts stemming from these issues, but
in principle they could be a concern especially in severe collision
scenarios with large time steps.

5 Time Integration of Constraints

Goldenthal et al. [2007] introduced “fast projection”, a particularly
attractive first order accurate time integrator for constrained me-
chanics. This may be derived, heuristically at least, as the limit
of Backwards Euler applied to a system where hard constraints
C(x) = 0 are replaced with very stiff elastic forces Fc(x) =
−kJT (x)C(x), the gradient of the potential 1

2
k‖C(x)‖2. Back-

wards Euler to get to time step n + 1 is:

x(n+1) = x(n) + ∆tv(n+1),

v(n+1) = v(n) + ∆tM−1(Fa − kJT C),
(8)

where Fa are the applied non-constraint forces (gravity and bend-

ing), and J and C are evaluated at x(n+1). Eliminating velocity:

x(n+1) + k∆t2M−1JT C = x(n) + ∆tv(n) + ∆t2M−1Fa. (9)

Taking the limit as k → ∞ can be shown, at least for constraints
close enough to linear in a local neighborhood, to give the fast pro-
jection algorithm:

x0 = x(n) + ∆tv(n) + ∆t2M−1Fa

x(n+1) = project(x0).
(10)

Here x0 is a predicted position, and the second step projects this

onto the constraint manifold, so that C(x(n+1)) = 0. The pro-
jection is implemented as a sequence of Newton-like steps, where
from the current estimated position xj the linearized constraint
C(xj) + J(xj)(xj+1 − xj) = 0 is solved, with a Lagrange mul-

tiplier update xj+1 = xj + J(xj)
T λ. This is terminated when

‖C(x)‖ is below some tolerance, and can be made more robust

with the usual strategies such as line search. Once the new x(n+1)

is found, the new velocity can be determined from the Backwards

Euler step x(n+1) = x(n) + ∆tv(n+1).

While elegant and effective, this algorithm can suffer from numer-
ical damping when the constraints are nonlinear. From a velocity
perspective, even if the time n velocity is tangent to the constraint

manifold at x(n), the tangent space changes at x(n+1) so the veloc-
ity components now normal to the constraint are projected out, for
a net loss of kinetic energy.

We therefore propose a multistep version of this algorithm, based
instead on the second order accurate multistep method BDF2,
which similarly has stiff decay [1998] and thus also allows a stiff
limit. Assuming constant step sizes, BDF2 can be written as:

x(n+1) = 4
3
x(n) − 1

3
x(n−1) + 2

3
∆tv(n+1)

v(n+1) = 4
3
v(n) − 1

3
v(n−1) + 2

3
∆tM−1F (x(n+1)).

(11)

Eliminating velocity as before gives:

x(n+1) = 4
3
x(n) − 1

3
x(n−1) + 8

9
∆tv(n) − 2

9
v(n−1)

+ 4
9
∆t2M−1F (x(n+1)). (12)

We again break this up into a prediction step followed by a projec-
tion to the constraint:

x0 = 4
3
x(n) − 1

3
x(n−1) + 8

9
∆tv(n) − 2

9
v(n−1)

+ 4
9
∆t2M−1F

x(n+1) = project(x0).

(13)

Finally the time n + 1 velocity is taken from the BDF2 formula for
the position update, which can be rewritten as:

v(n+1) = 1
∆t

h

3
2
x(n+1) − 2x(n) + 1

2
x(n−1)

i

. (14)

The basic steps of the algorithm are the same as before, just with
a few extra vector adds in finding the predicted position and final
velocity, which is of negligible cost compared to the projection op-
eration. The error analysis is nontrivial, since at first glance the
second order truncation error in the projection would seem to give
a globally first order method. However, while the predicted posi-
tion is indeed O(∆t2) away from the constraint manifold, most of
this error is normal to manifold itself and is eliminated by projec-
tion: our numerical experiments indicate that after projection the
position only suffers O(∆t3) truncation error, and together with
the third order error in velocity, this results in a globally second
order accurate algorithm. This can easily be verified for the sim-
ple case of motion constrained to a circle, for example: a step of
length L off the circle on a tangent gives a predicted position that
is O(L2) away from the circle, but its projection back to the circle
is at arc-length L + O(L3) along the circle. Meanwhile, the higher
order formulas for velocity prevent the rapid dissipation of energy
present in the first order scheme.

Additional benefits include an order of magnitude less numerical
dissipation, due to higher accuracy, and typically improved pro-
jection times: by using additional information from previous steps
about the constraint manifold, the predicted position tends to stay
closer to the manifold and requires fewer iterations in projection.

6 Results

Figures 1, 3 and 5 show example frames from simulations. We
rendered the raw conforming mesh, with smoothed vertex normals
but no subdivision. The meshes were 100 × 100, and simulations



Figure 5: A developable surface is dropped on a sphere, with im-
mediate wrinkling and creasing patterns.

ran at 9.52 seconds/step with time steps of 1ms on an Athlon 64
3500+, with PARDISO [Schenk and Gärtner 2006] as the linear
solver. We ran fast projection with a tolerance on maximum relative
error of 10−4, taking 10 Newton steps on average. Due to step size,
collision handling was a small fraction of total run time.

We also simulated a moving skinned character wearing a cape to
evaluate the new integration scheme; simulation time was reduced
to 3.96 from 5.37 seconds/step for the single step scheme, as the
multistep method required on average half the number of iterations
for the projection stage to converge. Similarly a skinned character
wearing an irregularly meshed shirt, of higher resolution than the
cape, ran at 4.58 seconds/step using the new scheme.

7 Conclusions

We have presented an effective new discretization for deformable
surfaces which can robustly handle developable surfaces without
locking artifacts at any mesh resolution. Since the underlying non-
conforming simulation mesh isn’t continuous, we couple in a con-
forming ghost mesh to handle contact and collisions and for ren-
dering. In addition, we provided a second order accurate multistep
constrained mechanics time integration scheme based on BDF2, us-
ing just position projection, which both accelerates fast projection
and significantly reduces numerical damping.

However, for stretchy materials where regular simulators work, the
constant factor overhead of this method will probably make it un-
competitive. We also are particularly interested in resolving the
issues brought up by the ghost conforming mesh. Edge subdivision
schemes (in lieu of our simple vertex averaging) may improve the
smoothness of the rendered output, and coupling internal dynamics
and collisions, similar to Baraff and Witkin’s method [1998], may
avoid perturbations from developability caused by time splitting.
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