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Abstract

The ongoing challenge of cloth simulation in both interactive applications and

film (where animators generally use iterative design, rerunning a simulation

many times with different parameters) is speed. Current methods to allow large

time steps do not have guarantees on stability and/or consistency with respect

to physical parameters; we correct this with a new unbiased strain limiting

scheme which is order and mesh independent. We also propose a physics-aware

subdivision scheme which adds missing wrinkle and fold detail to coarse mesh

simulations in a quasi-static way, making the use of faster and more easily-

controlled coarse meshes more practical.
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Chapter 1

Introduction

The proper portatrayal of characters on film screens, on television and in video

games is essential to conveying a rich and complete story to the audience. The

appearance of a character gives us instant visual insight into their personality

and role in the story being told. Storytellers use a variety of visual cues to

convey these characteristics to us as an audience. One very important visual

cue is the clothing a character wears or interacts with and thus the ability to

portray clothing and fabrics in a visually plausible manner is essential to de-

livering a meaningful performance. In environments where computer generated

cloth is the only option this is usually not a trivial undertaking. Performing the

animation of cloth such as this by hand can be a daunting task in certain situ-

ations. For these situations many productions choose to animate cloth through

the simulation of the underlying physics that govern the behaviour of the fabric.

Though animation of cloth through physical simulation takes some burden off

the shoulders of the animator, it comes at a price.

The cost of simulation comes in several forms. A more obvious form is appa-

rant when we speak about methods that demand a certain level of performance

such as interactive applications or games. These types of systems are under

strict constraints for frame rates and thus have strenuous requirements on com-

putation time for a single frame and, consequently, the size of the timestep taken

between state calculations. Generally, we start from an initial value state and

move the system forward in discretized timesteps by approximating the (usu-
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ally) non-linear analytic solution step by step with a time integration technique.

Since we are dealing with approximations, all techniques that are used will have

some degree of error. Certain techniques behave better than others and so can

handle taking larger timesteps while still providing a stable solution.

Linearized implicit methods such as that of Baraff and Witkin [2] provide a

framework for running simulations with larger time steps than explicit methods

but still can be unstable above a certain unknown timestep size. Kane et al. [9]

proved that fully nonlinear integrators can, in theory, guarantee unconditional

stability. However, acquiring a solution from these techniques requires the solu-

tion of nonlinear systems, thus subjecting the system to the pitfalls surrounding

the use of a Newton iterative solver, namely failure to converge for timesteps

larger than an unknown threshold. In practice, this means instability is always

a risk for large time steps, hence real-time applications tend to use ad hoc fixes

such as strain limiting [25]. Unfortunately, these fixes are not convergent: they

are order-dependent and do not reflect material properties. Order may not mat-

ter for an unconstrained cloth system with little or no applied forces however

problems can definitely arise with strain limiting when constraints and external

forces come into play. As Figure 1.1 shows, the order in which the limiting

of springs in the 1 dimensional mass spring configuration propagates through

the system can have a significant effect on the end result, severely altering the

plausibility of the simulation. In a full 3 dimensional simulation with many

more degrees of freedom and more constraints as well, the problem of choosing

a proper direction to propagate is an even more difficult problem. Even if a

good choice of direction is made, running the simulation with a different mesh

can produce dramatically different results, and it can be difficult to determine

how to adjust mesh structure and simulation parameters to achieve a certain

look.



Chapter 1. Introduction 3

Figure 1.1: An example of the order dependence issues of standard strain
limiting techniques. The top image (a) is a simple mass-spring chain in its initial
configuration. The two endpoints are pinned and gravity is allowed to act on
the rest of the points. In (b), the chain has been stretched by manipulating one
of the constrained points. Because of the specific order of traversal, the springs
are strain limited in an order that results in a non-physical result. (c) shows our
method without order dependence. Note that each spring deforms a fraction
of the total deformation of the chain, distributing the deformation in a more
physically plausible way.

Given these issues, we propose a method which is applied as a post processor

and can be bootstrapped with any reasonable time integration technique in

order to provide an order and mesh independent solution while maintaining the

stability of the system.

Taking the end state of the external time integration step as input to the

system, we compute an initial guess of the internal impulse forces of the cloth

system. We then apply these impulses element-by-element creating a disjoint set

of elements that have moved independently from each other. The final solution is
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stitched together as a least squares approximation to the set of individually time

integrated elements. Element-by-element methods were pioneered by Hughes

and Liu [19] for use in finite element analysis to break down complex stiffness

matrices into products of smaller individual element matrices, though unlike

our new method, suffered from stringent stability limits and ordering-dependent

results.

The idea of stitching a model together from the individual solutions of its sub

parts is also seen in the work of Sumner and Popovic [28] where the deformation

of a source mesh is applied to a target mesh with different topology. The

resulting deformation transfer is applied to each triangle of the target mesh

separately resulting in a set of disconnected triangles much like the result of the

second step of our time integration. The final vertex positions of the deformed

target model are then calculated using an optimization technique.

We go back to our earlier discussion of the costs of physical simulation to

look at a different, more intrinsic cost. Animating a cloth system is an iterative

process. An animator generally will rig the cloth, run the simulation, observe

the effects, tweak parameters as they see fit and restart the process. This

is done over and over again until a satisfactory looking effect is attained. This

process can be painstakingly slow, especially with systems ranging in the tens of

thousands of points as is commonly seen in production environments. In order to

speed up the cycle, one may want to use a lower resolution, coarsely discretized

cloth system to define the movement of the cloth and revert back to a more finely

discretized simulation once satisfied with the animation. The problem with this

is that simply mapping animation parameters from a coarse simulation to a finer

simulation does not automatically imply that the fine simulation will produce

similar looking movement to the coarse simulation. In fact, the result will often

look very different than the original animation since the dynamics of the system
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can be sensitive to perturbations, particularly when collision and contact are

involved.

To address this, our second contribution is a method for producing a high

resolution cloth animation by simulating a coarse mesh and subdividing the

cloth surface. Standard subdivision schemes do not provide the folding and

wrinkling detail that is implied but not represented on the coarse mesh, which

prompted ad hoc methods based on modulating wrinkly displacement textures

[33] or sinusoids [20] according to the coarse mesh compression. This is intu-

itively the right approach, but is too far removed from the actual physics to

provide plausible detail in general situations. We instead use a physics-based

quasi-static method, similar in spirit to the flesh model of Teran et al. [29],

where we compute a displacement map which minimizes the potential energy

of the fine mesh. This can naturally produce correct buckling wrinkles and

folds where the coarse mesh compresses. We note this provides a satisfying

connection back to the original mechanical splines that inspired computational

splines and subdivision schemes and so provides a physically sound but rela-

tively inexpensive (from a simulation standpoint) method for representing cloth

behaviour.

The remainder of this thesis is organized as follows. The following section

discusses previous work in the area of physics-based deformable models and

cloth animation schemes including methods for calculating collisions and proper

models for the deformation of soft bodies and shells. Chapter 2 discusses our

new time integration post processing technique for improved stability and order

and mesh independence. Chapter 3 talks about our physics-aware subdivision

scheme for more accurate control of cloth simulations and Chapter 4 discusses

the results we have attained thus far and some future directions for further work

in this area.
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1.1 Related Work

Terzopoulos et al. [30] were the first to introduce physics-based deformable mod-

els to computer graphics using elasticity theory. Metaxas and Terzopoulos[23]

then introduced the use of finite element methods to define the behaviour of

these models. It was quickly realized that dense systems with many points were

difficult and slow to manipulate and so attempts were made at using refinement

based schemes. Thingvold and Cohen [31] modeled a control polygon with b-

splines and refined the splines when more detail was desired. Debunne et al.

[13] used an explicit finite element model applied to multiple dependent meshes

of various resolutions, deciding to adaptively change resolutions at particular

nodes based on both the local deformation and frame rate. Grinspun et al. [17]

also used a finite element model but refined basis functions instead of elements

to reduce simulation costs and Capell et al. [10] applied adaptive basis func-

tion refinement to a coarse volumetric model acting as a control lattice for an

underlying high resolution mesh.

Time integration techniques are also still an area with continuing develop-

ments. Baraff and Witkin [2] provided a major stepping stone with the intro-

duction of their implicit linear solver though their system induced excess damp-

ing. Further work with mixed implicit/explicit methods provided improvements

[5, 6]. Other work has been focused on variational methods [9, 22, 27, 36] which

has shown interesting results.

Focusing more on mass spring systems and with speed as the main goal,

Desbrun et al. [14] make some approximations in their implicit time integration

technique, achieving an increase in speed at the cost of some realism. Kang et

al. [21] also make some approximations to speed up time integration of mass

spring systems, using a coarser mesh and inducing finer wrinkles by using spline

curves whose frequencies are adjusted according to spring compression to induce
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wrinkles.

A number of articles deal with cloth collisions including [3, 6, 8, 15, 26, 35].

Bridson et al. [8] introduce a robust self-collision model and then Bridson et al.

[6] present a cloth-object collision model that preserves cloth wrinkles during

collisions. Baraff et al. [3] discuss a method for treating pinching of cloth

between solid objects.

Several works have also addressed the issue of a proper (and efficient) model

for the bending of cloth and deformable thin shells. Bridson et al. [6] provided

an accurate physically based model capable of handling non-zero rest angles.

Grinspun et al. [16] arrived at a similar model based on flexural energy and

through the use of automatic differentiation. Cirak and Ortiz [12] propose an

FE formulation based on the Kirchhoff-Love-type shell theories but only handle

the static case. Thomaszewski et al. [32] extend this to the dynamic case

using corotational subdivision elements to preserve the linearity of the strain

calculations. Bergou et al. [4] use the assumption of isometric deformations to

derive a bending model that is quadratic in positions, resulting in a constant

Hessian and a reduction in simulation time. They rely, however, on the key

assumption of inextensibility of the surface being modeled, which allows them

to simplify the problem somewhat.

For a good overview of more contributions to cloth animation we refer the

reader to the book of House and Breen [18], and the survey papers of Volino et

al. [34] and Ng and Grimsdale [24].
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Chapter 2

Unbiased Strain Limiting

Explicit time integration techniques can provide guaranteed stability given that

the size of the timesteps do not exceed a certain threshold. This threshold

tends to be quite small, forcing the calculation of several sub-steps per frame

of animation. Attempts to increase the timestep size past this threshold will

generally result in visible instabilities in the system. Even implicit solvers have

a threshold above which stability is no longer a guarantee. The difficulties still

lie in that we are trying to solve a large nonlinear problem with one or more

linear steps. Our method takes a slightly different approach in that we attempt

to break the problem down into a set of smaller subproblems, solve each of

these in isolation and then find a global solution as close as possible to the

combination of all the individual solutions.

Our system works as follows. First, external forces (such as gravity) are

integrated forward in time, separately, using any desired method. The choice

of method here is arbitrary, though to maintain convergence it should satisfy

the CFL condition, which is guaranteed by any linearized implicit method for

example. (Note that we use the CFL condition in the technically correct sense

of ensuring numerical information propagates at least as fast as the physics

dictates, a condition relating more to convergence rather than stability.) Our

method is able to bootstrap itself to any time integration scheme for calculating

the external forces as all that it requires are the resulting positions and velocities.

These resulting positions and velocities are then fed into our system which is



Chapter 2. Unbiased Strain Limiting 9

composed of 3 steps: a global force estimate, element-by-element responses and,

finally, a global stitching step.

2.1 Global Force Estimate

The first step is a standard step of time integration to enforce maxmimum

strain constraints on edges in the mesh. Linearized Backwards Euler or, as in

our examples, a linearized Lagrange multiplier system are both viable options

here. We use the method of Baraff [1] for constraint satisfaction, employing

constraints for limiting strain to a maximum amount (equation 2.1) as well

as fixing the movement of any individual points we wish to constrain in the

animation (equation 2.2).

ci(x) =

 κij(
|xj−xi|

Lij
− (εmax + 1)) εij > εmax

0 εij ≤ εmax

(2.1)

ci(x) = |xi − xc| (2.2)

In equation 2.1, κij is the spring constant of the spring connecting mass points

xi and xj , Lij is the length of the spring at rest, εij is the strain of the spring,

and εmax is the maximum allowable strain of the spring between these points.

The constraint in equation 2.1 is enforced only along springs that are stretched

beyond εmax. In equation 2.2, xi is simply a constrained point and xc the target

point in space that it is constrained to. Using these constraints, we solve the

Lagrange multiplier system for a set of forces which satisfy these constraints.

Essentially this means that if we assume a state q∗(x∗
n+1) after the forward

time integration of external forces, we wish to apply impulses to enforce the

constraints c(x∗
n+1) = 0. We do this by solving the following system for the
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Lagrange multipliers, λ.

JM−1JT λ = −c(x∗
n+1) (2.3)

Where J = ∆tdC
dx + dC

dv . The solution, λ, then gives us the impulse i = JTλ

which then allows us to update the positions and velocities:

vn+1 = v∗
n+1 + M−1i

xn+1 = x∗
n+1 + ∆tM−1i

(2.4)

In our case we impose no velocity based constraints. Our only constraints are

stretch and positional constraints. Thus dC
dv = 0, simplifying the Jacobian

matrix calculation. This first step serves as an initial guess for the forces acting

on each element (e.g. spring, or FEM triangle) for the timestep.

2.2 Element-By-Element Responses

The first step holds no guarantees of stability. The true solution to the con-

straint satisfaction problem posed in the global approximation step is inherently

nonlinear. Since we take a linearized approach, approximating the solution with

a single linear solve, it could very easily overestimate the elastic response of an

element to the forces applied on it, which would lead to the simulation becoming

unstable. Thus we proceed to our second step, where we stably compute the

individual response of each element to the estimated forces. We purposefully

use the nonspecific terminology of element here because our algorithm works

independent of the basic element type. Given a definition of strain and strain

rate for a particular element shape, we are able to calculate if the approximate

forces from the linear solve in the previous step violate the desired thresholds

set by the user. We use a value of 10% for strain limiting in all of our examples.
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We then apply exactly the right impulse in response, limiting the strain and

strain rate in a way that conserves linear and angular momentum. We do this

on an element-by-element basis, applying the impulse forces to each individual

element independently—the key observation is that computing the nonlinear

response of a single element in isolation can typically be done exactly in an

analytic fashion, guaranteeing stability.

2.2.1 Strain Limiting on Triangle Elements

We demonstrate our approach on an unstructured triangle mesh using triangle

elements as our basic building blocks. In order to calculate the amount of strain

on a triangle we observe the metric tensor of a triangle element. If xi represents

a point on a triangle in world space, and pi represents that same point in the

triangle’s parameter space then the two coordinate spaces are related through

xi = Fpi + o where o is some translational offset and F is the deformation

gradient. The metric tensor in 3 dimensional space can now be calculated as

FFT . We then perform an eigenvalue decomposition and take the square root of

the largest eigenvalue, λ0 and its corresponding eigenvector, e0, to represent the

largest component of the strain and the direction in which it acts respectively.

This gives us a calculation of the strain of a triangle that is rotationally invariant.

Now we take ri to be a triangle vertex expressed in the local coordinate system

of the triangle, that is ri = xi − xcm where xcm is the triangle’s centre of mass,

and we define the unit length direction of strain, d (the eigenvector e0 as a

linear combination of the triangle’s ri’s).

d =
∑

i

βixi (2.5)

This gives us the following update rule for limiting strain and strain rate in

a momentum preserving way:
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xnew
i = xi + α

βi

mi
d (2.6)

vnew
i = vi + γ

βi

mi
d (2.7)

Where mi is the mass at the ith point and α and γ are computed as follows:

α =
εdes|q| − 1∑

i
β2

i

mi

(2.8)

γ = −
∑

i βivi · d∑
i

β2
i

mi

(2.9)

Given the above formulation it is also possible to model anisotropic fabrics

by defining the strain limit as a function of the strain direction in parameter

space, q. This way, elements could be allowed to stretch a greater amount in

one direction than another. In fact, this direction dependent strain limiting

could be defined differently for certain elements allowing the proper modeling

of stretching around seams in a garment where the stiffness tends to be different

than other areas.

As previously mentioned this method works for any type of element com-

position. Since the strain direction is broken down into a linear combination

of the vertices of the element shape, we can calculate appropriate weights for

an aribtrary number of vertices, enabling the same formulas to be used for 1

dimensional springs and extended for use with more complex elements such as

tetrahedra. For a complete derivation of the above formulas refer to Appendix

A.
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2.3 Global Stitching

Because we work on each element in isolation, it is almost certain that elements

will disagree on the final position of a shared node and so the system will

become disjoint at this point. We are left with a set of separated elements

which have each moved in isolation and in accordance only with the local forces

acting on them directly. The only task that remains is to rejoin all the elements

back together to form a single surface again. The third step reconnects all of

the individual elements, stitching the system back together with a linear least

squares solve. Though it would be easier to simply take the centroid of all of

a node’s end positions from the previous step, this would end up violating the

stretch constraints which we were trying to enforce in the first and second steps.

Thus, instead of minimizing over differences in node positions, we minimize over

differences in edge vectors (equation 2.10), resulting in a final solution which

does a better job of maintaining the stretch constraints.

min ‖c‖2 where ci = [(xi − xj)− (x̃i − x̃j)] (2.10)

In equation 2.10, xi and xj are two mass points connected by springs and x̃i and

x̃j are the corresponding endpoints for edge i as determined by the element-by-

element responses. Note that this is just a linear least squares problem, which

can easily be solved exactly, unlike the nonlinear equations that existing fully

implicit time integrators produce.

Figure 2.1 shows an example of our method broken up into the three major

steps and being applied to a mass spring system consisting of a single chain of

mass points connected together in succession.

This three-step approach is physically correct and order-independent (unlike

standard strain limiting) because we compute a valid global estimate of forces
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Figure 2.1: a) Mass spring system with 1 constrained point (white point).
Red lines (with square endpoints) show the maximum allowable lengths of each
spring. At this point an initial guess of forces is calculated. b) The impulse forces
from step 1 are applied to each spring individually. Shared nodes disagree on
their final positions since they are being pulled in different directions. c) Step 3
stitches the system back together, respecting the constrained points and lengths
of springs.

and correct element-by-element responses. It is guaranteed to be stable since

the element computations are stable and the global stitching step confines nodes

to the convex hull of the element responses and is linear, hence there are no

convergence issues.

Though the element-by-element solve in step 2 is a general formulation and

works for all shapes of elements with arbitray numbers of vertices, this is unfor-

tunately not the case for the first and last steps. These are still formulated in

terms of edge constraints. For example, the Lagrange system in step 1 produces

a force prediction based on the strain along edges and the linear least squares

solve of step 3 also calculates an approximation that is based on length con-

straints along edges. Though the algorithm can still handle all types of shapes

since all forms of element shape can be broken down into edges, it is not yet fully

unbiased towards mesh topology. We are still working on a formulation for the

global force approximation and global stitching steps that is mesh independent

but we are quite confident a solution is well within reach.

Our framework does allow for flexibility in the details of each step. An alter-
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native approach to the first 2 steps is also possible using linearized force curves

instead of constraints for the first step and corrective impulse force responses

for the second step. As long as the second step ensures a stable response to

the initial global force approximation, the method is guaranteed to retain its

stability.

We integrate this with the robust collision system of Bridson et al.[8], with

an additional improvement in the handling of rigid impact zones, building on

a suggestion in [7]. Previously the impact zone approach projected out the

velocity of a zone of colliding elements to the space of rigid body translations

and rotations, thus eliminating any possible collisions. However, we can enrich

the space to include shearing as well and still make the no collision guarantee

(in [7] Bridson suggests the more general space of affine motions, but we note

that including scalings allows for reflections, which of course do cause collisions).

Allowing the three additional shearing components can reduce the amount of

energy dissipation in the projection, allowing for cloth surfaces to slide over

one another instead of rigidly sticking for example. It also slightly simplifies the

calculation, since the generalized inertia tensor is more sparse than the standard

rigid body inertia tensor.
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Chapter 3

Physics Aware Subdivision

Recall that subdivision is a model for splines which originated as the actual

mechanical equilibrium of a piece of thin wood or metal subjected to point

constraints, where its combination of elastic and bending energy found a (local)

minimum. We bring this idea back to computer graphics, defining physics-aware

subdivision as a solution to quasi-static equations of motion based on elastic

and bending energy of the surface. We can show with a few steps that the

minimization of these energies leads directly into the derivation of the equation

for cubic splines. For more detail on this connection see Appendix B.

Our system is based on two representations of the cloth surface mesh at

different levels of detail. We take a coarse mesh representation of a cloth system

and subdivide it with a Loop subdivision scheme to a desired resolution. A

displacement map is then layered on top of the subdivided mesh, displacing

each point a certain distance in the normal direction to the surface.

Carrying on with our analogy to splines, we envision that for a given set

of control points there exists one, or often many, plausible resultant smooth

curves. Subdividing our coarse control polygon along the edges between control

points we can grow each of these points out from the polygon surface in the

normal direction. Each configuration of displacements has a potential energy.

The natural tendency of cloth is to fold into a shape that minimizes the potential

energy. We mimic this behaviour by optimizing over the space of displacements

to find a local minimum of the potential energy and move to it at the end of
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every timestep. After subdividing the coarse mesh at the beginning of each

timestep, the points on the fine mesh are never moved again for the duration of

the timestep. Only the scalar displacement values at the fine points change.

PEelastic(d) =
1
2
κelastic

∑
springsc

(
m−1∑
j=1

|x̃j+1 − x̃j | − Lc)2 (3.1)

PEbending(d) =
1
2
κbend

nf∑
i=1

(
m∑

j=1

dj −mdi)2 max{−εc, 0}

 (3.2)

We define an energy for the displacement surface that takes into account the

change of lengths from the undeformed surface as well as the bending. The

elastic potential energy, shown in equation 3.1, is defined as the squared differ-

ence between the rest length of an edge on the coarse mesh (Lc) and the sum

of the lengths of the corresponding subdivided edges on the subdivision surface

where springsc is the set of springs in the coarse system, m is the number of

subdivision mesh points lying on the particular coarse mesh edge and x̃j is the

jth point on the physically subdivided mesh, that is x̃j = xj + dj n̂j if dj is the

displacement at point xj in the normal direction n̂j . The motivation behind this

being that since cloth has high resistance to in-plane deformation and low re-

sistance to deformation in the normal direction, it prefers to buckle rather than

compress when forced together at two points. Thus, the amount of material

between two points or on a certain area of the surface in any buckled formation

should remain the same as it would be at rest. In future work we will more

correctly phrase this in terms of the metric tensor in each triangle face, rather

than along the edges, to avoid mesh-dependent artifacts.

The second energy term serves to resist bending to a certain degree with the

idea being that the surface is always trying to return to as smooth and flat a rest

state as possible. It is defined in equation 3.2 as the perpendicular distance of

a point to the least squares plane of its surrounding (1-ring) neighbors. Here di
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is the displacement of the ith point while dj is that of each of its m neighboring

points and κbend is the coefficient for bending stiffness. It is important to note

the term εc on the end of equation 3.2 which scales the bending energy at each

point by the strain of the corresponding triangle it is associated with on the

coarse mesh. For points which sit on the boundary of more than one coarse

triangle, we simply take an average of all surrounding triangles of that point.

Intuitively, the bending and elastic energies attempt to drive the displacements

in different directions under compressive forces. The area preserving elastic

energy term will try to push the displacements away from the surface and the

bending term will attempt to minimize the curvature at each point, keeping

them as close to the surface as possible. At small levels of compression there

is a point up until which the quasi-static bending forces are strong enough to

overpower the forces driving the displacements outward. At this pivotal point

there is a discontinuous bifurcation in the locus of quasi-static local minima: in

other words, the cloth pops. This is nothing more than the physically correct

buckling instability as discussed in the work of Choi and Ko [11] with respect to

squeezing a solid rod at its two ends. To avoid objectionable (though correct,

in one manner of thinking) popping, we perturb the physics to make the locus

of local minima continuous, so as an edge compresses the quastistatic solution

smoothly begins to crumple.

The minimization of the potential energy is performed using the Gauss-

Newton method with each linear solve being done with a conjugate gradient

solver. At each iteration, after solving for the change in displacements, we

use a simple backtracking algorithm along the direction of the Gauss-Newton

step in order to find a better solution. This is just a simplification of a line-

search. A conventional line-search method here would be a better option for

improved performance. The solution of displacements found at each time step
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preserves the surface area of the mesh as much as possible while choosing the

smoothest shape possible for the given configuration of the coarse mesh, creating

the folding and buckling features one would expect of a finely discretized cloth

mesh. We begin each solve with the previous frame’s solution, so in the presence

of multiple local minima we tend to avoid popping.

Our system is easily combined with collision aware subdivision [8] in order to

handle collisions that occur as a result of the change in the displacements during

the quasistatic timestep. Because of the quasistatic nature of the displacement

calculations, we need not worry about repulsion velocities for collisions with the

fine mesh points. We first test for intersections at the full step dt+1 = dt + δd.

If intersections are detected at this point we scale back the displacements to the

point where the mesh is intersection free.
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Figure 3.1: Demonstration on a single triangle. As the coarse triangle com-
presses, the subdivided triangle buckles outward into a configuration that min-
imizes the potential energy of the system. An equilibrium is found between the
requirement for a smooth surface and one that preserves surface area.
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Chapter 4

Results and Future Work

Our system is able to successfully model the buckling and folding of a finely

discretized mesh while keeping the motion true to the underlying coarse mesh.

Figure 4.1 shows a 2-dimensional representation with a chain of mass points.

It can be seen that in places where the coarse mesh compresses, the physics-

aware subdivision mesh buckles outward. Note as well that even as the coarse

mesh wraps around itself, the use of collision-aware subdivision ensures that an

intersection-free solution always results.

Figure 4.2 shows a few frames of a full 3-dimensional implementation, show-

ing first the coarse mesh which defines the motion (blue), the undeformed Loop

subdivision mesh (green) and, finally, the fine mesh with physics aware subdi-

vision applied (purple). As triangles deform in the coarse mesh, folds begin to

appear in the physically subdivided fine mesh.

The coarse mesh consists of roughly 100 triangles, enough to be easily ma-

nipulated and animated interactively. The resulting fine mesh displays detailed

folds and wrinkles that ordinarily would be impossible to show with a mesh of

such low resolution.

Certain mesh artifacts are visible at times along edges of triangles in the

coarse mesh when there is significantly more deformation in one direction. This

is a result of the fact that in our current implementation, the calculation of

the area preservation term is only done along the edges of triangles. Thus, the

buckling shape is driven by the points on these edges. The proper way to handle
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this is to use metric tensors to measure the deformation across the entire area

of each triangle. The use of tensors gives us a smooth deformation calculation

across the entire face of each triangle allowing for a more precise displacement

calculation for points on the interior of a triangle. The result should be a more

consistent and convincing looking fold without any mesh artifacts.

Figure 4.1: A set of 3 frames of a single chain of masses and springs. Each
outlined row of images represents a single frame of animation. In each box, the
left-most lines represent the coarse mesh, the centre lines the subdivision mesh,
and the right-most the fine mesh with physics-aware subdivision. Note that
the physics-aware subdivision mesh collides with the ground as well as itself.
Different collision threshold distances have been used for the coarse and fine
mesh collisions for clarity of display only.
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Figure 4.2: A set of 4 frames displaying the coarse (left column), Loop subdi-
vision (centre column) and physics-aware subdivision (right column) meshes.

4.1 Future Work

As previously mentioned the introduction of an alternate representation of the

membrane energy formulation is needed to avoid the current artifacts. An at-

tempt was made at employing a formulation of the area preservation term as a

minimization of the strain on each triangle element of the surface mesh. How-

ever, given the fact that our resulting surface is extended in the normal direction

to the base surface mesh, the distance between extended points that are uniform

on the Loop subdivision mesh may not be uniform on the physics-aware subdi-

vision mesh. Thus, a formulation such as this will needlessly constrain certain
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triangles on the physically subdivided mesh from stretching, even if stretching

those triangles could result in a proper result. Instead we desire a metric for the

membrane energy in 3 dimensional form that minimizes a difference between the

surface area of each coarse mesh triangle and the sum of areas of its subdivision

triangles. This would provide the closest analogy to the functional 1 dimen-

sional solution. However, a description of membrane energy for an extensible

surface such as this would require differentiating the area term in the context of

our method which is extremely complex and undesirable. As a result we list this

as future work and are still attempting to progress towards a concrete solution

to this part of the problem.

Another area for future direction is that of performance improvements espe-

cially those that could lend themselves to the benefits of parallel architectures.

The element-by-element approach used in the second step of the time integra-

tion technique is set up in such a way that easily lends itself to parallelism. Since

each element solve is done completely independent of the others these could eas-

ily be done simultaneously given the proper hardware architecture. This would

certainly serve to provide some sort of performance benefit though it has not

been tested at this time.
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Appendix A

Derivation of Strain

Limiting Equations

A.1 Position and Velocity Update Formulas

The following is the derivation for the position and velocity updates used in the

element-by-element strain limiting portion of our time integration technique.

Given a vector, d̂ of unit length representing the direction of strain across

an element and element vertices r̂i = x̂i − x̂cm where x̂i is the position of the

ith point in world space and x̂cm is the centre of mass, we can express d̂ as a

linear combination of the r̂i’s.

d̂ =
∑

i

βir̂i (A.1)

With
∑

i βi = 0 and
∑

i mir̂i = 0. Now we wish to choose an α such that:

∑
i

miαi = 0 (A.2)

and

∑
i

miαi · d̂× r̂i = 0 (A.3)

Substituting A.1 into A.3 gives:



Appendix A. Derivation of Strain Limiting Equations 32

∑
i

miαi(
∑

j

βj r̂j)× r̂i = 0 (A.4)

∑
ij

miαiβj(r̂i × r̂j) = 0 (A.5)

Using the identity of the cross product, the following substitution can be

made:

r̂i × r̂j = sij n̂ (A.6)

where

sij = sin θ|r̂i||r̂j | (A.7)

to give

∑
ij

miαiβj(sij n̂) = 0 (A.8)

Where n̂ is the normal to the element surface. Note that the sij ’s are entries

of a matrix S where diagonal elements, sii are equal to 0 and sij = −sji revealing

a skew symmetric matrix. This means that if we let ai = miαi then A.8

simplifies to

aT Sβ = 0 (A.9)

Because S is skew symmetric we can show

(aT Sa)T = (Sa)T a = aT ST a = −aT Sa (A.10)

So we make the choice of α to be
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αi =
βi

mi
(A.11)

which results in

∑
i

miαi =
∑

i

βi = 0 (A.12)

as indicated by our original assumption. So now we have determined that

the position and velocity updates, ∆x̂i and ∆v̂i, must be proportional to βi

mi
in

order to ensure preservation of angular and linear momenta. This means that

our update formulas take on the following format:

x̂new
i = x̂i + α

βi

mi
d̂ (A.13)

v̂new
i = v̂i + γ

βi

mi
d̂ (A.14)

A.2 Derivation of α and γ

A.2.1 Deriving α

The vector, d̂, representing the direction of strain across the element has an

equivalent representation, q̂, in parameter space. The ratio of their lengths, |d̂|
|q̂|

is the scalar value of the strain in direction d̂. We can look at setting the desired

strain, εdes, as a scaling of d̂ such that

|d̂new| = εdes|q̂| (A.15)

Using the definition from A.1 and plugging into A.15 results in
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∑
i

βir̂
new
i · d̂ = εdes|q̂| (A.16)

From the definition of the update formula ( A.13) this becomes:

∑
i

βi(r̂i + α
βi

mi
d̂) · d̂ = εdes|q̂| (A.17)

Then since d̂ · d̂ = 1 and given A.1 this simplifies to:

1 + α
∑

i

β2
i

mi
= εdes|q̂| (A.18)

Finally, solving for α gives:

α =
εdes|q̂| − 1∑

i
β2

i

mi

(A.19)

A.2.2 Deriving γ

The derivation of γ proceeds very similarly to that of α. We begin with

∑
i

βiv̂
new
i · d̂ = 0 (A.20)

indicating we want to stop any velocities that would continue to stretch the

element in the d̂ direction. As with the positions in the derivation of α, we now

replace the new v̂i’s with the update formula A.14

∑
i

βi(v̂i + γ
βi

mi
d̂) · d̂ = 0 (A.21)

Using d̂ · d̂ = 1 this simplifies to:

∑
i

βiv̂i · d̂ + γ
∑

i

β2
i

mi
= 0 (A.22)
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Solving for γ then gives us the definition:

γ = −
∑

i βiv̂i · d̂∑
i

β2
i

mi

(A.23)
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Appendix B

Connection to Cubic

Splines

Given a 1 dimensional parametric curve parameterized by the scalar s we have a

curve defined by the function f(s). We can obtain the the curvature at a point

by taking the second derivative of f(s) such that:

K(s) = f ′′(s) (B.1)

A spline curve is defined as a curve which passes through the constrained

points or control points in the smoothest path possible i.e. by taking a path

which minimizes curvature along the curve. Mathematically this translates into

the minimization of the integral of curvature across the entire curve and in terms

of f(s), a minimization of f(s) across the integral of f ′′(s):

min
∫

K(s)2

min f
∫

(f ′′(s))2
(B.2)

If we define this quantity as E we can approach the minimization of E from

a variational perspective. Assume we have an arbitrary function g. We take a

small step of distance ε in the direction of g.
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E(ε) =
∫

[(f + εg)′′]2

=
∫

(f ′′ + εg′′)2

=
∫

f ′′2 + 2εf ′′g′′ + ε2g′′2

(B.3)

If f is a minimizer of E then E′(0) = 0 at the minimium point. Thus we

differentiate B.3 and equate to 0:

E′(ε) =
∫

2f ′′g′′ + 2εg′′2 (B.4)

E′(0) = 2
∫

f ′′g′′ (B.5)

Now we use integration by parts to obtain:

E′(0) = −2
∫

f ′′′g′

= 2
∫

f (iv)g
(B.6)

Since g is an aribtrary function and E′(0) = 0, we know that f (iv) must

equal zero for this to hold. Thus since the 4th derivative of f is zero then by

definition f is a cubic function.


