
Keyframe Animation of Implicit Models

by

David I. White

B.Sc., The University of Western Ontario, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

August 2006

c© David I. White, 2006

ii

Abstract

We present an approach that automatically constructs physically plausible in-
between frames, given keyframes of arbitrary implicit surface geometry and
feature points registered between adjacent keyframes. This extends to usable
keyframe control of computer animated fluid-like materials. Most current im-
plicit surface morphs do not allow feature point tracking and none guarantee
physically plausible in-between frames of arbitrary motion. Standard triangle
surface mesh morphing techniques do not guarantee physically plausible in-
betweens either, nor can they handle topological changes. Current fluid control
approaches do not respect keyframes nor track feature points.

Our variational approach finds a volume mapping between keyframes
which minimizes a physics-based objective function using Gauss-Newton modi-
fied to handle linear constraints. We then create as-rigid-as-possible trajectories
of the volume respecting this map, which we use to create physically plausible
in-between frames.

iii

Contents

Abstract . ii

Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . viii

1 Introduction . 1

1.1 Motivation . 2

1.2 Previous Work . 2

1.2.1 Image Morphing . 2

1.2.2 Morphing with Tetrahedral Meshes 3

1.2.3 Implicit Surface Morphing 3

1.2.4 Fluid Simulation for Computer Animation 4

1.2.5 Controllable Fluid Simulations 4

1.3 Algorithm Overview . 5

2 Mapping Adjacent Keyframes . 8

2.1 Keyframe Input . 8

2.2 Radial Basis Functions . 9

Contents iv

2.3 Objective Function . 10

2.4 Discretization . 12

2.5 Modified Gauss-Newton Optimization 14

3 Computing In-between Frames . 18

3.1 Rigid Trajectories . 18

3.2 Level Sets . 19

4 Results . 21

4.1 Rigid Motion . 21

4.2 Topological Changes . 22

4.3 Articulated Motion . 22

4.4 Splash . 22

5 Conclusion and Future Work . 27

5.1 Conclusion . 27

5.2 Future Work . 27

5.2.1 Cartoony Fluids . 28

5.2.2 Hands-on Control . 28

Bibliography . 29

A Optimal Rotation in Two Dimensions 36

v

List of Tables

4.1 Number of feature points in presented simulations. 21

vi

List of Figures

1.1 An example of input to our system: initial (a) and final (b) im-

plicit surfaces, and their respective feature points (c) and (d). . . 5

1.2 Our computed mapping from the initial keyframe (a) to the final

keyframe (b). 5

1.3 The as-rigid-as-possible trajectories from our initial keyframe to

the final keyframe. 6

1.4 The output of our system: in-between frames that correspond to

the input keyframes. 6

2.1 Näıve (a) and subdivided (b) discretization of a two-dimensional

grid cell. 14

2.2 Näıve (a) and subdivided (b) discretization of a three-dimensional

grid cell. 15

2.3 Barycentric weights, ti, of y′i in the grid defined by x1, x2, x3,

and x4. 17

4.1 A Cartesian grid representation of three-dimensional rigid ex-

amples: rotation (top row), translation (middle row), and both

translation and rotation (bottom row). 23

4.2 Two-dimensional merging example, with the first and last images

as keyframes. The level sets are displayed, as are the feature points. 24

List of Figures vii

4.3 Two-dimensional bending example, with the first and last images

as keyframes. The level sets are displayed, as are the feature points. 25

4.4 Two-dimensional splashing example with the level set and feature

points shown. The first, third, fifth and seventh images represent

keyframes. The initial grid points, warped to their intermediate

or final positions are also shown. 26

viii

Acknowledgements

This thesis would not have been possible without the insight and guidance of my

supervisor, Robert Bridson. First and foremost I am grateful to him. Secondly,

thanks to my second reader Michiel van de Panne for his helpful comments. He

and Kevin Loken were incredible research collaborators as well.

Thanks also to Scott Singer, who provided motivation and advice during

SIGGRAPH this summer.

For a fun, yet productive work environment I thank the crew from Imager;

there are too many individuals to mention by name, but how can I forget Biff?

Dima, Scott, Dustin, Dan, Greg, Thomas, Bram and Christopher, thanks

for making the Orphanage a great place to live.

Thanks to my family especially my sister and parents, without whom I might

still think dogs run on batteries – or worse yet, have never questioned it.

DAVID I. WHITE

The University of British Columbia

August 2006

1

Chapter 1

Introduction

“What the animator does on each frame of film is not as important

as what he or she does in between.”

- Norman McLaren

Keyframe-based animation of general shapes is difficult on the computer. We

provide a solution that can automatically construct physically plausible in-

between frames given implicit surface keyframes of arbitrary geometry. Implicit

surfaces are an attractive representation for general shapes that may undergo

extreme deformation or topological changes during animation. There are many

approaches to modeling objects with implicit surfaces, but there is little work

on animating them. Techniques for animating fixed topology triangle meshes,

which do not undergo large deformation, based on morphing are becoming ma-

ture. The current state of morphing for implicit surfaces is comparatively more

primitive.

Our strategy is to find a mapping between Cartesian grid points of adja-

cent implicit surface keyframes (Chapter 2), then estimate as-rigid-as-possible

trajectories of mapped points (Section 3.1), which are used to create implicit

surfaces for the in-between frames (Section 3.2).

Chapter 1. Introduction 2

1.1 Motivation

The inspiration for this work comes from the tradeoff between physical realism

and directability in computer animated fluids. Fluid simulations based on the

Navier-Stokes equations accurately represent the physical properties of fluids,

but are computationally time consuming, difficult to create from scratch and

most importantly they offer no user-control of the fluid. In practice, computer

animation studios generally use fluid systems that are set up to be highly user-

intensive so that artists have control over the motion of the fluid. However,

this can be time consuming and may lead to fluid that does not move in a

physical manner. Our system allows full control of the fluid through user-

defined keyframes and a minimal number of feature points, which we use to

create in-between frames that are physically plausible.

1.2 Previous Work

Considerable work has been done on morphing, which is analogous to creating

in-betweens for a given pair of keyframes. This work began with image morphing

techniques in the early 1990’s.

1.2.1 Image Morphing

Image morphing techniques began with [3], which uses feature mapping to con-

trol the morph between two images. While this works well for its intended

purpose of simply blending two images, the created morph is non-physical. The

work of [37] produces a three-dimensional “view morph” from two-dimensional

images. It can produce physically consistent morphs, but not for arbitrary ob-

jects nor arbitrary motion. Image representations tend to lose or obscure detail.

For a more accurate representation of objects, we need to consider morphing of

Chapter 1. Introduction 3

geometric models.

1.2.2 Morphing with Tetrahedral Meshes

Standard morphing techniques based on triangle surface meshes [19, 29, 48]

generally preserve fine details well, but do not provide any guarantees of vol-

ume conservation nor do they handle topological changes. Least-distorting vol-

ume morphing techniques [1, 24] preserve volume but do not handle topological

changes. Topological changes are trivial if we consider implicit surfaces.

1.2.3 Implicit Surface Morphing

Current implicit surface morphing techniques [11, 47] successfully morph be-

tween given surfaces; however in-between surfaces are generally not physically

realistic. They do not guarantee preservation of volume, nor do they accurately

provide rigid motion. For static model morphing this is reasonable, but physical

in-between frames are crucial for keyframed animation. For example, [47] can-

not match a simple rigid rotation. The approach of [7] works well for globally

rigid movement, but will not hold for articulated motion. The volume morph

technique in [28] is still non-physical because it merely blends the two models,

which will not work for rigid motions. A novel, but non-physical, technique of

morphing by expansion and contraction of shapes is presented in [4]. A keyframe

technique is presented in [2], but it is contingent on an underlying skeletal struc-

ture and also is unproven for topological changes. In most of the aforementioned

approaches, it is not guaranteed that feature points will map as expected. For

example, the nose in an initial model may inadvertently map to an ear in the

final model. With our user-defined feature points, we can guarantee a mapping

to the user’s specifications.

Chapter 1. Introduction 4

1.2.4 Fluid Simulation for Computer Animation

Fluid simulation techniques for computer animation were first presented in [34],

where particles were used to represent clouds, smoke, water and fire. Later

on, [25] provided a model for animating propagations along water surfaces that

relied on solving the wave equation. The introduction of Navier-Stokes to com-

puter graphics, for modeling the full body of fluid, came in [15]. A higher-level

look at this same method is [17], which also explains how it was used to animated

fluids in the film Antz – the first computer animated film containing fluids. A

few years later, this approach was extended to be unconditionally stable in [42],

which also introduced the semi-Lagrangian method. This was later refined for

inviscid fluids, such as smoke, in [13] and liquids in [14]. The latter also intro-

duced level sets to the computer graphics community. Photorealistic computer

animated fluids were first shown in [10] by introducing, among other things, the

particle level set. More recent advances include: using the octree data struc-

ture [30], introducing vortices for more interesting motion [38], animating fluids

on meshes [26], and multiple fluids of different densities interacting [31]. For a

detailed introduction to fluid simulation, see [5].

1.2.5 Controllable Fluid Simulations

Controllable fluids for computer animation were introduced in [16], where the

user could change parameters to alter the fluid motion. More recent work in

fluid control can be split into two categories: target matching [12, 20, 39, 40, 41,

45, 46] and user-defined control points [32, 33, 43, 51]. The former have difficulty

perfectly matching fluid to the specified targets, and the latter use highly user-

intensive control methods. Our approach guarantees that we exactly match

the specified keyframes while keeping the number of user-defined control points

reasonable.

Chapter 1. Introduction 5

1.3 Algorithm Overview

Our system takes as input a series of keyframes and feature points. We compute

in-between frames for each pair of keyframes, Φ and Ψ, and their corresponding

feature points, x′ and y′(shown in Figure 1.1). Using this information we create

Figure 1.1: An example of input to our system: initial (a) and final (b) implicit
surfaces, and their respective feature points (c) and (d).

a map, y, of each object point in our initial keyframe to a corresponding point

in the final keyframe (shown in Figure 1.2). Initially we do this using Radial

Basis Functions built on the feature points, and then we use optimization to

modify the map to fit several physical properties, such as volume conservation.

From the map we create trajectories for each point (shown in Figure 1.3). In

Figure 1.2: Our computed mapping from the initial keyframe (a) to the final
keyframe (b).

Chapter 1. Introduction 6

order to capture rigid motions, such as rotations, these trajectories are as-rigid-

as-possible, and are computed locally to match articulated motion.

Figure 1.3: The as-rigid-as-possible trajectories from our initial keyframe to the
final keyframe.

By sampling these trajectories, we create new implicit surfaces for in-between

frames (shown in Figure 1.4).

Figure 1.4: The output of our system: in-between frames that correspond to
the input keyframes.

Our approach is outlined in Algorithm 1.

Chapter 1. Introduction 7

Algorithm 1 System Overview
1: Input: keyframes (as implicit surfaces) and feature points mapped between

adjacent keyframes
2: for each pair of keyframes do
3: map grid points from the initial keyframe to the final keyframe using

Radial Basis Functions based on the feature points
4: optimize this map using our physically based objective function and

Gauss-Newton modified to handle linear constraints
5: for each mapped point do
6: create a trajectory between the keyframes that is as-rigid-as-possible
7: end for
8: for each in-between frame do
9: create a level set based on the keyframe(s) and the trajectories

10: end for
11: Output: in-between frames
12: end for

8

Chapter 2

Mapping Adjacent

Keyframes

Given a series of keyframes represented as implicit surfaces and selected feature

points on adjacent keyframes, we find a mapping of all the material points in

the initial frame to the material points in the final frame. Using Radial Basis

Functions and the given feature points we obtain an initial guess for this map.

Then we optimize this map for physically realistic movement by minimizing

an objective function of physical properties. For this optimization we use the

Gauss-Newton method modified to include linear constraints. These constraints

ensure the feature points are mapped correctly, whether they lie on grid points,

or not.

2.1 Keyframe Input

The inputs to our system are keyframes, represented as implicit surfaces sampled

on regular Cartesian grids, and sets of selected feature points mapped between

adjacent keyframes. We compute intermediate frames between each pair of

adjacent keyframe surfaces, Φ(x) and Ψ(y), and their corresponding feature

points, x′ and y′. Feature points can be sparse, and can differ for each pairing

of keyframes. It is important to note that the feature points are not required to

align with the grid points as our optimizer is more general. Also they are not

Chapter 2. Mapping Adjacent Keyframes 9

confined to the material boundary - they can enter the interior of our material

as specified by the user.

2.2 Radial Basis Functions

Using the initial feature points, x′, and their final positions, y′, we map the final

positions of all the material points in our initial keyframe. This map, y(x), is

one-to-one and we present scenarios in <2 and <3. It is used as an initial guess

for the optimization outlined in Section 2.3 and Section 2.5. Using the Radial

Basis Function formulation outlined in [6], we obtain our initial map in each

dimension from:

y(x) = x + p(x) +
N∑

i=1

λiRB(‖x− (y′i − x′i)‖2), (2.1)

ensuring that y(x′i) = y′i (2.2)

where RB is the Radial Basis Function, N is the number of feature points,

p(x) is a (dimension-1)-degree polynomial with M coefficients c, and λi are the

coefficients of the Radial Basis Functions. Notice that we use the RBF to get a

mapping of displacements, so we convert it to final values by adding the initial

locations of each point, x. This is different than the standard RBF formulation.

For two dimensions we use the thin-plate spline:

RB(r) = r2 log r, (2.3)

and in three dimensions we use the triharmonic spline:

RB(r) = r3. (2.4)

Chapter 2. Mapping Adjacent Keyframes 10

To obtain λ and c, we solve:

 A P

PT 0

 λ

c

 =

 f

0

 , (2.5)

where

Ai,j = RB(‖xi − (y′j − x′j)‖2), i, j = 1, ..., N

Pi,j = pj(xi), i = 1, ..., N, j = 1, ...,M

fi = y(x′i), i, j = 1, ..., N.

Given initial keyframes containing multiple objects, we perform the Radial

Basis Function step separately on each object.

2.3 Objective Function

At the heart of our system lies an objective function, f , that ensures the mapping

from initial to final grid points, y(x), preserves certain physical properties. This

objective function is:

f(y) =
∫
|det(∂y

∂x)− 1|2 +
∫
‖∂y

∂x

T ∂y
∂x − I‖2F (2.6)

+
∫
‖H(Φ(x))−H(Ψ(y(x)))‖22,

Chapter 2. Mapping Adjacent Keyframes 11

where Φ and Ψ are the initial and final keyframes, and H is the Heaviside

function:

H(Φ(xij)) =

0 if Φ(xij) < −ε,

1
2 + Φ(xij)

2ε + 1
2π sin

(πΦ(xij)
ε

)
if ε ≤ Φ(xij) ≤ ε,

1 if ε < Φ(xij),

(2.7)

with ε = 3∆x
2 to numerically smear over several grid cells to permit gradient

estimates.

It is crucial that our feature points map properly, so this objective function

is subject to the constraints:

y(x′) = y′. (2.8)

In our objective function, the first term resists volume change in the material

by ensuring that det
(

∂y
∂x

)
, the ratio of the approximated final volume to the

actual initial volume of a grid cell, is close to one. The second term avoids

unnecessary deformation within the material, so for example we match rigid

body motions exactly. This is done by enforcing that the partial derivative with

respect to each point is dependent only on its final position, and not that of

any of the other points. Meanwhile the third term matches the initial level set

surface to the mapped image on the final level set surface by comparing the

Heaviside function at each initial grid point with the Heaviside function of the

corresponding final mapped position. To account for additional criteria, more

terms could be added to this objective function. Prioritizing certain terms could

also be accomplished by adding scaling factors to the terms. We minimize this

objective function using the approach outlined in Section 2.5.

Chapter 2. Mapping Adjacent Keyframes 12

2.4 Discretization

Since our map is sampled on a Cartesian grid, ∂y
∂x is computed in two dimensions

using the näıve discretization:

∂y
∂x

=

 u1 u2

v1 v2

 , (2.9)

where

u1 =
(x

(1)
i+1,j+1+x

(1)
i+1,j)−(x

(1)
i,j+1+x

(1)
i,j)

2∆u ,

u2 =
(x

(1)
i+1,j+1+x

(1)
i,j+1)−(x

(1)
i+1,j+x

(1)
i,j)

2∆u ,

v1 =
(x

(2)
i+1,j+1+x

(2)
i+1,j)−(x

(2)
i,j+1+x

(2)
i,j)

2∆v ,

v2 =
(x

(2)
i+1,j+1+x

(2)
i,j+1)−(x

(2)
i+1,j+x

(2)
i,j)

2∆v .

Note: the superscript represents the dimension; it is not an exponent. Un-

fortunately this discretization (shown in Figure 2.1a) allows the emergence of

“hour-glassing” – unwanted null-space modes where cells badly deform into

equal area trapezoids. So we further subdivide each grid cell into four parts

(shown in Figure 2.1b) and compute ∂y
∂x for each of them.

The extension of this subdivision to three dimensions is shown in Figure 2.2,

Chapter 2. Mapping Adjacent Keyframes 13

and the discretization is:

∂y
∂x

=

u1 u2 u3

v1 v2 v3

w1 w2 w3

 , (2.10)

where

u1 =
(x

(1)
i+1,j+1,k+x

(1)
i+1,j,k)−(x

(1)
i,j+1,k+x

(1)
i,j,k)+(x

(1)
i+1,j+1,k+1+x

(1)
i+1,j,k+1)−(x

(1)
i,j+1,k+1+x

(1)
i,j,k+1)

4∆u ,

u2 =
(x

(1)
i+1,j+1,k+x

(1)
i+1,j,k)−(x

(1)
i+1,j+1,k+1+x

(1)
i+1,j,k+1)+(x

(1)
i,j+1,k+x

(1)
i,j,k)−(x

(1)
i,j+1,k+1+x

(1)
i,j,k+1)

4∆u ,

u3 =
(x

(1)
i+1,j,k+x

(1)
i,j,k)−(x

(1)
i+1,j,k+1+x

(1)
i,j,k+1)+(x

(1)
i+1,j+1,k+x

(1)
i,j+1,k)−(x

(1)
i+1,j+1,k+1+x

(1)
i+1,j,k+1)

4∆u ,

v1 =
(x

(2)
i+1,j+1,k+x

(2)
i+1,j,k)−(x

(2)
i,j+1,k+x

(2)
i,j,k)+(x

(2)
i+1,j+1,k+1+x

(2)
i+1,j,k+1)−(x

(2)
i,j+1,k+1+x

(2)
i,j,k+1)

4∆v ,

v2 =
(x

(2)
i+1,j+1,k+x

(2)
i+1,j,k)−(x

(2)
i+1,j+1,k+1+x

(2)
i+1,j,k+1)+(x

(2)
i,j+1,k+x

(2)
i,j,k)−(x

(2)
i,j+1,k+1+x

(2)
i,j,k+1)

4∆v ,

v3 =
(x

(2)
i+1,j,k+x

(2)
i,j,k)−(x

(2)
i+1,j,k+1+x

(2)
i,j,k+1)+(x

(2)
i+1,j+1,k+x

(2)
i,j+1,k)−(x

(2)
i+1,j+1,k+1+x

(2)
i+1,j,k+1)

4∆v ,

w1 =
(x

(3)
i+1,j+1,k+x

(3)
i+1,j,k)−(x

(3)
i,j+1,k+x

(3)
i,j,k)+(x

(3)
i+1,j+1,k+1+x

(3)
i+1,j,k+1)−(x

(3)
i,j+1,k+1+x

(3)
i,j,k+1)

4∆w ,

w2 =
(x

(3)
i+1,j+1,k+x

(3)
i+1,j,k)−(x

(3)
i+1,j+1,k+1+x

(3)
i+1,j,k+1)+(x

(3)
i,j+1,k+x

(3)
i,j,k)−(x

(3)
i,j+1,k+1+x

(3)
i,j,k+1)

4∆w ,

w3 =
(x

(3)
i+1,j,k+x

(3)
i,j,k)−(x

(3)
i+1,j,k+1+x

(3)
i,j,k+1)+(x

(3)
i+1,j+1,k+x

(3)
i,j+1,k)−(x

(3)
i+1,j+1,k+1+x

(3)
i+1,j,k+1)

4∆w .

Chapter 2. Mapping Adjacent Keyframes 14

Figure 2.1: Näıve (a) and subdivided (b) discretization of a two-dimensional
grid cell.

2.5 Modified Gauss-Newton Optimization

To solve the objective function we use Gauss-Newton optimization. However,

since the optimal map must match the selected feature points, we have lin-

ear constraints. To perform this optimization we modify the standard Gauss-

Newton approach of:

min
y(x)

‖p(y)‖2, (2.11)

which updates each step, ∆yk, by

JT
k Jk∆yk = −JT

k p(yk), (2.12)

where

Jk =
∂p

∂y

∣∣
yk

. (2.13)

Chapter 2. Mapping Adjacent Keyframes 15

Figure 2.2: Näıve (a) and subdivided (b) discretization of a three-dimensional
grid cell.

Our modified approach that satisfies linear constraints is:

min
y(x)

‖p(y)‖2, (2.14)

subject to Cy′ = d, (2.15)

and ∆yk is obtained from

 JT
k Jk CT

C 0

 ∆yk

λ

 =

 −JT
k p(yk)

0

 . (2.16)

Our initial map from the Radial Basis Functions matches the feature points

exactly, so the constraints are satisfied when the optimization begins. The

update steps, ∆yk, then just have to maintain these constraints.

When the feature points lie along Cartesian grid points, our constraints are

Chapter 2. Mapping Adjacent Keyframes 16

simply:

Cij =

1 if y′i is on grid point j,

0 otherwise,
(2.17)

di = x′i. (2.18)

For feature points that are not aligned with the grid points we use barycentric

weights, ti, to guarantee that the optimal map meets these constraints (Fig-

ure 2.3). Our constraints then become:

Cij =

ti if j is a grid point on the grid cell of y′i,

0 otherwise,
(2.19)

di = (t1 + t2 + t3 + t4)x′i. (2.20)

Chapter 2. Mapping Adjacent Keyframes 17

Figure 2.3: Barycentric weights, ti, of y′i in the grid defined by x1, x2, x3, and
x4.

18

Chapter 3

Computing In-between

Frames

Once we have obtained the optimal mapping from the initial keyframe to the

final keyframe, we still need to compute the corresponding in-between frames.

In the traditional morphing sense, this is done simply by blending between the

initial and final keyframes, with perhaps a small warp to help them match up.

We also take a warp and blend approach, though our warp does everything up to

truncation error in matching the implicit surfaces of the keyframes. The third

term of our objective function (Equation 2.3) corrects this (tiny) truncation

error. More sophisticated methods, [4], could be used if desired.

Our warping is carried out by creating as-rigid-as-possible trajectories for

each mapped point. We then create a level set at each intermediate time step by

blending the initial and final implicit surfaces advected along these trajectories.

3.1 Rigid Trajectories

After we have computed the optimal map, we then create trajectories which are

the basis for the in-between frames. An obvious choice would be to move each

point along a straight line towards it’s final location, however this fails to match

rigid rotations. Since we want the local neighbourhood of a point to be mapped

in a rigid manner, the trajectory should be the source of this rigidity. This

Chapter 3. Computing In-between Frames 19

gives a natural arc, instead of a straight line, for rotations. We generalize this

to as-rigid-as-possible by finding the rigid body motion as close as possible to

the deformation of the point’s neighbourhood. We use the following formulation

to compute the trajectory of an initial grid point, xij , at the tth intermediate

frame:

x(t)
ij = xij + (xij − x̄)R∗(xij , t) +

(
t−1
n−1

)
(ȳ − x̄) (3.1)

+
(

t−1
n−1

)
(1− δtn)

(
yij − x(n)

ij

)
,

where x̄ is the mean of x, ȳ is the mean of y, n is the total number of frames,

δ is the Kronecker Delta, x(n)
ij is the final position of xij , and R∗(xij , t) is the

optimal rotation of xij and its grid neighbours at the tth frame.

For each mapped point we compute the translation and rotation component

of it and its nearest grid neighbours using the closed-form solution presented

in [21, 22]. For two dimensions we reduce this approach, shown in Appendix A.

We linearly interpolate the residual deformation to ensure our trajectories match

the final keyframe. For components of the model that move rigidly this approach

yields the exact solution. Since we compute this locally, if different parts of a

body move with different rigid motions, we still get the correct trajectories.

3.2 Level Sets

Given our initial and final implicit surfaces, Φ and Ψ respectively, we compute

intermediate surfaces based on the as-rigid-as-possible trajectories. To generate

intermediate implicit surfaces we advect the initial level set along these trajec-

Chapter 3. Computing In-between Frames 20

tories using weighted averages:

Φ(xij) =
[∑

p

Φpw(xij − xp)
]
/

[∑
p

w(xij − xp)
]

(3.2)

where

w(xij) =
1

||xij ||2 + ε2
. (3.3)

For higher accuracy, we could blend it with the final level set advected back

along the same trajectories, computing the intermediate level set for the tth

frame, Φ(t), from:

Φ(t)(x(t)
ij) = (n− t) Φ(x(t)

ij) + t Ψ(y(x(t)
ij)). (3.4)

Since we have an explicit map, we can not only blend the level set values,

but also colour and texture coordinate information, for example. If these are

only defined on the surface of the initial and final frames, we extend them into

the volume by taking the same value as the closest point on the surface.

To resample the level set or other values onto regular grids at intermediate

frames, if desired, we use scattered data interpolation. Currently our imple-

mentation simply uses weighted averages, but this is easily extended to more

accurate Moving-Least Squares estimates [8].

21

Chapter 4

Results

Our system strives to animate materials in a physically reasonable manner given

a set of keyframes. We also automatically allow for topological changes, and

allow the user to guide the motion by identifying a sparse set of feature points.

The number of feature points must be large enough for the Radial Basis Function

to build an initial map. Similar methods, [32, 33] use hundreds of thousands of

control points, but as shown in Table 4.1 the number of feature points in our

examples are reasonable for manual manipulation.

Simulation Number of Feature Points
Merge 8
Bend 6
Splash 10,14,12

Table 4.1: Number of feature points in presented simulations.

4.1 Rigid Motion

We begin with a simple example that demonstrates the rigid-motion-preservation

of our technique. As mentioned in Section 3.1, rigid motion, such as rotation

or translation, is matched exactly by our system. Since the second term of our

objective function (Equation 2.6) preserves rigid-body motions, as does the ini-

tial guess obtained from the Radial Basis Functions, the optimal map from our

optimization is completely rigid. This leaves no residual deformation for our as-

Chapter 4. Results 22

rigid-as-possible-trajectories, thus providing rigid in-between trajectories. Some

examples of rigid motion are shown in Figure 4.1.

4.2 Topological Changes

Our system automatically handles the merging of components, as shown in

Figure 4.2. In the future we would like to extend this to topological splitting of

components, based on a fracture-like criterion.

4.3 Articulated Motion

To show that our system works for movement that is rigid in its components, but

not as a whole, we provide the case of an articulated rod bending in Figure 4.3.

There are currently bugs in the level set code that cause unexpected surface

artifacts to appear in some of the in-between frames here and in the following

example.

4.4 Splash

In Figure 4.4 we present a simulation of a droplet splashing into a pool of fluid.

Note, we are using our current system that does not include the additional

inertial term for fluid-like movement.

Chapter 4. Results 23

F
ig

ur
e

4.
1:

A
C

ar
te

si
an

gr
id

re
pr

es
en

ta
ti

on
of

th
re

e-
di

m
en

si
on

al
ri

gi
d

ex
am

pl
es

:
ro

ta
ti

on
(t

op
ro

w
),

tr
an

sl
at

io
n

(m
id

dl
e

ro
w

),
an

d
bo

th
tr

an
sl

at
io

n
an

d
ro

ta
ti

on
(b

ot
to

m
ro

w
).

Chapter 4. Results 24

F
ig

ur
e

4.
2:

T
w

o-
di

m
en

si
on

al
m

er
gi

ng
ex

am
pl

e,
w

it
h

th
e

fir
st

an
d

la
st

im
ag

es
as

ke
yf

ra
m

es
.

T
he

le
ve

ls
et

s
ar

e
di

sp
la

ye
d,

as
ar

e
th

e
fe

at
ur

e
po

in
ts

.

Chapter 4. Results 25

F
ig

ur
e

4.
3:

T
w

o-
di

m
en

si
on

al
be

nd
in

g
ex

am
pl

e,
w

it
h

th
e

fir
st

an
d

la
st

im
ag

es
as

ke
yf

ra
m

es
.

T
he

le
ve

ls
et

s
ar

e
di

sp
la

ye
d,

as
ar

e
th

e
fe

at
ur

e
po

in
ts

.

Chapter 4. Results 26

F
ig

ur
e

4.
4:

T
w

o-
di

m
en

si
on

al
sp

la
sh

in
g

ex
am

pl
e

w
it

h
th

e
le

ve
ls

et
an

d
fe

at
ur

e
po

in
ts

sh
ow

n.
T

he
fir

st
,t

hi
rd

,fi
ft

h
an

d
se

ve
nt

h
im

ag
es

re
pr

es
en

t
ke

yf
ra

m
es

.
T

he
in

it
ia

l
gr

id
po

in
ts

,
w

ar
pe

d
to

th
ei

r
in

te
rm

ed
ia

te
or

fin
al

po
si

ti
on

s
ar

e
al

so
sh

ow
n.

27

Chapter 5

Conclusion and Future

Work

5.1 Conclusion

We present a method to create physically plausible in-between frames, given

arbitrary implicit models as keyframes. Our variational approach finds a volume

mapping between keyframes which minimizes a physics-based objective function,

and then creates as-rigid-as-possible trajectories of the volume respecting this

map, which we use to create physically plausible in-between frames.

5.2 Future Work

Currently we animate objects in a rigid manner, however this method could be

extended to animate fluid-like materials by adding a parameter that controls

sloppy liquid-like motion of the fluid. One application of this would be for

animating liquid characters, which are currently animated in an ad hoc and

highly artist-intensive manner to ensure absolute control of the fluid and fluid-

like motion [33, 51].

We believe the addition of an inertial term to our objective function would

provide an automated solution to this problem. This term would penalize ac-

celerations, by accounting for the difference between predicted position, based

Chapter 5. Conclusion and Future Work 28

on given initial velocities, and the corresponding mapped final position. We in

essence would provide a variational form for continuum dynamics, with addi-

tional control terms or constraints for feature point and level set matching. For

trajectory estimation we also need to take into account initial velocities, as the

final velocity dictated by the computed trajectory should match the velocity at

the start of the following keyframe. We also plan to add the capability to split

topologies, by providing a fracture-like criterion.

5.2.1 Cartoony Fluids

Inspired by the work of [9], which creates cartoony fluids in an artist-intensive

approach, we would like to extend our system to provide a more automated solu-

tion. Our approach would be to combine our system, including the inertial term

for fluid-like motion, with cartoon animation filters, [49, 50], that automatically

apply well-known animation principles [27, 44].

5.2.2 Hands-on Control

We would also like to extend this work to include a hands-on approach to mod-

eling keyframes for animation. The idea is to have a user create the keyframes

using modeling clay, and then scan the three-dimensional model with a handheld

camera. Relevant research include the areas of mosaicing, [18, 23] and model

acquisition [35, 36].

29

Bibliography

[1] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible shape

interpolation. In SIGGRAPH ’00: Proceedings of the 27th annual confer-

ence on Computer graphics and interactive techniques, pages 157–164, New

York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[2] Aurélien Barbier, Eric Galin, and Samir Akkouche. A framework for mod-

eling, animating, and morphing textured implicit models. Graph. Models,

67(3):166–188, 2005.

[3] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. In

SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer

graphics and interactive techniques, pages 35–42, New York, NY, USA,

1992. ACM Press.

[4] David E. Breen and Ross T. Whitaker. A level-set approach for the meta-

morphosis of solid models. IEEE Transactions on Visualization and Com-

puter Graphics, 7(2):173–192, 2001.

[5] Robert Bridson, Matthias Müller-Fischer, Eran Guendelman, and Ronald

Fedkiw. Fluid simulation. In SIGGRAPH 2006 Course Notes, 2006.

[6] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,

B. C. McCallum, and T. R. Evans. Reconstruction and representation of 3d

objects with radial basis functions. In SIGGRAPH ’01: Proceedings of the

Bibliography 30

28th annual conference on Computer graphics and interactive techniques,

pages 67–76, New York, NY, USA, 2001. ACM Press.

[7] Daniel Cohen-Or, Amira Solomovic, and David Levin. Three-dimensional

distance field metamorphosis. ACM Trans. Graph., 17(2):116–141, 1998.

[8] Richard Corbett. Point-based level sets and progress towards unorganized

particle based fluids. Master’s thesis, University of British Columbia, 2005.

[9] Peter DeMund. Cartoony fluid animation. In Proceedings of SIGGRAPH

2005, Sketches & Applications. ACM Press, 2005.

[10] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and

rendering of complex water surfaces. In SIGGRAPH ’02: Proceedings of the

29th annual conference on Computer graphics and interactive techniques,

pages 736–744, New York, NY, USA, 2002. ACM Press.

[11] Xiang Fang, Hujun Bao, Pheng Ann Heng, TienTsin Wong, and Qunsheng

Peng. Continuous field based free-form surface modeling and morphing.

Computers and Graphics, 25(2):235–243, April 2001.

[12] Raanan Fattal and Dani Lischinski. Target-driven smoke animation. ACM

Trans. Graph., 23(3):441–448, 2004.

[13] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of

smoke. In SIGGRAPH ’01: Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 15–22, New York, NY,

USA, 2001. ACM Press.

[14] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In SIG-

GRAPH ’01: Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 23–30, New York, NY, USA,

2001. ACM Press.

Bibliography 31

[15] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical

models and image processing: GMIP, 58(5):471–483, 1996.

[16] Nick Foster and Dimitris Metaxas. Controlling fluid animation. In CGI ’97:

Proceedings of the 1997 Conference on Computer Graphics International,

page 178, Washington, DC, USA, 1997. IEEE Computer Society.

[17] Nick Foster and Dimitris Metaxas. Modeling water for computer animation.

Commun. ACM, 43(7):60–67, 2000.

[18] Paolo Grattoni and Massimiliano Spertino. A mosaicing approach for the

acquisition and representation of 3d painted surfaces for conservation and

restoration purposes. Mach. Vision Appl., 15(1):1–10, 2003.

[19] Arthur D. Gregory, Andrei State, Ming C. Lin, Dinesh Manocha, and

Mark A. Livingston. Feature-based surface decomposition for correspon-

dence and morphing between polyhedra. In Computer Animation ’98, pages

64–71, 1998.

[20] Jeong-Mo Hong and Chang-Hun Kim. Controlling fluid animation with

geometric potential: Research articles. Comput. Animat. Virtual Worlds,

15(3-4):147–157, 2004.

[21] Berthold K.P. Horn. Closed form solution of absolute orientation using

unit quaternions. Journal of the Optical Society A, 4:629–642, 1987.

[22] Berthold K.P. Horn, Hugh M. Hilden, and Shahriar Negahdaripour. Closed

form solution of absolute orientation using orthonormal matrices. Journal

of the Optical Society A, 5:1127–1135, 1988.

[23] Chiou-Ting Hsu, Tzu-Hung Cheng, Rob A. Beuker, and Jyh-Kuen Horng.

Feature-based video mosaic. In ICIP, 2000.

Bibliography 32

[24] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-rigid-as-possible

shape manipulation. ACM Trans. Graph., 24(3):1134–1141, 2005.

[25] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer

graphics. In SIGGRAPH ’90: Proceedings of the 17th annual conference

on Computer graphics and interactive techniques, pages 49–57, New York,

NY, USA, 1990. ACM Press.

[26] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and

James F. O’Brien. Fluid animation with dynamic meshes. ACM Trans.

Graph., 25(3):820–825, 2006.

[27] John Lasseter. Principles of traditional animation applied to 3d computer

animation. In SIGGRAPH ’87: Proceedings of the 14th annual conference

on Computer graphics and interactive techniques, pages 35–44, New York,

NY, USA, 1987. ACM Press.

[28] Apostolos Lerios, Chase D. Garfinkle, and Marc Levoy. Feature-based vol-

ume metamorphosis. In SIGGRAPH ’95: Proceedings of the 22nd annual

conference on Computer graphics and interactive techniques, pages 449–

456, New York, NY, USA, 1995. ACM Press.

[29] Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. Linear

rotation-invariant coordinates for meshes. ACM Trans. Graph., 24(3):479–

487, 2005.

[30] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and

smoke with an octree data structure. ACM Trans. Graph., 23(3):457–462,

2004.

[31] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. Multiple

interacting liquids. In SIGGRAPH ’06: Proceedings of the 33rd annual

Bibliography 33

conference on Computer graphics and interactive techniques, New York,

NY, USA, 2006. ACM Press.

[32] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid

control using the adjoint method. ACM Trans. Graph., 23(3):449–456,

2004.

[33] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger,

S. Hoon, and R. Fedkiw. Directable photorealistic liquids. In SCA ’04:

Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pages 193–202, New York, NY, USA, 2004. ACM

Press.

[34] William T. Reeves. Particle systems - a technique for modeling a class of

fuzzy objects. In SIGGRAPH ’83: Proceedings of the 10th annual confer-

ence on Computer graphics and interactive techniques, pages 359–375, New

York, NY, USA, 1983. ACM Press.

[35] Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3d model

acquisition. In SIGGRAPH ’02: Proceedings of the 29th annual confer-

ence on Computer graphics and interactive techniques, pages 438–446, New

York, NY, USA, 2002. ACM Press.

[36] Tomokazu Sato, Masayuki Kanbara, Naokazu Yokoya, and Haruo Take-

mura. Dense 3-d reconstruction of an outdoor scene by hundreds-baseline

stereo using a hand-held video camera. Int. J. Comput. Vision, 47(1-3):119–

129, 2002.

[37] Steven M. Seitz and Charles R. Dyer. View morphing. Computer Graphics,

30(Annual Conference Series):21–30, 1996.

Bibliography 34

[38] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle

method for smoke, water and explosions. ACM Trans. Graph., 24(3):910–

914, 2005.

[39] Lin Shi and Yizhou Yu. Controllable smoke animation with guiding objects.

ACM Trans. Graph., 24(1):140–164, 2005.

[40] Lin Shi and Yizhou Yu. Taming liquids for rapidly changing targets. In SCA

’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium

on Computer animation, pages 229–236, New York, NY, USA, 2005. ACM

Press.

[41] Seung-Ho Shin, Jung Lee, Sun-Jeong Kim, and Chang-Hun Kim. Con-

trolling liquids using pressure jump. In Proceedings of SIGGRAPH 2006,

Sketches & Applications. ACM Press, 2006.

[42] Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, pages 121–

128, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing

Co.

[43] Nigel Sumner, Samir Hoon, Willi Geiger, Sebastien Marino, Nick Ras-

mussen, and Ron Fedkiw. Melting a terminatrix. In Proceedings of SIG-

GRAPH 2003, Sketches & Applications. ACM Press, 2003.

[44] Frank Thomas and Ollie Johnston. The Illusion of Life. Disney Editions,

pp. 62., 1981.

[45] Nils Thürey, Richard Keiser, Ulrich Rüde, and Mark Pauly. Detail-

preserving fluid control. In SCA ’06: Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, New York, NY,

USA, 2006. ACM Press.

Bibliography 35

[46] Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam.

Keyframe control of smoke simulations. ACM Trans. Graph., 22(3):716–

723, 2003.

[47] Greg Turk and James F. O’Brien. Shape transformation using variational

implicit functions. In SIGGRAPH ’99: Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, pages 335–

342, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing

Co.

[48] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field

based shape deformations. In SIGGRAPH ’06: Proceedings of the 33rd

annual conference on Computer graphics and interactive techniques, New

York, NY, USA, 2006. ACM Press.

[49] Jue Wang, Stephen M. Drucker, Maneesh Agrawala, and Michael F. Cohen.

Cartoon animation filter. In In SIGGRAPH 06: Proceedings of the 33rd

annual conference on Computer graphics and interactive techniques, New

York, NY, USA, 2006. ACM Press.

[50] David White, Kevin Loken, and Michiel van de Panne. Slow in and slow

out cartoon animation filter. In Proceedings of SIGGRAPH 2006, Research

Posters. ACM Press, 2006.

[51] Mark Wiebe and Ben Houston. The tar monster: Creating a character

with fluid simulation. In Proceedings of SIGGRAPH 2004, Sketches &

Applications. ACM Press, 2004.

36

Appendix A

Optimal Rotation in Two

Dimensions

In [21] and [22], a closed form solution for computing the optimal rotation of a

set of points is derived for three dimensions. We use this for three-dimensional

simulations and our two-dimensional examples use a reduced formulation out-

lined below. Note that translation, regardless of the dimensionality, is simply

ȳ − x̄, the difference between final and initial center points.

We begin by stating that we seek a rotation, R, such that

ỹi = Rx̃i, (A.1)

where

ỹi = (yi − ȳ),

x̃i = (xi − x̄),

i = 1, ..., N.

Given that we are not necessarily dealing with absolute rigidity, we use a least-

Appendix A. Optimal Rotation in Two Dimensions 37

squares error metric, given by:

min
R

∑
i

‖ỹi −Rx̃i‖2, (A.2)

subject to det (R) = 1. (A.3)

This expands to ∑
i

(|ỹ|2 + |x̃|2 − 2ỹT
i Rx̃i), (A.4)

and since |ỹ|2 and |x̃|2 are independent of R, we reduce the error term to

∑
i(−ỹT

i Rx̃i) (A.5)

=
∑

i(ỹ
(1)
i ỹ

(2)
i)

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 x̃

(1)
i

x̃
(1)
i

=
∑

i−(ỹ(1)
i ỹ

(2)
i)

 x̃
(1)
i cos(θ) + x̃

(2)
i sin(θ)

−x̃
(1)
i sin(θ) + x̃

(2)
i cos(θ)

=

∑
i−

[
ỹ
(1)
i x̃

(1)
i cos(θ) + ỹ

(1)
i x̃

(2)
i sin(θ)− ỹ

(2)
i x̃

(1)
i sin(θ) + ỹ

(2)
i x̃

(2)
i cos(θ)

]

= cos(θ)
[
−

∑
i

(
ỹ
(1)
i x̃

(1)
i + ỹ

(2)
i x̃

(2)
i

)]

+sin(θ)
[∑

i(ỹ
(2)
i x̃

(1)
i − ỹ

(1)
i x̃

(2)
i)

]

= A cos(θ) + B sin(θ). (A.6)

where

Appendix A. Optimal Rotation in Two Dimensions 38

A = −
∑

i

(
ỹ
(1)
i x̃

(1)
i + ỹ

(2)
i x̃

(2)
i

)
, (A.7)

B =
∑

i(ỹ
(2)
i x̃

(1)
i − ỹ

(1)
i x̃

(2)
i). (A.8)

Our constraint (Equation A.3) is now cos2(θ)+ sin2(θ) = 1, which combines

with A.6 to yield:

cos(θ) = ±A√
A2+B2 , (A.9)

sin(θ) = ∓B√
A2+B2 , (A.10)

