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Abstract

Explicit surface tracking encompasses the discretization of moving surfaces in 3D

with triangle meshes. This thesis presents key contributions towards making ex-

plicit surface tracking tractable. I first deal with the topology change problem

(the merging and splitting of mesh surfaces), introducing a framework for guaran-

teeing intersection-free surfaces while handling these topological changes. I then

introduce new methods for continuous collision detection which are “exact” in the

sense of returning the same results as they would if computed with symbolic or

exact arithmetic, but which are implemented using faster, floating-point arithmetic.

The thesis also showcases several application domains in which explicit sur-

face tracking can offer improvements over traditional methods: geometric flows,

adaptive cloth simulation, and passive visualization of smoke simulation. It also

presents two simulation techniques which take advantage of the explicit surface

mesh representation and would not be possible with traditional methods: vortex

sheet smoke and adaptive liquid simulation with high-resolution surface tension.

ii



Preface

All work in this thesis was done under the supervision of Dr. Robert Bridson, and

work in Chapter 3 and Chapter 5 was done without other collaborators besides Dr.

Bridson.

Chapter 3 was published as: Tyson Brochu and Robert Bridson. Robust topo-

logical operations for dynamic explicit surfaces. SIAM Journal on Scientific Com-

puting, 31(4):2472-2493, 2009.

Work in Chapter 4 was a collaboration with Essex Edwards, one of Dr. Brid-

son’s PhD students. Essex’s main contribution was the proof of the Root Parity

Lemma, included as an appendix in this thesis for completeness. Some work from

this chapter has been accepted to ACM SIGGRAPH 2012 as: Tyson Brochu, Essex

Edwards, and Robert Bridson. Efficient Geometrically Exact Continuous Collision
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tions were published as a technical report: Tyson Brochu and Robert Bridson.
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mos), 2009.

Chapter 6 was written with Todd Keeler, also one of Dr. Bridson’s PhD stu-

dents, who provided an implementation of the Fast Multipole Method (FMM), as

well as suggesting the form of the integral equations to solve for solid bound-

aries. I developed the vortex sheet framework, including the linear solver for solid

boundaries, and we collaborated on integrating Todd’s FMM code into both the ve-
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locity and solid boundary computations. Since the FMM implementation is not my

contribution, its description in the thesis is deliberately brief. The surface tracking

component, including redistribution of edge circulations during remeshing, was my

work, as was the interactive rendering. The offline, self-shadowed rendering was

developed with Dr. Bridson. Work in Chapter 6 has been accepted for publication

as: Tyson Brochu, Todd Keeler, and Robert Bridson. Linear-Time Smoke Anima-
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Symposium on Computer Animation, 2012.

Chapter 7 was a joint project with Dr. Christopher Batty, who was then a PhD

candidate also under the supervision of Dr. Bridson, and the research effort was

divided relatively evenly between us. Christopher proposed the initial idea of us-

ing Voronoi-based simulation in concert with my prior surface tracking research in

order to capture thin features. I worked out the specifics of the intelligent sampling

scheme that appeared in the paper and coded the majority of the full 3D liquid

simulator. Christopher incorporated surface tension into the pressure projection,

with my implementations of a few mean curvature estimates. We collaborated on

several ideas for interpolation, and ended up using a scheme developed chiefly by

Christopher. This chapter was co-presented at SIGGRAPH 2010 by Christopher

and myself, and published as: Tyson Brochu, Christopher Batty, and Robert Brid-

son. Matching fluid simulation elements to surface geometry and topology. ACM

Transactions on Graphics (Proc. SIGGRAPH), 29:47:1-47:9, July 2010.
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Notation

x(t): mesh vertex positions
T(t): mesh triangles
~u(~x, t): velocity field
~xi: position of vertex i at time t
~x∗i : predicted position of vertex i at future time t +∆t
Lmax: maximum edge length
Lmin: minimum edge length
∆Vmax: maximum volume change
ξ : initial average edge length
εp: proximity threshold

~F : a vector valued function
Ω: function domain
∂Ω: boundary of a function domain

α~g: smoke buoyancy force
~ω: vorticity
Γ: circulation
K: fundamental solution to Laplace’s equation, or a regularized approximation
thereof
Φ: a scalar boundary potential function
σ : the layer density of a single-layer potential

γ: surface tension coefficient
κs: mean curvature of surface s
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Chapter 1

Introduction

Discretizing and maintaining surfaces are common tasks in physical simulation and

computer graphics. In computer graphics, virtual artists such as modelers and an-

imators often work directly with surfaces. In the simulation of physical phenom-

ena, tracking a moving surface is often essential to capturing accurate dynamics

if the surface defines regions of materials with different physical properties. For

example, in a fluid simulation the surface can define the boundary between a liq-

uid and surrounding air, or between regions of differing temperatures or densities

in the same fluid. Combining simulation and graphics, physics-based animation

aims to use concepts and techniques from physical simulation to capture the vi-

sual characteristics of various phenomena which can be difficult to animate by

hand: clothing, elastic solids, rigid bodies, smoke, and liquids. The quality of the

animation in many of these areas can be significantly affected by the quality of

surface discretization and tracking. Furthermore, surfaces which undergo extreme

deformations and changes in topology, such as merging and splitting, can pose a

significant challenge.

Dynamic surfaces are surfaces that move over time. Surface motion can be

specified by a number of different means, depending on the application. For ex-

ample, geometric flows, such as motion normal to the surface or mean-curvature-

minimizing motion are often used for volumetric segmentation. Another common

domain where surface motion is encountered is physical simulation, such as fluid

simulation, where the surface defines a material interface. Explicit surfaces are

1



surfaces constructively defined by their geometry. With dynamic explicit surfaces,

the surface geometry itself is updated, or tracked, as it moves. In this thesis, I will

use the term “explicit surfaces” to refer almost exclusively to triangulated meshes

in 3D, and line segment meshes in 2D.

Thesis outline

In the remainder of this chapter, I will introduce the main contributions of this

thesis. In Chapter 2, I will review relevant previous work, in order to place the

current work in the proper context of related research topics. Work in the first part

of this thesis focuses on overcoming two of the main challenges in explicit sur-

face tracking: handling changes in topology, and robustly detecting and preventing

self-intersections in the surface mesh. As we shall see, these two problems can

be closely related. Once these pieces are in place, I will show that our surface

tracking method compares favourably to the level-set method, and demonstrate a

few applications where the straightforward use of dynamic explicit surfaces can

be beneficial: cloth simulation and the animation of smoke. Finally, I present

simulation methods which can take advantage of the unique nature of explicit sur-

face tracking: smoke simulation using vortex sheets, and liquid simulation with an

adaptive volumetric simulation mesh.

Terminology

The term “topology” is somewhat overloaded. In this thesis, I will use the word

topology to refer to the connectedness and genus of the surface, and connectivity

to refer to the particular structure of the mesh’s graph. In other words, I will use

topology to indicate global shape irrespective of mesh connections (e.g. sphere vs.

torus), and connectivity to refer to the mesh itself (e.g. which vertices are connected

by edges).

1.1 Robust topological operations for dynamic explicit
surfaces

Implicit surface methods do not track the location of points on the surface, but

rather use a collection of data points, usually located at fixed, regular intervals
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throughout the computational domain, to reconstruct the surface when needed. A

popular example of an implicit method is the level set method [OF03], in which the

zero-isocontour of a scalar function—usually a numerically approximated signed

distance field—defines a surface.

Implicit surface functions are commonly used to represent dynamic surfaces

because they easily handle topological changes, such as merging and pinching-off:

no special effort is required. These changes are notoriously hard to handle with

explicit surfaces — meshes often become “tangled” if they are advected into a

self-intersecting state or if “mesh surgery” introduces holes that must be remeshed,

and it can then be difficult to reconstruct a consistent, intersection-free surface.

Implicit methods, however, do suffer drawbacks such as numerical dissipation

and the inability to reliably capture detail near or beyond the resolution of the un-

derlying grid. For example, numerical dissipation in level set methods smooths

out high-curvature regions and can cause parts of the surface to vanish, even under

rigid motion. In fact, very thin yet smooth (low curvature) surfaces require exces-

sively refined grids to avoid this problem. In addition, the user has no control to

prevent topology change if the surface physics of the problem dictate a more subtle

behaviour. A further drawback of implicit surface tracking is that the extraction

of an explicit surface from an implicit representation (for example, for rendering)

is still a non-trivial operation. Many of the challenges that face explicit surface

tracking methods also apply here, and thus the complexity is shifted from surface

tracking to surface extraction.

In Chapter 3 we present a framework for robustly handling topological changes

in explicit surfaces, in a step towards tractable explicit surface tracking that does

not suffer from the drawbacks of an implicit method. We consider two-dimensional

surfaces embedded in R3, discretized as triangulated meshes.

The key idea is to require that every mesh operation should leave the mesh in a

consistent, non-intersecting state—as opposed to attempting to recover such a state

after the fact. We thus first use robust collision detection methods to ensure we

detect every possible violation. Once a collision is detected, we either roll back the

operation if it is deemed non-critical and may be delayed to a subsequent time step

when it may succeed, and otherwise minimally perturb mesh positions to avoid

the problem (patterned after frictionless inelastic collision response in a physical
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contact problem).

We present numerical experiments verifying convergence of our method for

geometric flows with topology change, highlighting its ability to robustly and ef-

ficiently capture extremely thin and delicate details. This chapter is based on our

SISC paper [BB09c]: Tyson Brochu and Robert Bridson. Robust topological op-

erations for dynamic explicit surfaces. SIAM Journal on Scientific Computing,

31(4):2472-2493, 2009.

1.2 Efficient geometrically exact continuous collision
detection

Maintaining the intersection-free invariant for a moving explicit surface (necessary

for robust topological operations described above) requires robust and efficient col-

lision and intersection detection. This thesis brings the paradigm of “Exact Geo-

metric Computation” (EGC) to continuous collision detection. As defined by Yap

[Yap04]:

[EGC is the] preferred name for the general approach of “exact com-

putation,” as it accurately identifies the goal of determining geometric

relations exactly. The exactness of the computed numbers is either

unnecessary, or should be avoided if possible.

In other words, we are concerned with returning the correct Boolean result of a

geometric test for given coordinates as if computed without rounding error. In

intersection and collision testing, it is often of vital importance to get the correct

Boolean result, even if there may be error in the estimate of where exactly an

intersection occurs.

In Chapter 4, we introduce two new continuous collision detection approaches

which build on a set of existing and new geometric predicates, and so can be made

fully robust, in the EGC sense. Our methods do not require parameter tuning by

the user, as they have no parameters which affect correctness.

The use of parameter-free, geometrically exact continuous collision detection

makes it easier to maintain the intersection-free invariant for a moving mesh sur-

face undergoing remeshing and changes in topology, and provides a key piece of
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our general-purpose explicit surface tracking package. We demonstrate the robust-

ness of the proposed method with an adaptive cloth simulation.

Some work from this chapter has been conditionally accepted for publication

at SIGGRAPH 2012 as: Tyson Brochu, Essex Edwards, and Robert Bridson. Effi-

cient Geometrically Exact Continuous Collision Detection. ACM Transactions on

Graphics (Proc. SIGGRAPH), 2012. Other sections were published as a technical

report [BB09b]: Tyson Brochu and Robert Bridson. Numerically robust continu-

ous collision detection for dynamic explicit surfaces. Technical Report TR-2009-

03, University of British Columbia, 2009.

1.3 Animating smoke as a surface
In visual effects, fluids such as smoke are often simulated with a grid-based fluid

solver or particle system. The visible density of soot is usually tracked using either

a set of passive marker particles, or a scalar density function on an Eulerian grid.

If a marker particle system is used, tens of millions of particles may be required to

prevent a grainy, bumpy, or blobby look, which can occupy considerable storage

and network resources. Furthermore, if the smoke effect is particularly dense, only

the set of particles or grid cells near the surface may be of interest, while the inte-

rior is almost completely occluded, thus using valuable storage and computational

effort for regions which are not visible.

In Chapter 5 we embed a dynamic explicit surface in procedural and volumet-

ric fluid simulations, visualizing the volume of smokey soot with surfaces. With a

continuous mesh surface, we can achieve smooth, non-diffusive, high-quality ren-

ders of smoke and dye for a fraction of the storage necessary with a particle or grid

representation. Some of the work in this chapter was presented as a poster at SCA

[BB09a]: Tyson Brochu and Robert Bridson. Animating smoke as a surface. Eu-

rographics/ACM SIGGRAPH Symposium on Computer Animation (posters and

demos), 2009.
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1.4 Linear-time smoke animation with vortex sheet
meshes

In Chapter 6, we take the surface representation of smoke further, presenting a sim-

ulation method which uses the mesh primitives themselves as simulation elements,

with no need for a volumetric simulation. We develop a vortex sheet model of

smoke simulation, and argue that in the most useful asymptotic limit it captures all

essential dynamic and visual detail in a closed 2D surface. We discretize the model

with an adaptive dynamic triangle mesh, and model smoke dynamics using a vor-

tex sheet method — a powerful technique where the velocity field can be evaluated

explicitly using an integral over the surface.

Directly computing this integral for every point on the surface requires O(N2)

operations to evaluate the velocity on N vertices: to overcome this limit we use a

Fast Multipole Method (FMM) to approximate the velocity to arbitrary precision

in optimal O(N) time. Additionally, our method handles arbitrary no-stick moving

solid boundaries. We demonstrate efficient smoke rendering techniques which are

also linear in the number of mesh elements, providing complete O(N) solutions for

simulation and rendering.

Work in this chapter has been accepted for publication at SCA 2012 as: Tyson

Brochu, Todd Keeler, and Robert Bridson. Linear-Time Smoke Animation with

Vortex Sheet Meshes. Proceedings of Eurographics/ACM SIGGRAPH Symposium

on Computer Animation, 2012.

1.5 Matching fluid simulation elements to surface
geometry and topology

Finally, we focus on the simulation of liquid with explicit surface tracking. We

demonstrate that naı̈vely plugging an explicit surface tracker into a volumetric liq-

uid simulation leads to undesirable results, as the simulation and surface are often

operating at different resolutions. The solution is either to simplify the surface

mesh until it can be adequately resolved by the simulation, or to add degrees of

freedom in the simulation to account for the higher-resolution surface mesh. In

Chapter 7 we introduce a method for accomplishing the latter, using an adaptive

simulation mesh based on the Voronoi diagram of an unorganized collection of sim-
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ulation nodes. We also show that high-frequency, accurate surface tension can be

achieved using mean curvature estimates from the triangle mesh itself. This chap-

ter was presented at SIGGRAPH 2010, and published as [BBB10]: Tyson Brochu,

Christopher Batty, and Robert Bridson. Matching fluid simulation elements to sur-

face geometry and topology. ACM Transactions on Graphics (Proc. SIGGRAPH),

29:47:1-47:9, July 2010.
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Chapter 2

Related work

2.1 Surface tracking
As discussed in the previous chapter, methods for discretizing and evolving a sur-

face embedded in Euclidean space can be lumped into two broad categories: im-

plicit and explicit.

Implicit surface methods do not track the location of points on the surface,

but instead use a collection of data points, usually located at fixed, regular inter-

vals throughout the computational domain to reconstruct the surface when needed.

They are sometimes called “front-capturing” methods since they do not explicitly

track points on the surface, but rather contain the information needed to reconstruct

the surface. Discretizing a signed distance function on a volumetric grid and defin-

ing the surface as the zero-isocontour of the function yields the level set method

[OF03].

Explicit surface methods, by contrast, discretize the surface using a set of con-

nected points. This is sometimes called “front tracking”, as points on the surface

are followed as the surface evolves, and these points entirely define the surface.

Perhaps the best-known general purpose front tracking method is that developed

by Glimm and collaborators [GGL+98]. They discretize the surface as a simplex

mesh (line segments in two dimensions, triangles in three dimensions).
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2.1.1 Implicit surface tracking

Since its introduction [OS88], the Level-Set Method has become very popular for

implicit surface capturing, and has seen use in computer graphics, as well as image

processing, computer vision, and scientific applications [Set99, OF03].

This method requires a volumetric grid of samples over the entire domain, even

though usually only the surface is of interest. As such, many subsequent improve-

ments to the method have aimed at focusing computational effort on capturing the

surface. For example, the “narrow band” level set method [AS95] updates sample

points only within a few grid cells around the zero level set of the implicit surface

function, aiming to reduce the dimensionality of the problem. Intelligent storage of

narrow bands, combined with hierarchical grids, has allowed for efficient storage

and processing of implicit surface functions with extremely high effective resolu-

tions [HNB+06].

The “particle level set” method [EFFM02], which supplements the volumetri-

cally discretized implicit surface function with a set of marker particles, has proven

especially accurate in some applications. Particles are initialized in a narrow band

around the zero level set, and each particle is given a sign depending on which

side of the initial surface it initially lies. These particles are advected with the

underlying velocity field, and, at each step, their signs are used to reconstruct the

surface. Placing particles exactly on the initial surface results in the “marker par-

ticle level set method” [MMS07]. This particular method has the added benefit

that additional surface data can be stored on the particles (for example, texture co-

ordinates for graphics applications). Additional accuracy has also been achieved

through the use of an octree grid structure [LGF04], which can efficiently increase

the resolution of the level set function discretization around the interface.

Volume-Of-Fluid (VOF) methods were introduced by DeBar [DeB74] and Noh

and Woodward [NW76] for the simulation of fluids. These methods operate on a

fixed volumetric voxel grid, maintaining the fraction of volume occupied by fluid at

each voxel. At the beginning of the simulation, these volume fractions are initial-

ized using the known geometric interface. At subsequent steps in the simulation,

the volume fractions are evolved according to the advection equation. The actual

interface must then be reconstructed from these volume fractions when required.
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See work by Rider and Kothe [RK98] for more details and an overview of some

advancements in this technique over the past several decades.

A method similar to VOF was introduced to the computer graphics community

by Mullen et al. [MMTD07], who store a “mass density” function of an object at

regular grid cells. This density is advected using a finite-volume approach which

conserves total mass, in effect perfectly conserving the volume defined by the mass

density function.

The Coupled Level Set and Volume Of Fluid method was introduced by Suss-

man [Sus03] and subsequently applied to the animation of boiling liquids in graph-

ics [MUM+06]. This approach maintains a signed distance field, as in the level set

method, as well as a volume fraction per cell, as in VOF. The signed distance field

is used to cull spurious volume fractions which might occur outside and away from

the actual surface (due to numerical error). The volume fractions, in turn, are used

to correct volume loss in the level set function.

The use of passive marker particles to track a surface is common in applica-

tions such as fluid simulation. For example, the Marker-And-Cell method [HW65]

uses an Eulerian grid to drive the fluid simulation, and passive marker particles

to indicate the interior of the fluid. An explicit surface can then in principle be

reconstructed as needed, though we note determining an accurate smooth surface

from the marker particles remains an open research problem. We might classify

the marker particle approach as both Langrangian and implicit since it uses the

Lagrangian frame of reference but still only captures information necessary to re-

construct a surface. Using particles to track the location of fluid is common in

computer graphics [ZB05], and the extraction of a smooth, temporally coherent

surface from a set of particles is an ongoing area of research [APKG07, Wil08,

YT10, BGB11]. Using the alpha-shape [EM94] of a set of particles to extract

a surface, as is done in the Particle Finite Element Method [OIPA04], is also a

promising direction.

Torres and Brackbill [TB00] introduced the point-set method, arguing that sur-

face tracking does not necessarily require connectivity information between sur-

face particles. To compute normals and curvatures, they first construct an indicator

function on a regular grid (similar to a signed distance field, but only containing

inside-outside information). This function is smoothed around the interface so that
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the isocontour representing the interface passes through the surface particles. Nor-

mals and curvatures are then defined using the partial derivatives of the indicator

function.

2.1.2 Explicit surface tracking

In our discussion of previous explicit surface tracking work, we will distinguish

between methods which do not address changes in topology, and methods which

handle these changes to varying degrees.

Fixed topology

In the scientific computing literature, explicitly-discretized surfaces are often used

to track, for example, the interface between two volumes of fluid, or the exterior

surface of a solid. Often these surfaces can contain the simulation elements them-

selves, and much work on surface tracking has been done in the context of these

“boundary methods”.

Boundary Element Methods [BTW84] are a general class of physical simula-

tion approaches where the simulation elements are located on a domain bound-

ary. Generally, a fundamental solution of the partial differential equation being

studied is employed, the boundary conditions are partially specified, and the re-

maining boundary conditions are solved for. The appeal of such approaches is

that the dimensionality of the problem is reduced, since we are concerned with

elements on a surface, rather than throughout a volume. Problems studied with

this approach include elasticity, Stokes flow, and electromagnetism. In computer

graphics, BEM has been used to model linear elasticity for interactive applications

[JP99, PDJ+01].

In fluid dynamics, vortex sheets model layers of fluid where a discontinuous

jump in velocity occurs. Often this layer corresponds to the interface between two

different fluids. These layers are often discretized as surface meshes (although

level-set methods have also been used). This framework has been used to study

inviscid and incompressible multifluid flows with surface tension [HLS01, Poz00],

rising bubbles with viscosity and surface tension [UT92], the Rayleigh-Taylor In-

stability [GMMS86], and many other phenomena in fluid dynamics. (One literature

11



review of vortex methods contains over 450 references [Sto07].) More recently,

adaptive vortex sheets have been introduced, where vertices are added to and re-

moved from the surface during simulation [SDT08]. To our knowledge, none of

these methods address “inter-sheet” refinement which would result in changes in

topology.

General purpose surface tracking methods proposed by Jiao and collaborators

[JCNH06, Jia07] can handle highly-deforming surfaces with excellent fidelity, but

they do not address surface merging or separation.

Changing topology with grids

Augmenting a surface mesh with a grid-based implicit representation transfers

some of the benefits of implicit methods to explicit surface tracking. In particular,

globally or locally constructing an implicit surface from a mesh, then extracting a

new explicit surface, can automatically handle some changes in topology.

Researchers in medical imaging have long used deformable contours in 2D

(“snakes”) , to segment images [KWT88], and deformable surfaces for volume

segmentation [MT96]. McInerney & Terzopoulos [MT00] introduced an approach

in which a deformable surface is augmented with a regular volumetric grid. Inter-

section points between the grid edges and the surface are used as points for mesh

subdivision, and the grid nodes can maintain an implicit representation of the sur-

face which aids in performing robust topology changes.

Another hybrid implicit/explicit surface tracking method called “grid-based

front tracking” was introduced by Glimm et al. [GGLT99]. In this method, explicit

surfaces that have been advected into an intersecting state are treated in one of two

ways. First, a grid-free untangling is attempted, which cuts the triangle mesh along

intersection contours and re-triangulates. If this fails, a global, grid-based recon-

struction is performed. (A similar effect is achieved by Bargteil et al. [BGOS06],

where the explicit surface is regenerated from a level set discretization at each

step.) Du et al. [DFG+06] refined this method, performing only local grid-based

reconstruction around the intersecting mesh components. Wojtan et al. introduced

a similar approach to computer graphics [WTGT09, WTGT10], extending this idea

by identifying thin structures which should not be removed by local reconstruction,
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thus preserving small features in their fluid simulations. Alternatively, construction

of the implicit surface function may be skipped and a new, consistent mesh may be

constructed directly from the old mesh using marching-cubes-style stencils on the

volumetric grid [Mül09].

With all of these approaches, regular grid nodes are used to determine when

the surface is in an intersecting state, and thus sub-grid-scale intersections may be

missed; the grid reconstruction similarly eliminates any details at or below the grid

resolution, including smooth but thin parts of the surface.

Changing topology, grid-free

Changing mesh topology without the use of a grid is somewhat rarer in the lit-

erature, although a few papers deal with topology changes to varying degrees.

Brakke’s Surface Evolver [Bra92] implements an operation called “vertex pop-

ping” in which vertices with disconnected neighbourhoods are identified, then du-

plicated and pulled apart, achieving a topological splitting event. Garland and

Heckbert [GH97] allowed surfaces to merge during simplification by collapsing

pseudo-edges between two vertices on different surface patches. Our method dif-

fers in that we use robust geometric predicates for interference detection, allow-

ing for non-regular, anisotropic triangulations while guaranteeing intersection-free

meshes. Our method also permits surfaces to approach much closer than the length-

scale of a triangle, critical for handling thin yet smooth geometry efficiently.

Tryggvason et al. [TBE+01] combine a front tracking approach with a grid-

based fluid solver. In two dimensions, they model merging and splitting of droplets

by detecting surface elements which are near to one another and performing the

appropriate change in surface connectivity. However, the authors acknowledge

that their extension of this method to 3D is not as robust, and has not thus far been

demonstrated for a wider variety of scenarios.

Lachaud and Taton [LT03] use dynamic, purely explicit surfaces with interfer-

ence detection to determine when topological changes should occur. Their method

of interference detection relies on maintaining a regular triangulation of the surface

mesh and detecting when any two vertices are close to each other. When such a

pair of vertices are detected, a remeshing operation is triggered, which may change
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the surface topology. The downside of this approach is that the minimum vertex

spacing on the mesh is the same as the minimum vertex spacing between vertices

on disjoint surface patches, implying that two separate surfaces can be no closer

together than the minimum edge length.

Pons and Boissonnat [PB07] handle topological changes in explicit surfaces

by embedding the surface mesh in a tetrahedralization of the surface vertices. The

tetrahedralization is updated at each step, rejecting those tetrahedra whose circum-

centers lie outside the surface mesh. The exterior triangles of the remaining tetra-

hedra form a new triangulation of the surface. This tetrahedralization is shown

to be a good approximation of the input surface mesh, but is not guaranteed to

conform to the surface triangles used in the previous step.

Similarly, Misztal et al. [MBE+10] have developed a fluid simulation system

based on a tetrahedralization of space. The faces of the fluid surface are a restricted

set of tetrahedral faces, and as the tetrahedron vertices move through space and the

volumetric mesh is modified, the surface is automatically updated. When tetrahe-

dra are collapsed down to zero volume, they are removed in another volumetric

remeshing operation, which can also modify the surface topology.

Recent advances in exact mesh Boolean operations [PCK10, CK10] offer pro-

mising paths for future development of surface tracking algorithms that robustly

handle changes in topology. Although constructive solid geometry (CSG) oper-

ations have been shown to work with these approaches, a fully robust, topology-

changing dynamic explicit surface tracking package has not yet been demonstrated.

2.1.3 Adaptive surface remeshing

One important component of explicit surface tracking is remeshing. Several un-

desirable mesh characteristics can be avoided by changing mesh connectivity or

triangle shape:

• Overly refined meshes may cause unnecessary computational expense, so we

may wish to minimize the number of elements while achieving some mea-

sure of accuracy in approximating the original surface [HDD+93, GH97].

• Large angles may result in bad gradient interpolation, affecting, for example,

rendering. As pointed out by Shewchuk, small angles negatively affect the
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conditioning of stiffness matrices if the mesh is used for FEM simulation

[She02].

• Extreme deformation may result in a high variance of vertex density on the

surface [JCNH06].

• If the surface is driven by a grid-based simulation, it is desirable to main-

tain a surface resolution comparable to that of the underlying grid so that

information on the grid is adequately captured by the surface [TBE+01].

Here we discuss the remeshing problem, very broadly defined as: given an

input mesh, produce an output mesh which is in some sense “improved”. There

are many possible desirable characteristics including: triangle quality, closeness to

input mesh geometry, regular connectivity, denoising, compatible meshing, feature

restoration, and self-intersection repair.

Mesh optimization

Several static remeshing papers employ a mesh optimization framework [SZL92,

HDD+93, GH97, FB98], where a compromise is sought between triangle quality

and faithfulness to the input surface. Mesh quality can be measured in several

ways: minimum and maximum edge length and angle, aspect ratio, etc. The opti-

mal mesh can be approached discretely, via changes in connectivity such as edge

collapse, splitting or flipping, or continuously, by moving mesh vertices.

During the vertex moving phase, vertices are often moved according to a La-

placian-like scheme, since this tends to produce isotropic triangles and regular

triangulations. However, naı̈vely applying Laplacian smoothing or an umbrella

operator can lead to volume loss and erosion of features such as edges and cor-

ners. Several modifications have been proposed to counter this loss of volume

[DMSB99, VRS03, Jia06].

A map over the mesh vertices can also be employed to adjust vertex density.

For example, more vertices are required to resolve regions of high curvature, so

scaling distance computations by a curvature map can result in more vertices being

created in high-curvature regions [FB98].
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Complete remeshing

The methods mentioned above incrementally optimize the surface by changing

connectivity locally and adjusting vertex positions. An alternative is to create a

new set of vertices which lie on the surface, then construct a new triangle mesh

from these points, and discard the old mesh.

Early work by Turk [Tur92] used an attraction-repulsion scheme to evenly re-

distribute a set of points on the surface, while keeping them on the input surface.

Once an optimal distribution is found, the points are meshed, resulting in a regular,

isotropic mesh.

Another family of remeshing algorithms is based on Centroidal Voronoi Tes-

sellation [DFG99, AVDI03]. Here a set of points are seeded on the surface, then

redistributed by moving each seed point towards the centroid of its associated

Voronoi cell. Constructing the Delaunay triangulation of the points results in a

highly regular, isotropic triangle mesh. Computing the Voronoi diagram can be

costly, since it must be done with respect to the geodesic distance, rather than

Euclidean distance. Recent approximation approaches have increased efficiency

of these methods [YLL+09], but it has not seen widespread use for applications

requiring per-frame remeshing.

Remeshing for dynamic surfaces

In this work, we wish to maintain good quality surface mesh undergoing defor-

mation. We can see this as static remeshing at each time step. However, not all

methods for static meshing are appropriate. For example, many approaches com-

pute a Delaunay triangulation of the surface vertices, which can be quite expensive

to run at each time step (complexity is O(N logN)). Instead, we will look at local,

optimization-type algorithms, which have linear complexity in the number of mesh

vertices. Further, many of these approaches take advantage of time coherence —

if the mesh vertex positions don’t change much between time steps, then the mesh

quality doesn’t change much, and so the optimization is fast. For these reasons,

many researchers in dynamic explicit surface tracking use some combination of

the familiar edge-based local remeshing operators: edge flip, edge split, and edge

collapse [GGL+98, TBE+01, LT03, JCNH06, WT08].
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Other researchers working with dynamic surfaces use some form of regular grid

to improve surface regularity. The surface is embedded in a grid, and points where

the grid intersects the surface become candidate points for new vertices [MT00].

This ensures that large, flat elements are subdivided regularly. Müller takes this

approach further by discarding the original mesh at each step, and reconstructing

a new mesh from these intersection points [Mül09]. This complete remeshing is

fast, and can also account for changes in topology. However, the complexity of the

topology representable on the grid is limited by the number of marching cubes-like

templates we wish to consider, as well as the resolution of the grid.

2.2 Collision detection
Chapter 4 deals with continuous collision detection, defined as the process of de-

tecting if a mesh moving between initial and final configurations over a time step

comes into contact with itself during that time step. A more complete review of pre-

vious methods is in that chapter, but we will briefly mention that the predominant

method, developed and popularized by Provot [Pro97] and Bridson et al. [BFA02],

is based on solving a cubic equation for each pair of mesh elements to determine if

and when the elements are coplanar, then running a distance or intersection query

at these coplanarity times to determine if there is a collision. This method relies

on user-set parameters to minimize the number of false positives, while ensuring

no false negatives. Our new approach is quite different, and brings the paradigm

of exact geometric computation [Yap04] to continuous collision detection, com-

puting the results of collision queries as if they had been computed with exact

arithmetic, without going to a symbolic representation. Our method makes use of

floating-point expansion predicates [Dek71, She96] with interval arithmetic filters

[BBP01] for exactness and efficiency.

2.3 Fluid simulation for animation and visual effects
Fluid simulation for computer graphics has become a broad topic in recent years.

A thorough survey of all techniques is beyond the scope of this thesis, so we refer

the reader to the textbook by Bridson [Bri08] for an extensive literature review.

Chapter 5 and Chapter 6 both deal with the simulation of smoke, and previous
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work related to this sub-field is discussed in these chapters. Chapter 7 is about the

simulation of liquids with free surfaces for visual effects, and contains a discussion

of previous work in this area, with a focus on adaptive methods and surface tension.
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Chapter 3

Robust topological operations for
dynamic explicit surfaces

3.1 Introduction
In this chapter we describe the main operations used in our surface tracking library,

El Topo. This library is used in all of the applications presented in this thesis. We

then present convergence tests for a few geometric flow problems which illustrate

the accuracy of our method.

3.1.1 Related work

Most of the literature relevant to this chapter is discussed in Chapter 2. We provide

references to specific concepts as they appear in the text.

3.2 Our approach

3.2.1 Framework

Our method operates on triangle meshes. Let the mesh configuration at time t,

be defined by the pair (x(t),T(t)), a set of vertex positions and a set of triangles

defining the mesh connectivity. Each triangle is a triple of vertex indices, oriented

consistently over all triangles.
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T is a function of time, indicating that connectivity can change over time, but

note that connectivity changes occur at discrete events, for instance when a vertex

is added or removed. In contrast, x(t) is usually an approximation of a continuous

trajectory of vertex positions.

Our method operates in two phases, which we call the “static operations”

phase, and the “integration” phase. The first phase operates on a mesh at an in-

stant in time, not considering its motion. We take as input a mesh configuration

(x(tn),T(tn)) and produce a modified mesh configuration (x′(tn),T′(tn)). We per-

form mesh optimization as well as changes in topology during this phase, and we

describe these operations in detail in this chapter. In general, the output mesh will

not share the same connectivity as the input mesh and may have a different number

of vertices.

In the second phase, the user provides a set of “current” and “predicted” vertex

positions, x′(tn), and x∗(tn +∆t) as well as the connectivity information, T′(tn).
The choice of input vertex locations is determined by the user, usually the result of

a physical simulation or geometric flow. Our system produces as output a “final”

set of vertex positions, x(tn +∆t), which is as close as possible to the predicted

positions, but guaranteed to define an intersection-free mesh. We ensure that as

long as the current mesh is intersection-free, the final mesh will be intersection-

free as well, even if the given predicted mesh is not. The mesh connectivity does

not change in this phase.

We note that the underlying simulation may use any time integration scheme to

get the predicted vertex positions. For example, the simulation might advect a sur-

face vertex using a high-order, multi-step time integration scheme (in a collision-

naive way) from time tn to tn +∆t and pass in the resulting x∗(tn +∆t). If this

trajectory is indeed free of interference, the resulting integration will retain the

accuracy of the high-order scheme.

There are a few inadmissible mesh triangulations which we will not accept as

input, and will not produce as output. For simplicity of presentation, we do not

allow boundary edges (edges incident on fewer than two triangles), but return to

this later in Section 3.3.4 when extending the method to handle open surfaces. We

do not allow two triangles to share the same three vertices (creating a zero-volume

tetrahedron). We do allow some non-manifold surfaces. In particular, we allow
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more than two triangles to be incident on an edge. However, each triangle incident

on an edge must have another triangle with a consistent orientation incident on the

same edge. We also only allow an even number of triangles to be incident on a sin-

gle edge. Loosely speaking, we allow only meshes that partition the computational

domain into an interior and an exterior, i.e. we ensure the mesh is the boundary of

an open set.

This restriction allows us to generalize mesh operations originally intended

only for manifold surfaces in a consistent way. For example, an edge flipping oper-

ation (see Section 3.2.4) usually assumes that the edge is incident on two triangles

with consistent orientation. Our requirement above ensures that there are at least

two triangles with consistent orientation incident on the edge, so we can find two

such triangles and apply the edge flip operation.

3.2.2 Algorithm overview

Here we provide a high-level outline of our algorithm. Each non-trivial step is

explained in detail in the sequel. The first and fourth steps, splitting long edges and

null-space smoothing, are mesh maintenance steps and can be omitted at the user’s

discretion. The second and third steps, edge flipping and short edge collapsing, are

mainly used for mesh maintenance, but are also key to allowing surface separation,

as described in Section 3.2.5, and thus omitting these steps will prevent separation

events (which may or not be desirable, depending on the application). We also

allow the option of using these steps but preventing topology changes by adding

extra checks to prevent surface separation. The zippering step can also be omitted

if the user wishes to avoid topological changes altogether, as might be appropriate

in some applications.

Our software implementation allows the user to toggle three Boolean settings:

whether to perform mesh improvement operations, whether to allow topological

changes, and whether to enforce intersection-free surfaces. Algorithms 1 and 2

show the main two phases of our system, and Algorithm 3 shows an example,

Forward Euler-based simulation loop with an external velocity field. The static

and integration operations are as follows:

Split long edges (Section 3.2.4): Subdivide all edges with length greater than the
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user-defined maximum edge length.

Flip sub-optimal edges (Section 3.2.4): Repeatedly search the mesh for edges

which are “sub-optimal” (defined below) and replace them.

Collapse short edges (Section 3.2.4): Delete all edges with length less than the

user-defined minimum edge length, replacing the edge with a single vertex.

Null-space smoothing (Section 3.2.4): Apply a Laplacian-type filter to the ver-

tex positions, moving each vertex only in the null space of its local quadric

metric tensor.

Merging/zippering (Section 3.2.6): Detect edges that are near to each other and

attempt to merge surfaces by deleting their incident triangles and zippering

the resulting holes.

Proximity detection and repulsion forces (Section 3.2.7): Detect elements that

are near to each other and apply a repulsion force between them by adjusting

their predicted final positions.

Impulse-based collision resolution (Section 3.2.7): Detect individual collisions

using continuous collision detection and apply impulses which will prevent

an intersection.

Impact zones (Section 3.2.7): Detect remaining collisions, group colliding ele-

ments into impact zones, and solve for a set of impulses which will prevent

intersection. If this fails, compute a uniform rigid motion for the group of

colliding vertices.

3.2.3 Interference detection

Before diving into the details of our approach, we briefly discuss techniques for

interference detection. We differentiate between three types of geometric interfer-

ence detection: intersection detection, proximity detection, and collision detection.

We use all three of these types at different steps in the algorithm.

Static intersection detection detects if and where a mesh intersects itself for

a given mesh configuration (i.e. at one instant in time). This can generally be
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Algorithm 1 Static operations

Given: mesh (x(tn),T(tn))
Split long edges
Flip sub-optimal edges
Collapse short edges
Null-space smoothing
Merge close edges
return mesh (x′(tn),T′(tn))

Algorithm 2 Integration

Given: mesh (x′(tn),T′(tn)), predicted positions x∗(tn +∆t)
Proximity detection and repulsion forces
Impulse-based collision resolution
if collisions persist then

Impact zones
end if
return final mesh (x(tn +∆t),T(tn +∆t))

decomposed into primitive tests discovering where an edge is penetrating a triangle,

but we must take care to identify degenerate cases, such as an edge penetrating a

surface only at an edge or at a vertex. We also use a static point-in-tetrahedron test

during mesh maintenance (described below).

Static proximity detection detects when mesh elements are closer than a speci-

fied tolerance (in particular, when a vertex is close to a triangle or when two edges

are close to each other). We denote this proximity tolerance εp.

Algorithm 3 Sample simulation loop

Given: mesh (x(t0),T(t0)), velocity function F(x, t), time step ∆t.
for n = 0→ N do

(x′(tn),T′(tn)) = static operations ((x(tn),T(tn)))
Evaluate velocities v = F(x′(tn), t)
x∗(tn +∆t) = x′(tn)+∆tv
(x(tn+1),T(tn+1)) = integration ((x′(tn),T′(tn)) ,x∗(tn +∆t))

end for
return final mesh (x(tN),T(tN))

23



Proximity detection also finds the two points on the mesh elements that are

closest to each other. If we denote the set of four barycentric coordinates of these

two points as a (setting ai = 1 if i is the vertex in a vertex–triangle collision),

then to find the distance between the mesh elements, we multiply the barycentric

coordinates by −1 if they refer to a point on the triangle or on the second edge in

an edge-edge proximity, to get a new set of coordinates, ā. Then taking the sum of

vertex locations weighted by these scaled barycentric coordinates yields a vector

between these closest points. If p are the indices of the vertices involved, then the

shortest distance is given by the length of this vector:

d =

∣∣∣∣∣
∣∣∣∣∣ 4

∑
i=1

āixpi

∣∣∣∣∣
∣∣∣∣∣

Our proximity detection function can also return a “collision normal”,~n, which,

when an impulse is applied along it, will increase the distance between elements.

Continuous collision detection (CCD) detects whether a collision between a

moving vertex and a moving triangle or between two moving edges will occur

during some specified time span.

In our framework, two mesh configurations are given: one at time tn and one at

time tn +∆t. We assume vertices move in a linear trajectory from their positions at

time tn to their positions at time tn+∆t. Given these two configurations, continuous

collision detection will return any point-triangle and edge-edge collisions, as well

as a collision normal, the set of barycentric coordinates describing the point of con-

tact, and the computed relative displacement. The output of this collision detection

routine is used in the collision resolution routines, which will be described in Sec-

tion 3.2.7. If the time of collision is known from the collision detection function,

the collision normal is often computed by interpolating the geometry at that time

and taking either the triangle normal, or the normal orthogonal to both edge lines.

If the time of contact is not known, we generally take the normal at the mid point

of the time step (see Chapter 4), though a more sophisticated estimate of the time

of contact (achieved through root finding, for example), could also be used.

In Chapter 4, we will recap the current state-of-the-art methods for continuous

collision detection, and introduce novel, exact methods for detecting collisions.
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3.2.4 Mesh quality improvement

Triangles with small areas or poor aspect ratios can adversely affect collision de-

tection, topological operations and any simulation running on the mesh. To im-

prove the quality of our surface discretization, we use a few common operations.

The need for these operations and their effectiveness has been argued by others

[JCNH06] and is orthogonal to the main contribution of the chapter, robust topo-

logical changes. However, we include this section for completeness, and highlight

our approach to ensuring they do not introduce any intersections in the mesh.

Edge split

If an edge is longer than a user-defined maximum edge length (denoted Lmax), we

subdivide it by introducing a new vertex (see Figure 3.1). The new vertex can

be placed at the edge midpoint, which will not introduce any new intersections.

However, we may wish to offset the new vertex from the current surface using

a subdivision scheme to maintain curvature. To ensure intersection safety in this

case, we can make use of the continuous collision detection framework introduced

earlier. We begin by introducing the new vertex at the edge midpoint. We then

compute the “predicted” location of the new vertex via the subdivision scheme.

These two points define a pseudo-motion. We check the new vertex and its incident

triangles and edges as it moves from the edge midpoint to its predicted point to

ensure that it doesn’t collide with any existing mesh elements (which do not move

during this pseudo-motion). If a collision does occur we revert to using the edge

midpoint, which is guaranteed to not introduce any new intersections.

We do not attempt to subdivide non-manifold edges (edges incident on more

than two triangles), although if handled carefully these edges could be treated as

well. In our experience, these edges are rare enough that failing to subdivide them

does not introduce significant error.

Edge flip

We employ an edge flip operation as a way of helping to keep edge lengths uniform.

For each edge incident on two triangles, we check whether the distance between

the two points not on the edge is less than the length of the edge. If so, we remove
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Figure 3.1: Edge split operation on the mesh graph

the edge and create a new edge between these two points (see Figure 3.2). This

is a useful heuristic to keep edges all roughly the same length. With better crite-

ria, these edge flips could help improve triangle aspect ratios (see Shewchuk for

applications in FEM meshing [She02]).

Again, we must ensure this operation does not introduce any intersections. A

simple way of doing this is to check that no existing edge intersects the two new

triangles, and that no point lies inside the tetrahedron formed by the two new and

two old triangles. We also reject the edge flip if it introduces a change in volume

greater than a user-defined maximum volume change (we denote this maximum

volume change ∆Vmax, and usually set it to be 0.1ξ 3, where ξ is the average edge

length at the beginning of the simulation; for simulations involving extremely thin

surfaces such as our curl noise example later, this may need to be further reduced).

We extend this operation to handle non-manifold edges by choosing any pair of

incident triangles with consistent orientation, and applying these steps to the edge

and the chosen pair of triangles.

Flipping a single edge may introduce new triangles with sub-optimal edge

lengths, so we iteratively sweep over all edges in the mesh until no flip is per-

formed, or until we reach a maximum number of sweeps (in our implementation,

we set this maximum to five, which is almost never reached). We also require that

the new edge length decrease by a minimum amount to prevent the same edge from

flipping back and forth on subsequent sweeps.

Edge collapse

If an edge is shorter than a user-defined minimum edge length (denoted Lmin), we

attempt to collapse it by replacing it with a single vertex, as shown in Figure 3.3.
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Figure 3.2: Edge flip operation on the mesh graph

Figure 3.3: Edge collapse operation on the mesh graph

As with edge splitting, we treat only manifold edges, skipping edges incident on

more than two triangles. We again use a subdivision scheme to choose the loca-

tion of the new single vertex in the general case. However, we also use an eigen-

decomposition of the quadric metric tensor to detect vertices that lie on ridges or

creases [Jia07]. If one edge end point lies on a ridge and the other lies on a smooth

patch of the surface, we set the new vertex position to be the position of the existing

vertex on the ridge. In other words, we wish to prevent vertices moving off of the

ridge, which tends to introduce bumps or jagged edges.

To ensure collision safety, we can use the same pseudo-motion collision detec-

tion described in Section 3.2.4, this time with two vertices in motion: the end points

of the edge. These end vertices will have the same predicted location: the location

chosen by the subdivision algorithm. If a collision is detected during this pseudo-

motion, we can try again, this time moving the vertices towards the edge midpoint.

Unlike edge splitting, however, we have no safe fallback vertex location: if we

cannot find a collision-free trajectory, the edge collapse must be abandoned.

We use simple minimum and maximum edge lengths for determining when to
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split and collapse edges. In practice, we compute the average edge length when

the mesh is initialized and set the minimum and maximum edge length parameters

to be some fractions of the initial average length ξ . This has the effect of keeping

the edge lengths within some range of the initial average using split and collapse

operations. In our examples in this chapter, we allow edge lengths to vary between

0.5 and 1.5 of the initial average edge length, however these parameters did not

require tuning and our system remains stable for other values. More sophisticated

criteria for triggering a split or collapse exist, such as detecting triangles whose

areas are too small or too large, or aspect ratios that are too far from unity (see, for

example, work by Jiao [Jia07]).

When choosing locations for new vertices during an edge collapse or split oper-

ation, there are a number of schemes that can be used. We use traditional butterfly

subdivision [DLG90] due to the simplicity of its implementation and because it is

free of parameters. Quadric error minimization schemes [GH97] are promising,

but in our experience the simplicity and quality of butterfly subdivision made it

more attractive.

Butterfly subdivision determines the location of a new edge midpoint, ~pnew as:

~pnew =
1
16

(8(~p1 +~p2)+2(~q1 +~q2)− (~r1 +~r2 +~r3 +~r4))

Where ~p1 and ~p2 are end points of the edge, ~q1 and ~q2 are the vertices on the two

triangles incident on the edge which are not the edge end points, and ~r1...~r4 are

the vertices on the four triangles adjacent to the triangles incident on the edge (see

Figure 3.4).

Null-space smoothing

A powerful mesh improvement technique was recently introduced by Jiao [Jia07].

Applying a Laplacian filter to the vertex locations would move each vertex to the

average of its neighbours’ locations. This usually has the desirable effect of equal-

izing edge lengths. However, it will also shrink the volume enclosed by the surface

and smooth away sharp features. We instead move the vertices only in the null-

space of their associated quadric metric tensors, as was shown to be crucial by

Jiao. If the vertex is on a flat or smoothly curved patch of surface, the null space
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Figure 3.4: Butterfly subdivision

will correspond to the plane tangental to the surface at the vertex. If the vertex

is on a ridge, the null space will be the infinite line defined by the ridge, and the

smoothing operation preserves the ridge feature. If the vertex is at a corner, the

null space will be empty and the vertex will not move, preserving the corner.

To ensure no mesh intersection, we treat the global smoothing operation as a

pseudo-trajectory on all vertices, and apply collision resolution as if the surface

was moving under the influence of an external velocity field (see Section 3.2.7).

3.2.5 Mesh separation

As mentioned in Section 3.2.1, we do allow surfaces which are not strictly mani-

fold. In particular, we allow more than two triangles to be incident on an edge. We

do not, however, allow two triangles to share the same three vertices, which would

define a zero-volume tetrahedron. An edge collapse or flip operation may intro-

duce such degenerate tetrahedra, so after performing either of these operations, we

search the surface meshes for degenerate tetrahedra, and delete the two offending

triangles. We also delete triangles that may have repeated vertices (“collapsed”

triangles).

After this sweep, surfaces may be connected only at a single vertex. These

so-called “singular” vertices can be detected if their incident triangles are not all

connected. If this is the case, we partition the set of incident triangles into con-
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Figure 3.5: Mesh separation

nected components. For each component, we create a duplicate vertex and map all

triangles in the component to this new vertex (see Figure 3.5). A similar proce-

dure is described by Guéziec et al. [GTLH01]. We also move the duplicate vertices

very slightly towards the centroid of their associated triangles to avoid problems

with collision detection and resolution which may occur when two vertices occupy

exactly the same point in space. This combination of removing degenerate tetra-

hedrons and the “duplicate-and-separate” operation on singular vertices allows for

mesh separation. If we wish to avoid topological changes, we modify the edge

collapse and edge flip operations to check if any degeneracies or singular vertices

would result and, if so, abort the operation.

An interesting alternative to this separation method is to detect when an edge

collapse is occurring on a closed path of just three edges. Such an edge collapse

would introduce a non-manifold edge if completed. Wojtan et al. [WTGT10] detect

this scenario and, rather than allowing the non-manifold edge, instead duplicate the

three-edge ring, and add a new triangle on each ring. This creates a clean splitting

of surface meshes. Incorporating this into our library is an area of future work.
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3.2.6 Mesh merging

We have described several mesh quality maintenance operations that can be per-

formed without introducing geometric intersections. To make our general surface

tracking algorithm useful for a wider range of applications (e.g. fluid simulation),

we must allow surfaces to change topology. We have seen in Section 3.2.5 how our

method allows meshes to separate when they become too thin. We now describe a

method for allowing surface patches which are close to each other to merge without

introducing any intersections.

To achieve this, we seek out edges that are close together and attempt to merge

the surface. We use proximity detection to search for edges that are closer than a

specified tolerance (considering only edges that are incident on two triangles). We

sort the pairs of edges in order of increasing separation distance so that the nearest

edges are merged first. For each pair in the sorted list, we first remove the triangles

incident on each edge. This introduces two temporary “holes” in the mesh, each

hole consisting of a loop of four boundary edges. We create eight new triangles

between the two holes, using a closed-form triangulation. We then use intersection

testing to determine if these new triangles intersect any existing mesh elements or

each other (treating degenerate cases as intersections for safety). If an intersection

is found, we discard the new triangles and replace the original triangles incident on

the proximal edges, abandoning the topology change.

Similar to edge collapsing and flipping above, this merge operation may in-

troduce degenerate tetrahedra and singular vertices which must be handled as de-

scribed in Section 3.2.5.

3.2.7 Collision resolution

After performing mesh improvement and any topological operations, all that re-

mains is determining the surface velocity and integrating the vertex positions for-

ward in a collision-free manner. We allow the user to specify predicted end po-

sitions for each vertex, and the goal of our time integration scheme is to produce

a final mesh configuration that is as close to the specified state as possible, while

being free of intersections.

Our collision resolution procedure is based on the velocity filtering approach
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for handling collisions [BFA02], and operates in three phases. For convenience,

we compute a temporary velocity for each vertex as ~ui = (~x∗i −~xi)/∆t and apply

impulses to these velocities. (The collision resolution routines could operate only

on the predicted vertex locations, but it is conceptually simpler to think in terms of

velocities.)

In the first phase, we run proximity detection as described in Section 3.2.3 to

obtain pairs of elements that are closer to each other than εp. For each pair of

proximal elements, we compute the relative normal velocity of the elements. We

then perturb the vertex velocities so that the new relative normal velocity is pos-

itive, and large enough to carry the vertices at least εp away from each other if

they were integrated forward for ∆t without further interference. Attempting to

maintain this small minimum separation significantly helps in avoiding degener-

ate geometric cases which would otherwise slow subsequent floating-point-based

collision detection and resolution.

As described in Section 3.2.3, for a pair of elements, proximity detection re-

turns a distance d and a set of scaled barycentric coordinates ā. If p are the indices

of the element vertices and u are the vertex velocities, then the relative velocity is:

~urel =
4

∑
i=1

āi~upi

If~n is the unit-length collision normal, the impulse J we apply is computed as:

δ =
εp−d

∆t
−~n ·~urel

J =
δ

〈ā, ā〉M−1

where M is the diagonal matrix of vertex masses. (In problems where there is no

natural mass for a surface vertex, we simply use a unit weighting: M = I.)

Then for each vertex in proximity, we distribute the impulse J to perturb the

predicted velocity field:

~upi =~upi + J
āi

Mpi

~n

Note that this will not immediately resolve any of the proximities detected, as
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the “current” vertex positions are left untouched; it aims to resolve the proximity

at the next time step. More importantly, it tends to dramatically reduce the number

of collisions that must be dealt with in the next phase.

In the second phase of collision resolution, we use continuous collision detec-

tion to determine pairs of colliding elements. Our CCD function returns the rela-

tive displacement of the elements in the direction of the collision normal (which we

can scale by 1/∆t to compute the relative normal velocity), as well as the barycen-

tric coordinates that should be used to distribute the corrective impulse. For each

pair of colliding elements we encounter, we apply an impulse that sets the relative

normal velocity between the elements to zero, thus preventing the collision from

occurring. This is similar to the repulsion impulses applied in the previous phase,

except that the impulse magnitude is:

δ =−~n ·∆~xrel

∆t

This is equivalent to introducing an impulse that instantaneously changes the

velocity, while minimizing the velocity change in the normal direction in a least-

squares sense. (Minimizing the normal velocity change in this way ensures that

momentum is conserved, if the least-squares metric is kinetic energy.) One sweep

through all mesh elements will not necessarily prevent all collisions, as resolving

one collision may introduce a new collision between a pair of elements that was

already checked. We have found that applying three sweeps of this individual

collision resolution handles most collisions: however we must use a fail-safe to

ensure that all collisions are handled.

For our fail-safe, we use the simultaneous treatment of collisions developed

by Harmon et al. [HVTG08]. After three passes of individual collision resolution,

we detect all pairs of elements that are still colliding. We lump colliding pairs

of elements into “impact zones” based on adjacency and resolve all collisions in

each zone simultaneously using one linear solve. We can think of our desired new

velocities u′ as being the solution to a constrained minimization problem:

min
∣∣∣∣u′−u

∣∣∣∣2
M

subject to n ·u′rel = 0 for all collisions
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We can re-write the constraint as a linear operator on the vertex velocities by

building a matrix C, where each row, Ci, corresponds to one collision, and has non-

zero entries in block columns j = [3v,3v+ 1,3v+ 2], where v is one of the four

vertices involved in collision i. Setting Ci,j = āv~nT , our constrained optimization

problem becomes:

min
∣∣∣∣u′−u

∣∣∣∣2
M

subject to Cu = 0

Solving this using the method of Lagrange multipliers yields the system:

CM−1CT
λ =Cu

We can think of λ as the set of impulses which, when applied, yields zero rela-

tive normal velocities for all collisions. We update the vertex velocities according

to:

u′ = u+M−1CT
λ

The application of these impulses may result in new collisions, so we run col-

lision detection again and add any additional collisions to the set of impact zones,

repeating the process until no new collisions are detected.

If this system is degenerate, we compute a single rigid motion for the vertices

of the offending impact zone, ensuring no collision. This was referred to as “rigid

impact zones” in Bridson’s original paper [BFA02].

At the end of each time step, we verify that no tangling has occurred by running

intersection tests on all edge-triangle pairs; while not necessary for the method as

presented, this is a useful practice for detecting programming errors during soft-

ware development.

Error introduced by collision resolution

Each individual collision response and repulsion force perturbs the vertex location

by O(∆t). In applications such as cloth simulation (see Chapter 4), collision resolu-
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tion forms an important part of the dynamics. However, for other surface tracking

applications such as geometric flows and liquid simulation, which involve changes

in topology, this vertex perturbation is not specified by the surface dynamics, so

can be seen as error introduced by our method.

We posit that the number of collision events for a given vertex in any such

numerically-resolved simulation should be small and finite for a fixed end-time,

with the collisions in the limit becoming a set of measure zero. Since each collision

perturbation has magnitude at most O(∆t), this implies the collision resolution

should introduce at worst a global O(∆t) error, so we should achieve at least first

order convergence. When surface elements collide or merge, we introduce an error

similar to that introduced into the level set method by the kink in the signed distance

field; at a fundamental level topological changes are non-smooth and unlikely to

permit greater than first order accuracy in any numerical method.

As a caveat, we note that the O(∆t) error produced by the impact zone solver

could potentially involve a very large constant, since it will perturb the velocity

field at many points. However, we have found that impact zones are seldom used

in practice, after one pass of repulsion forces and three passes of impulse-based

collision resolution. Adaptively cutting the time step size has been a successful

strategy for reducing the number of collisions [BFA02], and could also be used in

the case where impact zones grew too large. However, we shall see in the next

section that our method shows convergence under mesh refinement, even without

cutting the time step size: this error does not appear to be a concern in practice.

3.3 Numerical examples
Armed with techniques for guaranteeing intersection-free meshes, changing mesh

topology, and maintaining mesh quality, we attack some dynamic surface problems

traditionally handled by implicit surfaces.
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3.3.1 Motion in the normal direction

We compare motion in the normal direction using an explicit method with a level

set method. Points on the surface are advected according to:

d~x
dt

= c(t)~n(~x), (3.1)

for speed c(t). We ran motion in the normal direction on two disjoint spheres with

speed of 0.2 for t = [0,1), then with speed of −0.2 for t = [1,2]. The spheres

initially have centers at (−0.25,0,0) and (0.25,0,0), and radius of 0.2. We used

Marching Tiles [Wil08] to generate a mesh with an initial average edge length of

approximately 0.02. Let Lmax be the maximum edge length, Lmin be the minimum

edge length, ∆Vmax be the maximum volume change per remeshing operation, and

ξ be the initial average edge length. We set Lmax = 1.5ξ , Lmin = 0.5ξ , and ∆Vmax =

0.1ξ 3. The time step ∆t was generally set to 0.005, but was shortened for some time

steps to avoid inverting triangles, as described below.

A first instinct may be to use a simple scheme for specifying normal motion,

namely using vertex normals (averaged from incident triangle normals) to specify

the direction of motion, then simply advecting the vertices according to this direc-

tion. However, this scheme does not produce the entropy solution, as it does not

correctly handle flow fields with merging characteristics (as argued by Enright et

al. [EFFM02], for example). To confirm this, we computed vertex normals as the

area-weighted average of normals of incident triangles. We then ran our test, ad-

vecting the vertices according to these computed normals. Comparing against the

analytic entropy solution revealed that this method does not converge as the mesh

is refined. Figure 3.6 shows the results of this test on a high-resolution mesh.

Our explicit method instead uses the entropy solution of the face offsetting

algorithm [Jia07] to achieve normal motion. For this advection scheme to function

properly, we must guard against operations that will invert a patch on the surface.

Thus we reject any edge collapse or edge flip operation that results in a triangle

with a normal that is too different from the original triangle normals. We also

adjust the time step to avoid inverting any triangles over a single face offsetting

step, following the method described in the original face offsetting paper [Jia07].

Figure 3.7 shows our method at t = 0,1,and 2. Note that our method cleanly
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Figure 3.6: Motion in the normal direction using vertex normals

Initial average edge length L∞ error at t = 2 L1 error at t = 2
0.04 0.00811073 0.00114493
0.02 0.00236906 0.00042705
0.01 0.00129011 0.000174606

Table 3.1: Motion in the normal direction: error measures for the new
method.

handles merging of the two spheres. In this figure we compare our method against

the level set method, using the Toolbox of Level Set Methods [Mit08]. The grid

resolution used was 100×50×50, resulting in a grid spacing of ∆x = 0.02, similar

to the average initial edge length of the triangle mesh. We used a WENO5 spatial

derivative approximation, and a third-order accurate TVD RK time integrator with

the same time step size of ∆t = 0.005.

We also ran this example on lower- and higher-resolution initial meshes to

determine convergence. Table 3.1 compares the initial average edge length to the

L∞ and L1 error, obtained by comparing against the analytic exact solution for time

t = 2. The results are consistent with first-order convergence, as shown in the log-

log plot in Figure 3.8. We used the same initialization values for ∆t, and set Lmax,
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Level Set Our Method

Figure 3.7: Motion in the normal direction

Grid spacing (∆x) L∞ error at t = 2
0.04 0.0118
0.02 0.0053
0.01 0.0031

0.005 0.0017

Table 3.2: Motion in the normal direction: error measures for the Level Set
method.
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Figure 3.8: Log-log plot of error for motion in the normal direction

Lmin, and ∆Vmax according to the same fraction of ξ throughout. Table 3.2 shows

a comparable rate of convergence when using the Level Set method with RK3

time integration and upwind WENO5 spatial derivatives. Note that despite the use

of high-resolution numerical methods, the topology change reduces the level set

method to first-order accuracy, due to the kink in the signed distance field at the

merging event.

3.3.2 Motion by mean curvature

Motion in the normal direction with speed proportional to mean curvature is a

classic geometric flow used for testing surface tracking methods, and is also useful

in volume segmentation applications. Points on the surface move according to:

d~x
dt

= κ(~x)~n(~x), (3.2)
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Initial edge length L∞ error at t = 0.025 L1 error at t = 0.025
0.04 6.18499 ×10−4 2.62302 ×10−4

0.02 1.44355 ×10−4 7.02612 ×10−5

0.01 1.47687 ×10−5 1.54722 ×10−5

Table 3.3: Motion by mean curvature: error measures.

for mean curvature κ .

We ran motion by mean curvature on a dumbbell-shaped surface, as described

by Sethian [Set99]. This causes surface separation, as the dumbbell “handle”

shrinks faster due to its higher mean curvature. We estimated mean curvature mul-

tiplied by the surface normal at each vertex using the scheme introduced by Meyer

et al. [MDSB02], then moved vertices using simple Forward Euler time integration,

with the maximum time step size limited for stability as tmax =
1

AW , where A is the

speed of mean curvature flow, and W is the maximum area-weighting specified by

the mean curvature normal computation over all vertices.

Initial conditions were generated by running Marching Tiles on a 28×14×14

grid, generating an average initial edge length, ξ , of approximately 0.02. We again

set Lmax = 1.5ξ , Lmin = 0.5ξ , and ∆Vmax = 0.1ξ 3.

Figure 3.9 shows a comparison with the level set method. For the level set

example, we again use the Toolbox of Level Set Methods with a 100×50×50 grid

with ∆x = 0.02, a second-order accurate spatial derivative scheme for estimating

curvature, and a third-order accurate TVD RK time integration scheme with time

step size dictated by the CFL condition.

To determine convergence in this case, we compare our solution against a high-

resolution (200×100×100) solution produced by the Toolbox of Level Set Meth-

ods. Table 3.3 compare the initial average edge length to the error after integration.

The results are consistent with first-order convergence (as shown in the log-log plot

in Figure 3.10), which again is probably very hard to improve upon in the presence

of topological change.
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Level Set Our Method

Figure 3.9: Motion by mean curvature at t = 0, t = 0.0125, t = 0.0219 and
t = 0.025
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Figure 3.10: Log-log plot of error for motion by mean curvature

3.3.3 Motion by external flows

The Enright Test

We subjected our method to the Enright test, which was developed to test the ac-

curacy of surface tracking methods [EFFM02] by measuring volume change. The

initial surface is a sphere centred at (0.35,0.35,0.35) with radius 0.15. The mesh

is advected by the velocity field given by:

u(x,y,z) = 2sin2(πx)sin(2πy)sin(2πz)

v(x,y,z) = −sin(2πx)sin2(πy)sin(2πz)

w(x,y,z) = −sin(2πx)sin(2πy)sin2(πz)
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Figure 3.11: The “Enright test”

This velocity field is modulated by the term sin(2
3 πt) to achieve a smooth, periodic

motion. The initial mesh is generated by Marching Tiles from a 14× 14× 14

grid, generating an average initial edge length of ξ = 0.01. We initialize the mesh

maintenance parameters as Lmax = 1.5ξ , Lmin = 0.5ξ and ∆Vmax = 0.1ξ 3. We use

a 4th-order accurate Runge-Kutta scheme to advect the mesh vertices, with a time

step of 0.01. After one period of motion (see Figure 3.11), the volume enclosed

by the surface has changed by just 2.48899×10−5, resulting in a relative error of

0.1764 percent. (Note that standard level set methods fail completely on this test,

and require additional effort such as the particle level-set method to resolve the

surface [EFFM02].)

To illustrate the effects of our mesh adaptivity operations, we also ran the En-

right test with various mesh maintenance operations turned off. Figure 3.12a shows

a mesh where no edge splitting had been performed. Note that the resulting large

triangles poorly capture the curvature of the surface. Turning off edge collapse

generates high triangle density when the surface is contracting, as in figure 3.12b,

resulting in wasted computational effort. Figure 3.13 shows the non-uniform tri-

angulations resulting when edge flipping and null-space smoothing operations are

turned off. Since the patch shown has relatively low curvature, a uniform trian-

gulation is desirable, but without flipping and null-space smoothing, the resulting

triangulation is irregular.
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(a) No edge split (b) No edge collapse

Figure 3.12: Effect of edge splitting and collapsing

(a) All operations (b) No edge flip (c) No smoothing

Figure 3.13: Effect of edge flipping and vertex smoothing

Curl Noise

We also advect, with RK4 time integration, an initially spherical surface with a

smooth, pseudo-random, divergence-free velocity field using curl noise [BHN07]

(see Section 5.4.2). It would be very challenging for a grid-based, implicit method

with similar resolution to resolve the extremely thin structures which are shown in

Figure 3.14. We restrict the rotational motion to be planar by generating a random

spline potential with zero x- and y-components and taking the curl of this potential.

We do this only to aid visualization, eliminating the occlusion that occurs when
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(a) t = 0 (b) t = 5

(c) t = 15 (d) t = 30

Figure 3.14: Motion by curl noise

using a fully three-dimensional rotation field. We disallowed topological changes

and set the maximum allowed change in volume, ∆Vmax, to be very small (5×
10−4ξ 3) to faithfully capture the thin structures. At time t = 30, the total volume

enclosed by the surface has changed by 0.9211 percent.

We ran this test a second time with collision detection turned off, allowing mesh

elements to intersect. Notice that with a smooth velocity field defined everywhere

45



(a) Surface (b) Intersecting triangles

Figure 3.15: Motion by curl noise with no collision resolution

in space, the surface should never self-intersect, but—even with a high-order time

integration scheme—self-intersections do occur due to discretization into triangles,

numerical error and collision-oblivious mesh improvement operations. Figure 3.15

shows one screen capture showing the entire mesh, and one showing only the set

of intersecting triangles.

3.3.4 Extension to open surfaces

With some modification, we can extend our algorithm to handle open surfaces.

Figure 3.16 shows a curl noise velocity field advecting an open surface. In such

scenarios, we must be careful when dealing with boundary edges, as they are inci-

dent on only one triangle and our remeshing operations assume edges are incident

on two or more triangles. In our example we handle these edges in the simplest

way possible: we disallow flipping, collapsing and splitting of any such edges, as

well as topology changes. The remaining triangles and edges on the surface are

unchanged. (We note that with minor implementation effort, the boundary edges

could be refined and coarsened as usual.)
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Figure 3.16: Motion by curl noise on an open surface

The ability to handle open surfaces suggests a possible further extension to

periodic surfaces, although we have not yet attempted to implement this. Another

extension would be allowing an odd number of triangles incident on an edge in

order to represent, for example, a solid-fluid-air triple point in a fluid simulation.

3.3.5 Performance

Table 3.4 shows timings for our method running the motion in the normal direc-

tion example. We list the time for setting predicted vertex positions, detecting and

handling collisions, performing topological operations and improving mesh qual-

ity per time step. All computations were performed on a single core of a 2.4 GHz

Intel Core2 Duo with 4 GB main memory. We have not attempted a parallel im-

plementation, but as the majority of our operations are local in nature, it should be

possible to spread the work over several processors.

The timings for topology change and mesh improvement operations include

the time taken for intersection and collision queries to ensure collision safety. The

speed of such interference detection depends greatly on the broad-phase collision

culling strategy. We use a simple regular grid of bounding boxes for each mesh
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ξ Triangles Improvement Topology Set velocity Collisions
0.04 1476–3512 0.1104 0.04171 0.04031 0.06529
0.02 5896–14222 0.5203 0.2115 0.1602 0.3123
0.01 23372–56390 2.07845 0.845781 0.617641 1.41106

Table 3.4: Execution time per step (in seconds), for given initial average edge
lengths, ξ

element type (vertex, edge, and triangle), which theoretically scales linearly with

the number of elements. We do achieve linear scaling in the number of objects

tested after broad-phase culling but only near-linear scaling in execution time. In-

vestigating and optimizing our broad-phase algorithm to achieve linear scaling in

actual execution time is an area of future work.

Table 3.5 lists the minimum and maximum numbers of triangles for each exam-

ple, as well as the total run time. Where appropriate, we also list the grid resolution

of the level set grid used for comparison. We did not run the Enright test using the

level set method, but we include the resolution of the grid used in the original par-

ticle level set paper [EFFM02] for comparison. Note that in the particle level set

method, the grid is augmented with marker particles (64 particles in each grid cell

located within 3 cells of the initial interface), effectively increasing the resolution

of their method even further.

Since we are using a MATLAB implementation of the level set algorithms, di-

rect comparison of timings against our un-optimized C++ implementation is diffi-

cult, but we include run times for a very general idea of how our method compares.

We ran the level set examples for motion in the normal direction and motion by

mean curvature on a Sun x4600 M2 with 4 dual core Intel x64 processors (at 2.8

GHz) and 128 GB shared main memory.

3.4 Conclusion
In this chapter, we presented a method for robustly handling topological changes

in surfaces represented as triangle meshes, addressing one of the major obstacles in

using such explicit surface tracking methods. The use of robust interference detec-
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Example Triangles Run time LS resolution LS run time
Normal direction 5896–14251 617s 100×50×50 1435s
Mean curvature 3354–15468 1537s 100×50×50 666s

Enright test 6614–25176 597s 100×100×100 N/A
Curl noise 8798–381092 608m N/A N/A

Table 3.5: Mesh resolution and run time

tion, topological operations, and failsafe collision handling provides the framework

for guaranteeing intersection-free surfaces while still allowing merging and sepa-

ration. We presented a collection of mesh maintenance operations to improve the

quality of the surface discretization. Finally, we presented results of numerical

experiments, comparing our method to the level set method for geometric flows.
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Chapter 4

Efficient geometrically exact
continuous collision detection

4.1 Introduction
For the purpose of this thesis, we define continuous collision detection (CCD) as

the process of detecting if a mesh moving between initial and final configurations

comes into contact with itself at any point in time. CCD is a critical element of

many algorithms for physical simulation, when a non-intersecting mesh invariant

must be maintained, and for path planning, when the feasibility of a path must be

guaranteed. Beyond efficiency, a good CCD algorithm should therefore be safe:

no false negatives, i.e. missed collisions which can lead to self-intersection, can be

tolerated. It should also be accurate in the sense of minimizing the number of false

positives, i.e. non-collisions being flagged as collisions, for the effectiveness and

efficiency of algorithms using CCD.

As discussed in the introduction, a geometrically exact test returns the correct

result as if computed with exact arithmetic. The typical route to geometrically

exact methods involves predicates, a set of simple Boolean tests on the input ge-

ometry whose answers determine the final outcome. With floating-point filters and,

if necessary, exact arithmetic, some predicates can be computed exactly. This has

been done for the exact evaluation of intersection testing in static geometry—for

example, detecting if an edge intersects a triangle in a triangle mesh.
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Predicates stand in contrast to constructive methods, where intermediate real

quantities are computed—for example, where along an edge the intersection with

a triangle’s plane occurs—and subsequently used. Given that intermediate quan-

tities may not even be representable in floating-point arithmetic, let alone easily

computed without error, constructive methods are extremely difficult to make ro-

bust without resorting to expensive symbolic computation.

In this chapter, we move from intersection to collision detection, where the

problem becomes detecting whether moving objects intersect at any point over

some time interval. We will limit our discussion to moving triangle meshes, and

assume that mesh vertices move on straight-line, constant-velocity paths. In this

chapter we will introduce two CCD methods based on existing and new geometri-

cally exact predicates. Contributions for this chapter include:

1. a fully robust CCD approach based on intersection testing of space-time sim-

plices, which can be computed with exact arithmetic;

2. a linear solver which, given floating point inputs, can determine exactly if the

linear system has a unique solution, and provide an estimate for the solution

if it exists;

3. a second CCD algorithm using the same geometric model as the classic cu-

bic solver approach, but which transforms the problem into a series of 3D

predicates which can also be evaluated with exact geometric computation;

4. a new, efficient, geometrically exact ray vs. bilinear patch intersection parity

test, which can be used to precisely determine if a point is inside a quad-

mesh-bounded volume or not;

5. a new adaptive cloth simulation method which maintains intersection-free

meshes despite remeshing, as an example of the practical advantage of geo-

metrically exact CCD, and show there is no performance penalty for using

geometrically exact CCD.

We restrict our attention to triangle meshes in 3D, with an intersection-free

initial configuration, so CCD can be reduced to two primitive tests: does a mov-

ing point hit a moving triangle, or does a moving edge hit another moving edge?
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Note that we ignore the connectedness of the mesh: multiple meshes are treated

as lumped together, so there is no difference between inter-object collision and

self-collision.

4.2 Related work

4.2.1 The cubic solver approach

The most popular current method for continuous collision detection for triangle

meshes was introduced by Provot [Pro97]. First a cubic equation is solved to deter-

mine coplanarity times, then the interpolated geometry is checked for interference

at these times to determine if a collision actually occurs. Bridson et al. [BFA02]

significantly reduced the number of false negatives due to floating-point error by

introducing error tolerances in the root-finding algorithm used to solve the cubic

equation and using a static distance query at the coplanarity times: collisions are

reported if the mesh elements are within some small distance of each other.

However, the minimum error tolerances required for safe CCD are difficult to

predict in advance. Especially in cases where the primitives remain nearly coplanar

for the entire step, such as hair segments [SFK+08] sliding against each other on

skin, cancellation error in simply computing the coefficients of the cubic can elim-

inate almost all precision in the rest of the calculation. (Of course, in constantly

coplanar cases, the method breaks down entirely.) Even if the cubic is represented

exactly, its roots are in general irrational and must be rounded to floating-point

numbers. Completing the error analysis with further bounds on the construction

of the intermediate geometry at the rounded coplanarity time, bounds on the cal-

culated barycentric coordinates of closest points, and then bounds on the distance

appears intractable. In practice, a usable tolerance can typically be found by trial

and error for a large class of similar simulations (e.g. cloth animations), but differ-

ent applications such as adaptive cloth, hair, or liquid surface tracking can require

enervating per-simulation adjustment, which makes writing a general purpose li-

brary especially tricky.

The cubic solver approach naturally gives false positives if the tolerance is

high enough to work. If the tolerance is too high (a definite possibility if restricted
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to single precision arithmetic, for example) this can seriously slow down or even

completely stymie collision resolution: tuning the tolerance for a new simulation

isn’t always easy.

A fully symbolic implementation could in principle resolve the above prob-

lems, apart from the degenerate constantly coplanar case, but the computational

overhead would be drastic. In this chapter we show a different approach to CCD

can be fully safe and accurate without need for tuning, yet run just as fast.

4.2.2 Other work in continuous collision detection

Stam [Sta09] extended the cubic solver approach to explicitly test if two mesh

elements approach closer than a given distance during the time step, resulting in a

sixth degree polynomial to solve for potential collision times. This helps to resolve

the coplanar-motion degeneracy mentioned above, but poses an even less tractable

rounding error analysis problem for safe CCD, suffers from the same false-positive

issues, and is a heavier burden computationally.

Alternative methods for computing the time of possible collisions, such as con-

servative local advancement [TKM10] offer potential speed-ups over the cubic

solver approach, but do not robustly deal with rounding error, and must rely on

user-set tolerances to account for slight non-planarities in intersection/proximity

testing.

The constant vertex velocity model underlying this work and the cubic solver

approach is perhaps the most natural for general deformable motions. However, for

rigid bodies, constant linear and angular velocity of the entire model makes more

sense — although the helical trajectories of vertices are somewhat more difficult to

handle. Zhang et al. [ZRLK07] demonstrate significant acceleration of conserva-

tive advancement using the Taylor model generalization of interval arithmetic, but

again rely on user-set tolerances to cope with the inexact solve and rounding error.

Raytracing can be seen as a special case of CCD, generally easier since the

geometry is static relative to the “motion” of the light ray. We highlight Ramsey

et al.’s ray-bilinear patch test [RPH04] as particularly relevant, as our 3D CCD test

in fact relies on ray-bilinear patch intersection parity tests. However, our new ap-

proach is geometrically exact and fully robust, unlike Ramsey et al.’s constructive
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approach, which is vulnerable to rounding error; on the other hand, our test only

provides the parity of the number of intersections, not their location.

The related problem of culling collision tests is very well studied in computer

graphics. Several approaches using bounding volume hierarchies have been pro-

posed, as well as culling using bounding boxes with regular grids, sweep-and-

prune testing, and sweeping-plane testing: see Ericson’s book for example [Eri04].

We observe that except for axis-aligned methods which only use comparisons (no

arithmetic), the culling literature generally does not worry about verifiably han-

dling rounding error. We briefly address this issue later, but emphasize our focus

is the correctness of the core element vs. element test, not the efficiency of broader

culling methods.

4.2.3 Exact geometric computation

An alternative to constructive geometric algorithms discussed so far is to decom-

pose a geometric test into a set of simpler predicates, providing discrete answers

such as “does a point lie to the left, to the right or on a line?” rather than continuous

values. Approximate continuous values may be computed alongside, of course, but

the discrete correctness of the algorithm as a whole relies only on the correctness

of the discrete answers from the predicates. Several approaches to defining and im-

plementing correct predicates exist; the most successful is the paradigm of Exact

Geometric Computation (EGC). We recommend Yap’s article as an excellent re-

view of the topic [Yap04]. In brief, a geometrically exact predicate must return the

same discrete answer as if computed with exact arithmetic (from the floating point

input) even if under the hood it takes a faster approach. Our method is the first

geometrically exact CCD test for general CCD, but exact predicates for simpler

problems have long been used in graphics and elsewhere.

Building on previous work by Dekker [Dek71] and Priest [Pri91], Shewchuk

presented practical systems for exactly evaluating a number of geometric predi-

cates needed for Delaunay mesh generation [She96]. These sign-of-determinant

predicates are equally useful for detecting self-intersections for triangle meshes.

When higher precision than provided by floating point hardware is required, the

system uses floating-point expansions (the sum of a sequence of floats) leveraging
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fast floating-point hardware even for exact arithmetic.

In Section 4.5 we decompose CCD into a set of simplex intersection tests,

based on the same standard sign-of-determinant tests, together with the evaluation

of the sign of a simple polynomial function. No radicals or even divisions are re-

quired, making it straightforward to implement exactly using expansion arithmetic

like Priest and Shewchuk. Furthermore, through the use of fast interval arithmetic

filters, we can rapidly find the provably correct signs without need for high pre-

cision expansions in all but the most extreme cases, leading to highly efficient

execution on average.

4.2.4 Adaptive cloth simulation

In section Section 4.5.6, we present an adaptive FEM cloth simulation to demon-

strate the robustness of our CCD approach. Although mass-spring systems are

popular for cloth simulation due to their simplicity and ease of implementation,

implementers of cloth animation systems have been turning to increasingly sophis-

ticated models in recent years. For example, the Finite Element Method (FEM)

can achieve accurate results and is less dependent on the mesh structure than using

edge-based springs [EKS03].

In the related sub-field of simulating volumetric elastic solids for graphics, it

is becoming increasingly popular to perform on-the-fly optimization of the volu-

metric simulation mesh [BWHT07, WT08, WRK+10]. The benefits of remeshing

include reducing error for highly-sheared elements and concentrating computa-

tional effort where it is needed to resolve small-scale details. For cloth, an ad-

ditional important benefit of remeshing is to increase vertex density in regions of

high curvature so that curved regions can be accurately represented without having

to globally refine the surface mesh.

A few authors have suggested refining the simulation elements for cloth [LV05,

VB05], however, the idea has not been as popular for cloth as it has for solid elas-

ticity. One reason for the lack of uptake is the difficulty in dealing with collisions.

For example, adding and removing vertices without introducing self-intersections

is a major concern if continuous collision detection assumes that the mesh is free

of self-intersections at the beginning of each time step. Adding and removing ver-
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tices and altering the triangulation at discrete times compounds the difficulty in

choosing suitable collision and intersection error tolerances.

4.3 Space-time simplex continuous collision detection
In this section, we propose a collision detection approach which considers time as

an additional spatial variable. Discretizing the motion of mesh elements in space

time with simplices, the continuous collision test becomes a d + 1 simplex inter-

section test, where d is the dimensionality of the original problem. As we are now

dealing with simplices, intersection testing is a linear problem, which can be solved

in a geometrically exact fashion either using matrix determinants (Cramer’s rule),

or with an exact linear solver.

First consider CCD in two spatial dimensions. The fundamental collision test

is point-vs-segment. We are given the vertex and segment endpoint locations at the

beginning and end of the time step, and must determine if the vertex lies on the

segment at any time in the time step. In the following we will index the moving

vertex with 0, and the segment end vertices as 1 and 2. We denote the location in

space of vertex i at the beginning of the time step as~xi, and its location at the end

of the time step as ~x∗i . The input to our continuous collision detection is then the

set of six 2D points: ~x0,~x1,~x2,~x∗0,~x∗1, and~x∗2 (see Figure 4.1).

The moving vertex then sweeps out a path in space-time which is a static 3D

line segment, and the moving line segment sweeps out a bilinear patch in 3D (see

Figure 4.2). The 2D continuous collision test then becomes a 3D intersection test,

between the line segment and bilinear patch.

We further propose approximating the bilinear patch with two flat triangles (see

Figure 4.3). This further reduces the CCD problem to testing a specially structured

line segment against two separate triangles in three dimensions, which is much

more tractable for rounding error analysis. This discretization is water-tight, and

can be made conservative by computing a bound on the floating-point error in-

curred, or by evaluating exactly with extended precision arithmetic if necessary.

Let (x0,y0) and (x∗0,y
∗
0) be the coordinates of the point at the start (t = 0) and

end (t = 1) of the time step, or in our 3D view (x0,y0,0) and (x∗0,y
∗
0,1). Let the

edge’s endpoints be (x1,y1) and (x2,y2) at t = 0, and (x∗1,y
∗
1) and (x∗2,y

∗
2) at t = 1.
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Figure 4.1: Discretization of 2D continuous collision detection problem.

Figure 4.2: Space-time trajectories, a line segment and a bilinear patch.
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Figure 4.3: Space-time trajectories discretized as a line segment and pair of
triangles.

Picking one diagonal arbitrarily, the two triangles representing the edge’s swept

trajectory are (x1,y1,0) : (x2,y2,0) : (x∗2,y
∗
2,1) and (x1,y1,0) : (x∗1,y

∗
1,1) : (x∗2,y

∗
2,1).

Focus on the first triangle. We set up the intersection problem as a linear sys-

tem, looking for (s, t,α,β ,γ) satisfying:

sx0 + tx∗0 +αx1 +βx2 + γx∗2 = 0

sy0 + ty∗0 +αy1 +βy2 + γy∗2 = 0

t + γ = 0

s+ t +α +β + γ = 0

s+ t = 1

(4.1)

The last two equations define the pair (s, t) as barycentric coordinates along

the line through the point’s trajectory, and the triple (−α,−β ,−γ) as barycentric

coordinates in the plane of the triangle. The first three equations then express the

intersection of the point’s trajectory with the triangle, in x, y, and t in order. There

is an intersection if and only if there is a solution to this linear system where s and

t are both non-negative, and α , β , and γ are all non-positive—i.e. the intersection
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lies within the triangle and in the time interval [0,1].

In Section 4.4, we discuss methods for exactly determining if there is a unique

solution to this linear system, and providing an estimate if there is. If there is no

solution, the segment misses the triangle, and if there are an infinite number of

solutions, the segment lies coplanar to the surface, and intersects it.

Additional information about the collision is easily collected from the barycen-

tric coordinates, once computed. For example, the time of collision (between 0 and

1) is simply the coordinate t; the normal vector at the collision is either the t = 0

edge’s normal or the t = 1 edge’s normal depending on which triangle was hit; the

relative normal velocity at the collision is defined from the point’s velocity and the

velocity of the endpoint of the edge that is entirely contained in the colliding trian-

gle. (Special cases must be made for degenerate situations, sometimes leading to

an ambiguity which we arbitrarily resolve: e.g. a degenerate edge has no defined

normal.)

4.3.1 Space-time simplex CCD in three dimensions

To handle CCD in two dimensions, we essentially built a triangle mesh stretching

between the initial and final configurations in 3D space-time, and then ran robust

self-intersection specialized to this type of mesh construction. We do exactly the

same in three dimensions, building a tetrahedral mesh stretching between the initial

and final configurations in 4D space-time. We model a moving point by sweeping

out a straight line segment from t = 0 to t = 1 and a moving edge with two trian-

gles as before. A moving triangle with vertices labeled 1, 2, and 3 sweeps out a

triangular prism discretized into three tetrahedra, as in Figure 4.4:

~x1 :~x2 :~x3 :~x∗3

~x1 :~x2 :~x∗2 :~x∗3

~x1 :~x∗1 :~x∗2 :~x∗3

where~xi = (xi,yi,zi,0) and~x∗i = (x∗i ,y
∗
i ,z
∗
i ,1).

Note that to avoid cracks in the tetrahedral space-time mesh, a consistent choice

of diagonals for the triangles must be made: in our code, we first sort the vertices
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Figure 4.4: For collisions with a triangle in 3D, we discretize the triangular
space-time prism of the triangle’s swept trajectory with three tetrahedra
as shown (with x and z axes projected together).

by index before constructing the triangles or tetrahedra in a call to make sure this

happens.

With this discretization, the moving edge vs. moving edge tests is reduced to

four triangle vs. triangle intersection tests in 4D (each edge sweeps out two trian-

gles), and the moving point vs. triangle test is reduced to three segment vs. tetra-

hedron intersection tests in 4D. The intersection of two such 4D simplex primi-

tives can be described with six barycentric coordinates that solve a linear system

analagous to the one presented above, robustly evaluated in exactly the same fash-

ion.

4.3.2 Discussion

Our approximation of higher-dimension objects with simplices leads to a some-

what unintuitive model for the mesh geometry at intermediate times: mesh edges

develop kinks and triangles develop folds; normals do not vary continuously over

time. This in turn raises problems for standard collision resolution methods, and

precludes the use of CCD culling techniques which assume the geometry is lin-
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early interpolated at intermediate times [TMT10]. In Section 4.5, we present a

CCD method which is also geometrically exact, but maintains the same model of

intermediate geometry as the traditional cubic-solver approach.

4.4 Exact solution of linear systems
Here we discuss the solution of the linear system (4.1). This system may have a

unique solution, or be over- or under-determined.

4.4.1 Cramer’s rule

The usual Computational Geometry approach to determining the signs of compo-

nents of the solution is to use Cramer’s rule. Assuming the matrix is invertible for

now, Cramer’s rule expresses the components of the solution as ratios of determi-

nants formed from the matrix and right-hand side. Since we only care about signs,

we can take out the common denominator to get the solution scaled by the deter-

minant of the matrix. For example, the scaled s is the determinant of the matrix

with its first column replaced by the right hand side:

ŝ = det


0 x∗0 x1 x2 x∗2
0 y∗0 y1 y2 y∗2
0 1 0 0 1

0 1 1 1 1

1 0 0 0 0

 (4.2)

Similarly t̂, α̂ , β̂ , and γ̂ can be expressed as 5× 5 determinants. These determi-

nants can be substantially simplified by cofactor expansion. (We note these deter-

minants are often given geometric meaning in terms of signed volumes of tetrahe-

dra, or triple products of certain vectors, but extending this to higher dimensions

taxes the intuition.) These can be computed using only multiplication, addition and

subtraction—no square or cube roots or even divisions are needed. If using fixed-

point or integer coordinates with p bits, the exact answers only require 2p+4 bits.

We instead use floating-point expansion arithmetic to get an exact solution, similar

to Shewchuk’s method [She96].
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It is a common occurrence in a typical simulation that we will end up a singular

matrix, where both ŝ and t̂, or all of α̂ , β̂ , and γ̂ evaluate to zero: geometrically this

corresponds to a degenerate configuration, such as parallel motion or a zero-length

edge. We handle the degenerate case robustly by checking the moving point’s

path against both “time” edges of each triangle. These smaller segment vs. seg-

ment checks begin by checking coplanarity with the appropriate already-evaluated

determinant. If the two edges are not coplanar in 3D they cannot collide, and oth-

erwise we check for collision by projecting the segments onto the x− t and the

y− t planes and running similarly robust 2D segment vs. segment tests. There is a

collision if and only if both 2D tests report a collision. If either of the 2D tests hits

a degeneracy, we again reduce the dimension by checking the endpoints against the

other segment, and so on.

Since the use of floating-point expansions can be much slower than hardware-

supported floating-point arithmetic, we use a “filter” approach to avoid using ex-

pansions unless they are necessary to achieve the required degree of precision. Our

filter is a simple interval arithmetic filter: we evaluate the determinants using in-

terval arithmetic first (roughly twice as expensive as straightforward floating-point

arithmetic), and go to expansion arithmetic only when the interval contains zero

(i.e. the sign cannot be accurately determined).

4.4.2 Gaussian elimination

An interesting alternative to using Cramer’s rule is to perform Gaussian Elimina-

tion on this linear system. Performing division on floating-point expansions, how-

ever, is not possible in general, since not all quotients of floating point numbers

can be represented as expansions (for example, 1/3). This suggests that we cannot

straightforwardly implement a Gaussian Elimination linear solver using expansion

arithmetic in place of floating-point.

However, there is a class of direct linear solvers, developed for integer-valued

problems, that do not perform any division until the very last step (called Division-

Free Gaussian Elimination). There is also another class of algorithms for integer

problems that do perform division, but every division (up to a final scaling of the

solution) is known to produce an integer result. These are termed Fraction-Free
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Gaussian Elimination (FFGE) [Bar68, NTW97]. By using floating-point expan-

sions in place of integers in these algorithms, we can perform exact division, since

we know beforehand that the results will be representable as expansions. Although

the final results are not fully accurate due to the final floating-point division, the

sign of each solution component is known with certainty, which is all we require

for fully robust CCD.

The linear system (4.1) may be singular, but nonetheless may be consistent. To

detect this, we allow the linear solver to row-reduce the matrix to upper-triangular

form. If the n×m matrix has rank n− k, and if the last k entries of the solution

are zero, then the system is consistent. If it is inconsistent, we quit and report no

intersection (e.g. in our segment-triangle case, the segment and triangle would be

in distinct, parallel planes). If it is consistent then we iteratively remove columns

from A, checking if there is a solution for each reduced system. Geometrically,

this corresponds to a degenerate configuration, for example a line segment and

triangle being coplanar. Removing columns from A corresponds to projecting out

one coordinate at a time, and checking for a separating line in each projection.

If there is a separating line in any of the projections, we know the segment and

triangle do not intersect in the original space, since an intersection would be present

in any projected space.

We have implemented FFGE using floating-point expansions and have found

it to be very robust and quite a bit easier to debug than manipulating the long

expressions usually present in computing large determinants. However, designing

floating-point filters is more challenging in this case than when using determinants,

and we have not been able to achieve the same computational efficiency. We plan

to investigate better filter design and other optimizations to make this solver more

tractable in the future.

4.5 Root-parity based CCD
Recall that in 3D CCD, there are two fundamental collision tests: point-triangle

and segment-segment, and the inputs to each test are the locations of the vertices at

the beginning and end of the time step. We denote the location in space of vertex

i at the beginning of the time step as~xi, and its location at the end of the time step
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as ~x∗i . Then for each test, we are given 8 points: ~x0, ~x1, ~x2, ~x3, ~x∗0, ~x∗1, ~x∗2, and ~x∗3.

For convenience, we will normalize the time step so that t ∈ [0,1]. The constant

velocity model of motion gives the location of a vertex at an intermediate time as

~xi(t) = (1− t)~xi + t~x∗i .

First consider the point-triangle test. In the following we will index the moving

vertex with 0, and the triangle vertices as 1, 2, and 3. Any point on the triangle can

be written as: ~x(u,v) = (1− u− v)~x1 + u~x2 + v~x3, where ~x1, ~x2, and ~x3 are the

triangle corners, and u,v ∈ [0,1] with u+v≤ 1. The vector between a point on the

moving triangle defined by the coordinates (u,v) and the other vertex, at time t,

can then be written as:

~F(t,u,v) =~x0(t)−
[
(1−u− v)~x1(t)+u~x2(t)+ v~x3(t)

]
=(1− t)~x0 + t~x∗0

− (1−u− v)
(
(1− t)~x1 + t~x∗1

)
−u
(
(1− t)~x2 + t~x∗2

)
− v
(
(1− t)~x3 + t~x∗3

)
.

This is a tri-affine function which is zero precisely when the vertex lies on the tri-

angle. The domain for the point-triangle test is Ω = [0,1]×{u,v≥ 0 | u+ v≤ 1},
a triangular prism.

A similar tri-affine function can be defined for the segment-segment collision

test, the vector between the point at fraction u ∈ [0,1] along one segment and the

point at fraction v ∈ [0,1] along the other, at time t ∈ [0,1]. The domain is then

[0,1]3, the unit cube.

CCD then amounts to discovering if such a function has a root in the domain,

a point in Ω which ~F maps to~0. We make an important simplification: we report

a collision if there is any zero on the boundary of the domain (i.e. at the initial or

final time, or at any edge or endpoint of the geometry) or if there is an odd number

of roots in the interior. We justify ignoring the case of a nonzero even number

of interior roots by noting that, in the reference frame of the triangle or one of

the segments, an even number of roots indicates the other element crosses from

one side to the other then back again — so a small perturbation of the trajectory

64



(within the convex hull of the elements) would suffer no collisions at all. Important

invariants, such as freedom from self-intersection and meshes outside of each other

remaining outside, are still maintained using this slight relaxation of CCD.

4.5.1 Determining root parity

Write the image of Ω under ~F as ~F(Ω) =
{
~y |~y = ~F(~x),~x ∈Ω

}
, and similarly

~F(∂Ω) =
{
~y |~y = ~F(~x),~x ∈ ∂Ω

}
for the image of the domain boundary ∂Ω.

If ~F was smooth and one-to-one, determining if ~0 ∈ ~F(Ω) could be done by

counting the number of crossings of a ray from~0 to infinity through the boundary

image ~F(∂Ω): an odd number of crossings indicates a root by the usual Jordan-

Brouwer Theorem argument. However, our ~F may not be one-to-one: the image

of Ω can “fold over itself”. However, the parity of the ray crossings with ~F(∂Ω)

intuitively still gives us the parity of the number of roots: the sum of an odd number

of intersections for each separate root leads to an odd total if and only if there is an

odd number of roots — with the proviso that if~0 ∈ ~F(∂Ω), i.e. we have a root on

the domain boundary, we always report a collision. More formally:

Root Parity Lemma. Suppose Ω⊂ Rn is an n-polytope.

Suppose ~F : Ω 7→ Rn is C2, has p < ∞ roots in Ω, has no roots on ∂Ω, and has

non-singular Jacobian at each root.

Suppose R is a ray from~0 to infinity. Call any point~x ∈ ∂Ω such that ~F(~x) ∈ R

a crossing point, then the crossing number q is the number of crossing points.

Suppose that ~F(∂Ω) is smooth at the image of any crossing points, that the ray is

not tangent to ~F(∂Ω) at any these points, and that q < ∞.

Then, p≡ q (mod 2).

We offer a sketch of a proof of the lemma, and that it applies to the particular

functions we need for CCD, in Appendix A.

This lemma also describes our algorithm. We report a collision if the image of

the boundary ~F(∂Ω) passes through~0, and otherwise cast a ray from~0 in an arbi-

trary direction, and then count the number of crossings of the ray though ~F(∂Ω),

choosing a different direction and trying again if any crossings are tangent or lie
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Figure 4.5: Root parity test. In this case there are no roots in the domain, so
the origin is outside of ~F(Ω).

Figure 4.6: One and two roots in the domain. A ray cast from the origin will
have odd and even parity, respectively.

on corners. Figures 4.5 and 4.6 illustrate this approach for the 2D case, showing

cases where we have zero, one, and two roots in the domain.

We transform the boundary of these domains (cube or triangular prism) by the

corresponding function ~F to get a generalized hexahedron or prism, and test for

ray crossings on each of their faces. The hexahedron has potentially non-planar

bilinear patches for faces (the restriction of the tri-affine function to a face of the
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domain is bi-affine), and the prism is composed of three bilinear patches and two

triangles. Computing ray-triangle crossings can be done with exact arithmetic —

however, we know of no prior practical method for quickly and exactly computing

the crossings of a ray through a bilinear patch, or even the parity of the number of

crossings, which is all we need. We thus introduce an efficient method for exactly

computing this parity.

4.5.2 Ray-bilinear-patch crossing parity testing

We first define a continuous scalar function φ(~x) which is positive if ~x is on one

side of the patch and negative on the other side, and, to permit exact evaluation

with floating-point expansions, define it using only multiplication, addition, and

subtraction.

We define the following multivariate polynomial φ(~x) where the indices 0 to 3

refer to the patch corner vertices:

φ(~x) = h12(~x)−h03(~x).

The two h-functions are designed to be zero on the straight edges of the patch via

products of plane g-functions for the various subsets of three vertices:

h12(~x) = g012(~x)g132(~x)

h03(~x) = g013(~x)g032(~x)

gpqr(~x) = (~x−~xp) · (~xq−~xp)× (~xr−~xp).

We claim that the zero level set of φ(~x) contains the bilinear patch. To con-

firm this is indeed the function we seek, take an arbitrary point~x with barycentric

coordinates α , β , γ , and δ w.r.t. the corners of the patch:

~x = α~x0 +β~x1 + γ~x2 +δ~x3.

Recall that the barycentric coordinates of a point with respect to a tetrahedron are

proportional to the signed volumes of the tetrahedra formed by the point and each

of the triangular faces. Letting V be six times the signed volume of the tetrahedron
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spanning the corners of the patch, observe that:

g132(~x) = αV g032(~x) = βV

g013(~x) = γV g012(~x) = δV

Therefore our function evaluates to:

φ(~x) = δαV 2− γβV 2.

Assuming V 6= 0, this is zero if and only if αδ = βγ , which occurs precisely

for the parameterized bilinear surface:

α = (1− s)(1− t) β = (1− s)t

γ = s(1− t) δ = st.

Moreover, it is clear that φ(~x) changes sign across the zero level set, dividing space

into positive and negative regions separated by the conic containing the bilinear

patch.

This construction breaks down if V = 0. However this is the case when the

patch is perfectly flat, where we can simply replace the entire ray-patch intersection

test with two ray-triangle tests.

Next consider the tetrahedron spanned by the four corners of the bilinear patch.

It is composed of two pairs of triangles, one pair corresponding to each side of the

bilinear patch. For the “positive” triangle pair, any point ~x on either triangle has

the property that φ(~x) ≥ 0, and vice versa for the “negative” pair of triangles. For

the test, we consider two cases depending on whether the ray origin~0 lies inside

the tetrahedron or not — which can be determined directly from standard sign-of-

determinant “orientation” predicates with the tetrahedron’s triangular faces.

If the ray origin~0 lies inside the tetrahedron, we can determine the sign of φ(~0)

and replace the ray-patch test with two ray-triangle tests, using the triangles corre-

sponding to the opposite sign of φ(~0). Ray-triangle intersection can also be broken

down into determinant predicates [GD03]. If there is an intersection between the

ray and either triangle, then the ray must also pass once through the bilinear patch.
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If instead the ray origin lies outside of the tetrahedron, we can use either set of

triangles as an equivalent proxy for the bilinear patch. The parity of the number of

intersections between the ray and the triangle pair matches the parity of the number

of (non-tangential) intersections between the ray and the bilinear patch.

Pseudocode for the test is given in Algorithm 4; Figure 4.7 illustrates the 2D

analog. Since it relies only on determinants and the evaluation of φ , i.e. just mul-

tiplication and addition/subtraction, the test can be evaluated using floating-point

expansions to give the geometrically exact result.

Algorithm 4 Ray-bilinear-patch crossing parity

Given: Ray origin~0, direction ~R, and a bilinear patch.
Form the tetrahedron from the bilinear patch corner vertices.
Let F+

1 , F+
2 be the tetrahedron faces where φ ≥ 0.

Let F−1 , F−2 be the tetrahedron faces where φ ≤ 0.
if~0 is inside the tetrahedron then

if φ(~0)> 0 then
return intersect(~0, ~R, F−1 ) ∨ intersect(~0, ~R, F−2 )

else
return intersect(~0, ~R, F+

1 ) ∨ intersect(~0, ~R, F+
2 )

end if
else
{Use either pair of triangles}
return intersect(~0, ~R, F+

1 ) XOR intersect(~0, ~R, F+
2 )

end if

4.5.3 Putting it together

We now have the tools we need for determining the intersection parity of a ray

versus a set of bilinear patches and triangles. For segment-segment CCD, our al-

gorithm runs 6 ray-vs-patch tests for the faces of the hexahedron, and for point-

triangle CCD, we run 3 ray-vs-patch and 2 ray-vs-triangle tests for the faces of the

triangular prism, and determine the parity of the total number of intersections. If

we have an odd parity, we know there is an odd number of roots in the domain, and

so we must flag this as a collision. Algorithm 5 shows the point-vs-triangle test

(the segment-vs-segment test is analogous).
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Figure 4.7: A 2D analog of the ray-vs-bilinear-patch parity test. Rays A and
B have origins on the “negative” side of the patch, and so we test against
the proxy geometry on the “positive” side. Ray A intersects both the
patch and the proxy geometry, while B intersects neither. Rays C and
D have origins outside the bounding simplex, and so can be tested with
either proxy geometry.

There are a few special cases we must watch for. If the origin lies exactly on

a patch or a triangle (i.e. there is a root on the boundary of the domain), then we

report the collision and skip the ray testing. This includes, for example, the fully

degenerate cases of exactly planar motion (such as two edges sliding into each

other along a flat surface) that entirely defeats the cubic solver. In our simulations

this type of collision is vanishingly rare unless artificially induced.

We must also take care if the ray hits an edge shared between two patches, be-

tween two triangles (acting as proxy geometry in the ray-vs-patch test), or between

a patch and a triangle. If this occurs, we will see two positive ray intersection tests.

In the context of inside-outside testing, this may or may not be correct (see Fig-

ure 4.8). Fortunately, since we are using exact arithmetic, we can precisely detect

these degenerate cases (one barycentric coordinate will be exactly zero). In such

a case, we simply choose a new ray direction at random and run the test again.

Again, in our testing this happens only extraordinarily rarely.
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Figure 4.8: Two rays, each hitting two segments at their common endpoint.
If we are testing each segment individually, then in both cases the par-
ity of ray intersections is even. Here the parity of intersection count
cannot determine whether points A and B are inside the quadrilateral.
Perturbing the rays slightly would produce the correct results in both
cases.

4.5.4 Implementation

Fast implementation of exact intersection testing is crucial for making our approach

practical. Computing intersections with expansion arithmetic is expensive, so we

use a filter: we evaluate the determinants and φ first with interval arithmetic, only

switching to exact expansions when the sign is indeterminate (the final interval

contains zero). See Brönnimann et al. for the case of determinants [BBP01].

To avoid repeatedly switching the rounding mode during interval arithmetic,

we use the standard “opposite trick”, storing the negative of the lower bound and

defining new operations that rely on one rounding direction only. We have also ex-

perimented with using SIMD vectors to store the intervals and using vector intrin-

sics for arithmetic operations [Lam06, Gou10], but found that our implementation

of this strategy was not significantly faster in practice than simply operating on two

doubles.
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Algorithm 5 Point-triangle collision test
Given: corner vertices of the domain, X
Create ray (~0,~R) with arbitrary direction ~R
S← 0
for i = 1→ 3 do

Form bilinear patch i with appropriate ~F(X)
pi← intersection parity of ray (~0,~R) vs bilinear patch i
S← S+ pi

end for
for j = 1→ 2 do

Form triangle j with appropriate ~F(X)
if Ray (~0,~R) intersects triangle j then

S← S+1
end if

end for
return S≡ 1 (mod 2)

Collision test culling is also critical for efficiency. We compute the axis-aligned

bounding box (AABB) of each moving edge, triangle and vertex and only run col-

lision detection when AABBs overlap, accelerating this test with a regular back-

ground grid. We further cull tests by checking if, for any of several non-axis normal

directions, there is a plane separating the origin from the transformed hexahedron

or prism. Our implementation of this plane test uses interval arithmetic for robust-

ness: only when all vertices are definitely on the negative or positive side of a plane

(no interval contains zero), do we consider the plane to be a separating plane. This

relatively inexpensive plane-based testing eliminates 99% of the tests, considerably

improving performance.

4.5.5 Resolving collisions

We implemented our new algorithm using interval filtered floating-point expansion

arithmetic, providing practical, provably robust CCD code for deforming meshes

without any user-tuned tolerances. However, at this point we can only guarantee

collision detection: this says nothing about resolving these collisions, i.e. finding

a physically consistent adjustment to the final configuration of the mesh that elim-

inates all collisions. Indeed, taking into account that the final positions are quan-
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tized to a finite number of bits of precision, provably robust but ideally physical

collision resolution may involve the solution of a rather daunting large-scale inte-

ger programming problem. As an example of the complications involved, even just

transformation of an intersection-free mesh with a rotation matrix can potentially

create self-intersection once the results are rounded again.

To resolve collisions, we use the velocity filtering approach discussed in Chap-

ter 3. While previous works used the normal at the time of collision (typically from

the triangle or from the cross-product of edges), we have found this is not a crucial

choice. Interpolating the geometry at t = 0.5 and computing the normal from the

vector between the closest points on the two mesh elements has worked equally

well in our experiments, and is more computationally efficient.

4.5.6 Examples

We tested our new CCD routines in a standard mass-spring cloth simulator with an

initially curved sheet of cloth of resolution of 40×400 vertices, dropped on a solid

ground plane. As shown in Figure 4.9, this results in a large number of collisions

as the cloth stacks up on itself.

Armed with our parameterless collision detection system, we also demonstrate

a complete FEM simulator with on-the-fly, adaptive remeshing. We use linear

elasticity with rotated finite elements, as described by Etzmuß et al. [EKS03], and

simple edge crossover springs for bending forces. The equations of motion for the

vertices are:

d~x
dt

= ~v (4.3)

d~v
dt

= M−1~F , (4.4)

where M is the diagonal mass matrix with mass concentrated on the vertices, and
~F is the force due to in-plane linear elasticity and springs across edges.

We choose simple edge splitting, flipping, and collapsing as our mesh opti-

mization operations, and make them all collision safe, using CCD on “pseudo-

trajectories”, as described in Chapter 3. To increase the vertex density in high-

curvature areas, we scale the measured edge lengths by local curvature estimates
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when deciding to collapse or split edges. (We note that these operations are perhaps

not as suitable for cloth simulation as a regular subdivision scheme, but it is a rea-

sonable proxy for examining the challenges faced when maintaining intersection-

free adaptive surfaces.) Figure 4.10 shows a frame from a simulation with a single

piece of cloth, and the underlying rest-state mesh. We also show a more challeng-

ing CCD scenario, with several layers of cloth draped over a solid sphere (Fig-

ure 4.11).

All of our tests were performed on a single core of a 2.7 GHz Intel i5 processor

with 4GB of RAM. We integrated our new CCD algorithm into the open-source El

Topo surface tracking library developed in Chapter 3, as it provides an intersection-

free remeshing framework suitable for adaptive cloth simulation, and provides an

implementation of the cubic-solver based CCD approach for comparison. (Our

cloth simulation is only client code of this library – it was not published as part of

El Topo.)

The average time spent per call to CCD, not including culling based on AABB

comparisons, but including plane-based culling, was approximately 614 ns for seg-

ment-segment testing, and 439 ns for point-triangle testing. By comparison, the

average time in El Topo’s cubic solver CCD implementation (again not including

AABB culling) was 649 ns and 659 ns.

Counting only tests which were positive (exercising the entire path of our

code), the average time per call was 19 µs for segment-segment, and 15 µs for

point-triangle, compared to 1.2 µs for both tests with the cubic solver CCD. This

indicates that without culling, our new algorithm is more expensive than the cubic-

solver version (as expected) but also that our culling is effective enough to cancel

out any efficiency penalty.

4.6 Conclusions
Section 4.3 introduced a novel CCD method, constructed from a set of predicates

which can be evaluated exactly. By considering time as an additional spatial vari-

able, we rephrased the continuous collision detection problem as a set of higher-

dimension simplex intersection problems. These intersection tests can be evaluated

exactly, either with determinant tests, or with our new exact linear solver, intro-
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duced in Section 4.4.2. The new linear solver is based on fraction-free Gaussian

Elimination algorithms for integer arithmetic, which we extended to work with

floating-point expansions for geometrically exact predicate testing.

In Section 4.5, we presented a second approach to continuous collision de-

tection. In this section, we showed that the collision detection problem can be

rephrased as determining whether a function has an odd number of roots in a given

domain. We then showed how this problem can be reduced to testing a ray from

the origin against the image of the domain boundary and counting the parity of the

crossings. This in turn reduces to a set of ray-vs-triangle and ray-vs-bilinear-patch

tests, built from determinant and simple function sign evaluations.

Our implementation uses a floating-point filter approach for efficiency — first

checking if the correct Boolean result can be determined using interval arithmetic,

and only using floating-point expansions for exact evaluation if required. We

demonstrated the utility of our approach with a challenging test case: simulation

of cloth undergoing on-the-fly remeshing with a large amount of contact. To our

knowledge, this is the first time an adaptive cloth simulation scheme has been pre-

sented which explicitly deals with the challenges of continuous collision detection.

There are several avenues of future work. While irrelevant for the simula-

tions we presented, being able to distinguish zero from a positive even number of

roots could be critical for other applications. Our approach should extend naturally

from multi-affine functions to testing intersections with higher-degree polynomial

patches. Rigid body motion is more naturally expressed in terms of screw motions;

though the intermediate positions involve trigonometric functions of time, repa-

rameterization similar to the NURBS approach to conic sections would lead to a

multivariate polynomial problem amenable to this attack.
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Figure 4.9: CCD stress test with wireframe and smooth rendering.
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Figure 4.10: Cloth with an adaptive simulation mesh
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Figure 4.11: Four layers of adaptive cloth
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Chapter 5

Animating smoke as a surface

5.1 Introduction
In visual effects, fluids such as smoke are often simulated with a grid-based fluid

solver or particle system. For smoke, the visible density of soot is usually tracked

using either a set of passive marker particles, or a scalar density function on an

Eulerian grid. If a marker particle system is used, tens of millions of particles

may be required to prevent a grainy, bumpy, or blobby look, which can occupy

considerable storage and network resources. Furthermore, if the smoke effect is

particularly dense, only the set of particles or grid cells near the surface may be of

interest, while the interior is almost completely occluded. Grid-based density fields

are susceptible to diffusion, and may also require very high resolutions to capture

thin, wispy sheets of smoke. Similarly, to simulate liquid dye in a tank of water,

one might consider advecting a density field or set of marker particles to track the

dye location, incurring exactly the same downsides.

We propose to instead define a surface mesh which encloses a volume of dye or

soot. For this chapter, we consider the surface to be embedded in a fluid, with each

vertex moving passively, similar to a set of marker particles. (In the next chapter

we will present a method in which the surface mesh also defines the dynamics.)

Implicit in this model is that the concentration of soot or dye is uniform within

the volume, and as such, we do not require density samples in the interior. The
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concentration s evolves in a divergence-free velocity field, according to:

∂ s
∂ t

+~u ·∇s = ε∇
2s, (5.1)

where ε is the rate of soot or dye diffusion. Just as the viscosity in air is virtually

negligible for most practical scenarios, hence the inviscid equations are an excel-

lent model, the rate of molecular diffusion of temperature and soot particles in air

is vanishingly small, so they are just advected through the velocity field, and the

equation becomes:
∂ s
∂ t

+~u ·∇s = 0. (5.2)

Close-up renders of smoke using particles often show artifacts such as grain-

iness or blobbiness. By comparison, our triangle mesh surface shows fewer ar-

tifacts, appearing as a flat surface under extreme close-up. Our method is also

resistant to numerical dissipation present in grid-based density tracking methods.

5.2 Related work
Foster and Metaxas animated smoke using a one-phase, grid-based Navier-Stokes

solver [FM97]. They used marker particles to track smoke through the simula-

tion, transferring particle density onto a grid at render time. Stam introduced an

unconditionally stable time integration scheme to computer graphics [Sta99], and

his method was later adapted to use a staggered grid with vorticity confinement

[FSJ01]. His method uses a grid-based scalar density field to track the concentra-

tion of smoke. Recent work has focused on reducing the damping effect of nu-

merical diffusion by introducing improved integration schemes [ZB05, KLLR07,

SFK+08], adding sub-grid-scale turbulence [KTJG08, SB08], or through the use

of procedural methods [SRF05, BHN07].

The use of triangulated surface meshes in fluid animation has traditionally been

eschewed in favour of grid- or particle-based surface tracking methods, such as the

particle level set method [EFFM02]. Recently, however, some researchers in the

computer graphics community have begun turning to triangle mesh-based surface

tracking for liquid simulation [WTGT09, Mül09, BBB10, WTGT10]. These au-

thors generally use explicit surfaces to track the fluid interface in a free-surface
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simulation, whereas in this thesis, we use surfaces to visualize (and later simulate)

volumes of smoke in a one-phase fluid simulation.

Although grid-based methods are very popular and the subject of much recent

research effort, procedural methods for animating smoke and other fluids have been

widely used in practice for many years, starting with “flow primitives” for particle

systems, introduced by Sims [Sim90] and Wejchert and Haumann [WH91]. In this

chapter, we simulate smoke using primitives based on vortex filaments [AN05],

flow noise [PN01] and divergence-free curl noise [BHN07].

In somewhat related work, mesh surfaces have been used for visualizing 3D

vector fields. Hultquist generalized streamlines used in analysis of airflows to

stream surfaces [Hul92]. More recently, streak surfaces (moving open surfaces

seeded continuously from a curve), and time surfaces (seeded instantaneously from

a surface) have been treated using methods similar to the one presented in this

chapter. Krishnan et al. [KGJ09] recently introduced an algorithm which advects

an adaptive mesh through a 3D vector field to treat both of these categories of sur-

face. A similar visualization method which explicitly uses a smoke metaphor was

introduced by von Funck et al. [vFWTS08]. Their method does not use adaptivity,

but instead gradually reduces the opacity of poor quality triangles, giving the ap-

pearance of dissipating smoke or steam. Park et al. [PSCN10] constructed NURBS

surfaces from particle streamlines to achieve thin, sheet-like surface renderings of

smoke simulations. Most of these methods use open surfaces to visualize wispy,

thin sheets, whereas our approach can use closed meshes with arbitrary thickness,

so that thick smoke and fog can also be represented efficiently (see Figure 5.4).

5.3 Surface tracking
In order to use a triangulated surface to define a volume of fluid, we require a sur-

face tracking system with a certain set of features. Obviously an adaptive surface

is required to generate highly detailed results as the surface undergoes extreme de-

formations. We would also like to maintain good mesh quality in terms of aspect

ratios and surface smoothness. The surface tracking library described Chapter 3 is

a clear candidate.

In our examples we disabled collision detection and resolution, allowing the
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meshes to self-intersect, as the simulation was unaffected and collision detection

is the bottleneck of the implementation. With a divergence-free velocity field, self

intersections are due only to numerical error and are rare enough in practice to

not be noticeable, as long as the renderer can handle inside-out volumes in some

plausible way. We also disabled topology changes to simplify the algorithm; they

could, however, be introduced to reduce the number of triangles.

5.4 Generating fluid motion
Our surface tracking method can be used with any underlying vector field. We

use two separate methods for generating fluid motion: a grid-based fluid simulator

using FLIP advection, and a procedural animation system.

5.4.1 Eulerian fluid simulation

Our first method for generating fluid motion uses a staggered-grid fluid simulator

with FLIP advection as introduced to the graphics community by Zhu and Bridson

[ZB05]. We numerically solve the incompressible, inviscid Euler equations:

∂~u
∂ t

+(~u ·∇)~u = −∇p
ρ

+
~F
ρ

(5.3)

∇ ·~u = 0 (5.4)

for velocity ~u, and pressure p, where ρ is the density. Fluid motion is introduced

either by adding a buoyancy force ~F to grid nodes inside the smoke volume, or by

explicitly setting velocity values before pressure projection. The embedded surface

is treated as strictly passive, and is advected along with the grid velocities. We

outline the major steps of the algorithm, emphasizing in bold the steps involving

the triangle mesh surface.

1. Perform mesh improvement operations.
2. Handle mesh topology changes (optional).
3. Apply buoyancy or scripted forces to the grid.

4. Perform divergence-free velocity projection with appropriate boundary con-

ditions.

5. Interpolate velocity from the grid faces to the surface vertices.
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6. Integrate mesh vertices (with optional collision detection and resolu-
tion).

7. Advect grid velocity using FLIP.

We use this framework to simulate both smoke and dye, changing only the

forces introduced in step 3, and the final rendering set up.

5.4.2 Procedural fluids

Since the main contribution of this chapter is independent of the underlying dy-

namics, we also demonstrate our idea using a small toolkit of procedural methods.

We use the linear superposition of several fluid flow primitives to generate plau-

sible smoke without an Eulerian fluid simulator. We use vortex rings to generate

upward motion, divergence sources to simulate smoke dispersion, and curl noise

[BHN07] to add extra small-scale detail.

Vortex ring

We use a set of vortex rings to generate general upward motion. The potential

function of a vortex ring perpendicular to the y axis with center ~c, radius r, at a

point~x is given by

~ψ(~x) =
1

(r−d)2 +2rd
< x3,0,−x1 >,

where d = ‖x−c‖. The velocity at~x due to the ring is then the curl of this potential:

~vr(~x) = ∇×~ψ(~x)

Source

We add a divergent source with center~c and radius r. If d is the distance between

~x and~c, then the velocity imparted by this source is given by:

~vs(~x) = max(0,r−d)n(~x)
~x−~c

d
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where n(~x) is a spatially continuous scalar noise function such as Flow Noise

[PN01].

Curl noise

Curl noise uses a spatially and temporally continuous noise function to generate a

vector-valued potential function. We take the curl of this potential to generate a

velocity field:

~vn(~x) = ∇×~n(~x)

Total flow

We allow for arbitrarily many instances of each type of primitive, and assign a

user-defined weight to each instance. The velocity at any point in space is then the

weighted sum of all instances of all primitives:

~v(~x) = ∑
i

αi~vri(~x)+∑
j

α j~vs j(~x)+∑
k

αk~vnk(~x)

5.5 Results
We compare our surface tracking approach against the standard marker-particle-

based approach for tracking smoke. As mentioned above, the sheer number of

particles required for high-resolution rendering can occupy considerable storage

and network resources. Using our method, we can generate improved results for

the same data storage requirements. All simulations in this section were executed

on a single core of a PowerMac G5 2.0 GHz PPC with 2 GB of RAM.

5.5.1 Eulerian fluid simulation

We first compare results generated using a grid-based fluid simulation, as described

in section Section 5.4.1. Figure 5.1 shows a frame from an animation generated

using marker particles, and a frame generated using our surface tracking method.

For rendering, we use a simple ray tracer, assuming an exponential decay of light

transmittance inside the smoke volume, with no self-shadowing.

Assuming a triangle and a vertex require the same storage (a triple of 32-bit
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Figure 5.1: Frames from a smoke animation. The volume of smoke is tracked
with marker particles (left) and an explicit surface (right)

integers for triangles and a triple of single-precision floats for vertices), the total

animation of 500 frames was stored using just under 54 million of these 3D vectors.

To match this data storage requirement, we generated an animation using a total

of 54 million marker particles (summed over all frames). It took 78 minutes to

run the simulation using surface mesh tracking, compared to 25 minutes using

marker particles (not including render times). For a small factor longer running

time, we achieve significantly higher quality results with the surface approach.

We again stress that storage is often the critical limiting factor for film simulation

and rendering pipelines, thus we compare the two methods at roughly equivalent

amounts of storage.

Since our method uses a surface, we can achieve a smooth look even at very

high resolutions. Figure 5.2 shows an image cropped from a large, high-resolution

render of the surface, compared against the same frame rendered using marker

particles. To achieve comparable quality results that hold up at film resolutions

with marker particles, we would need vastly more data.

Our surface tracking method can also be used for modeling marker dye sus-

pended in a fluid. In this example, we introduce a spherical dye source with an
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Figure 5.2: A close-up image reveals the difference in quality between sur-
face meshes and marker particles.

associated downward force. No other forces are present. The simulation and sur-

face tracking ran in 35 minutes, and produced a total of 32 million triangles and 16

million vertices over 500 frames (48 million vectors). We ran the same simulation

using marker particles, which ran in 14 minutes and produced 47 million marker

particles over 500 frames, roughly equivalent to the amount of data produced using

our surface tracking method. Figure 5.3 shows a side-by-side comparison of the

two methods. Again, for the same amount of storage and only a small factor longer

running time, the surface mesh approach produces much higher quality results.

5.5.2 Procedural fluids

The procedural animation system described in Section 5.4.2 allows us to efficiently

generate a thick plume of smoke. A plume with 25k triangles is shown in Fig-

ure 5.4. We used a single-scatter model with self-shadowing in our ray tracer to

render this plume. Since the plume is nearly opaque, we can optimize the ray tracer

by taking only a few samples near the surface, and consider the volume deep inside

the plume as completely occluded. (In the next chapter, we demonstrate a surface

shader approach to rendering that achieves much of the same visual appearance for
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Figure 5.3: Dye in a volume of fluid modeled as a collection of particles
(left), and as a surface (right)

a fraction of the computational effort.)

We also use curl noise to generate motion on an open rectangular surface,

which represents the top surface of a volume of smoke. At render time, this surface

is extruded downward to generate a thick layer of foggy smoke (Figure 5.4). Since

we are only defining motion on the top surface, which contains just 7200 triangles,

the animation can be generated very efficiently.

5.6 Conclusion
We presented explicit surface meshes as an alternative to marker particles or grids

for simulating effects such as smoke and dye. We demonstrated that, per unit of

storage, this method offers an improvement in visual quality over using marker

particles. The continuous nature of our surface mesh eliminates graininess and

blur from rendering, while still resolving very thin sheets and strands. We tested

our method with a grid-based fluid simulator and a procedural animation system,

rendering with a ray-marching approach to volume rendering.

Since we do not model diffusion, the animation produced using our method

will have a characteristic cohesion. In particular, dye dropped in water will not
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Figure 5.4: A thick plume of smoke generated using an explicit surface em-
bedded in a procedural flow field (left). A thick layer of fog is modeled
using a single, open surface mesh (right).

appear to dissolve as it would if modeled using a density grid, nor will smoke dis-

sipate into the surrounding air. One could argue that in the absence of an actual

model for molecular diffusion or sub-grid-scale turbulence, this is a sign that our

method actually tracks the marker substance more accurately. However, in an artis-

tic context diffusion may be desirable, physical model or no. In Chapter 6, we will

introduce age-based blurring in the renderer to partially account for diffusion at

render time in a parallel, per-frame operation. We have also experimented with

activating topology changes in the surface tracking code, as well as varying the

aggressiveness of the mesh simplification operations, which tends to delete thin

volumes of dye or smoke. Investigating the effect of these parameters and trans-

lating them into meaningful, user-tunable values is another potential area of future

investigation.
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Chapter 6

Linear-time smoke animation
with vortex sheet meshes

6.1 Introduction
Tantum videt, quantum computato: as much as one sees, that much one should

compute. While the last decade and a half has seen a revolution in the quality of

cinematic smoke animation through the use of physical simulation, scalability re-

mains a serious impediment to high quality real-time smoke effects and interactive

artistic design. To achieve ∼ n× n visual detail in 2D renders, all prior methods

have needed at least O(n3) time per step, due to the simulation or the rendering or

both. In this chapter we develop a purely Lagrangian vortex sheet model of smoke

simulation, and argue that in the most useful asymptotic limit it captures all essen-

tial dynamic and visual detail in a closed 2D surface. We discretize the model with

an adaptive dynamic triangle mesh, implement time integration using an optimal

linear-time Fast Multipole Method (FMM), and render the result at interactive rates

— computing only what is seen. Additionally, our method handles arbitrary no-

stick moving solid boundaries and provides output for more sophisticated offline

rendering.

Previous smoke simulation methods in graphics can loosely be divided between

velocity-pressure formulations and vorticity approaches. The classic example of a

velocity-pressure solver is Stam’s Stable Fluids approach [Sta99]: this requires
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an n3 grid of the volume, and even with an optimal linear-time multigrid solver

for the pressure projection, is an order of magnitude more costly than the desired

O(n2) rendered output. Vortex methods use a much richer representation whereby

in principle many fewer elements (such as our vortex sheet of O(n2) triangles)

can replicate the same detailed dynamics. However, so far in graphics the solvers

hit a simulation bottleneck when calculating velocity from the vorticity and solid

boundary conditions, resulting in a dense n2×n2 matrix solve which can be as bad

as O(n4) storage and O(n6) run-time using LU factorization. Prior vortex methods

also have used simpler volumetric soot particle tracking for providing output to

the renderer, which introduces another expensive O(n3) bottleneck. For film visual

effects, this strains the file system and network capacity in particular, as simulation

is generally run separately from rendering, and so all particle data must be stored

and transferred to the renderer.

Our basic model in this chapter treats air as an incompressible inviscid fluid

with the Boussinesq buoyancy approximation,

∂~u
∂ t

+~u ·∇~u+ 1
ρ

∇p = α~g (6.1)

∇ ·~u = 0 (6.2)

where α~g is the buoyancy force, with α = 0 in the ambient clear air, and α in the

smoky region depending on the ratio of smoke temperature to ambient temperature

as well as the density of soot particles. At solid boundaries we take the no-stick

boundary condition,

~u · n̂ =~usolid · n̂, (6.3)

and at infinity the far-field condition ~u = 0. We assume ~u = 0 initially. Without

viscosity, the vorticity ~ω = ∇×~u remains zero apart from where buoyancy creates

it; vorticity is advected and stretched by the flow, but doesn’t diffuse away from

smoke/temperature gradients.

As in the previous chapter, we ignore molecular diffusion. Under the assump-

tion that smoke sources have uniform temperature and soot concentration, and also
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Figure 6.1: We represent smoke with an adaptive triangle mesh both for
linear-time simulation, as a vortex sheet, and linear-time interactive ren-
dering as the boundary of the smoky region. Here a deforming torus
influences the buoyant smoke flowing around and through it.

using the incompressibility condition, the air is then precisely divided into uni-

formly clear and uniformly smoky regions. This in turn implies buoyant vorticity

is only generated at the surface separating the two, where α jumps in the normal

direction, hence all vorticity is concentrated in that surface, making a vortex sheet.

As Stock et al. show [SDT08], the vorticity is further constrained to remain tangent

to this sheet — in section 6.3, we show that our discretization identically enforces

this constraint.
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6.2 Related work
Much of the previous work related to smoke animation was covered in the previ-

ous chapter (see Section 5.2). The important summary is that many contemporary

smoke simulation methods use a volumetric grid or tetrahedral mesh, which have

n3 complexity and storage requirements. Losasso et al. improved the scalability

somewhat with the replacement of the uniform grid by an octree structure, but

adaptivity in velocity-pressure formulation is difficult as much of the volume must

still be finely gridded for adequate behaviour [LGF04]. Other fluid solvers (e.g.

[Exo11]) only run a solve on a sparse tiled grid instantiated in a bounded envelope

around the smoke, but need a substantial envelope to approximate an unbounded

domain, and run at full volumetric resolution inside the smoke, likewise limiting

scalability.

Vortex methods for fluid dynamics were developed during the 1980s as an ef-

ficient and high-order, purely Lagrangian method of numerically solving the Euler

equations for fluid flow [BM82, AG85]. Subsequent work was done on developing

viscous vortex methods for the Navier-Stokes equations and semi-Lagrangian con-

texts [CK00]. Though the grid distortion in fully Lagrangian vortex methods makes

them less useful for scientific application, their efficiency in preserving rotational

flow makes them appealing for fluid animation.

In computer graphics, early 2D simulations discretized vorticity on a grid or

used vortex-in-cell methods, advecting Lagrangian parcels of vorticity through the

domain but relying on a grid-based Eulerian solver [YUM86, CMTM94, GLG95].

Park and Kim [PK05] introduced a fully Langrangian vortex particle method, us-

ing the Biot-Savart formula to compute velocity on the particles without a grid.

Recently, Weißmann and Pinkall [WP10] have demonstrated a complete vortex

filament method, with adaptive filaments. Both approaches discretize solid bound-

aries with vortex sheets and rely on static geometry to enable precomputation for

efficiently handling boundary conditions. In comparison, our linear-time approach

can handle arbitrary moving solid boundaries, as demonstrated in section 6.4.

Several papers have used vortex primitives to augment Eulerian fluid simu-

lations, including vortex particles [SRF05] and Eulerian vortex sheets [KSK09].

Concurrent with this work, Pfaff et al. have introduced a Lagrangian vortex sheet
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method for augmenting an Eulerian fluid solver [PTG12]. Their vortex sheet dis-

cretization is similar to the one presented in this chapter; however their vortex sheet

interactions are purely local, with global flow handled by an underlying grid-based,

Eulerian fluid solver. Their use of compact kernels avoids the need for FMM, but

the reliance on the grid-based solver limits scalability and complicates the simula-

tion process.

Boundary integral equations were initially developed a century ago as a tool for

proving the uniqueness and existence for solutions to PDEs, particularly Laplace’s

equation. They have had a modern renaissance as effective numerical methods for

solving a variety of PDEs [GGM93]. This has been primarily motivated by the

construction of effective summation methods such as the FMM which allows rapid

solution of the dense linear equations resulting from the numerical treatment of

many integral equations.

6.3 The vortex sheet mesh
Our discretization of the vortex sheet closely follows Stock et al. [SDT08] and Pfaff

et al. [PTG12] (though unlike their methods which rely on a 3D background grid

for bulk velocity computation, we directly compute it in linear time on the surface

itself with FMM, including arbitrary solid boundaries, as we will see in section

6.5). In particular, we discretize the vortex sheet surface with a triangle mesh, and

store circulation values, Γi, on each mesh edge i. The per-triangle vortex sheet

strength is then:

~γp =
1
ap

∑
j
~e jΓ j, (6.4)

for triangle edges j, where ~e j is the vector between the end points of edge j, and

where ap is the area of triangle p.

The vorticity on a triangle is then computed as required with the formula:

~ωp = ap~γp = ∑
j
~e jΓ j. (6.5)

for triangle edges j, where ~e j is the vector between the end points of edge j.

The main advantage of using these scalar circulations as our fundamental variable
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is that they are conserved along particle paths. The vorticity stretching is thus

implicitly handled by the stretching of the vortex sheet mesh. Recomputing the

vortex sheet strength when needed for the velocity update is done according to

(6.5). Using (6.5) also guarantees that ~ω is tangent to the triangle plane.

We apply a buoyancy force α~g = 〈0,α,0〉 to each triangle as ∆~ωi = α~g×~niAi

for triangle normal ~ni and area Ai. We then compute the change in circulation for

each triangle edge by solving the overdetermined system of equations 6.5 for Γ

as suggested by Stock et al. [SDT08]. We solve this in the least-squares sense.

We note that recomputing the total edge circulations in this way would introduce

numerical damping manifesting as undesirable loss of vorticity, so we only solve

for the change in edge vorticity due to the buoyancy force.

With no solid boundaries, the velocity at any point in the domain can be com-

puted explicitly with the Biot-Savart law, with S being the vortex sheet surface, and

K being a (mollified) fundamental solution to Laplace’s equation:

~ufluid(~x) =
∫

S
∇K(~x−~y)×~ω(~y)dy (6.6)

This is discretized on a mesh surface using midpoint quadrature as:

~ufluid(~x)≈∑
j

∇K(~x−~c j)× ~ω j (6.7)

where~c j is the barycentre of triangle j, and ~ω j is the constant vorticity on triangle

j.

Since we require the velocity at each vertex, and every velocity evaluation de-

pends on the entire surface, this direct summation has computational complexity

O(M2) in the number of mesh vertices. Later in this chapter we will discuss using

the Fast Multipole Method to achieve an approximation which runs in O(M) time.

The gradient of the fundamental solution ∇K(~x−~y) is singular when~x =~y and

becomes large as~x approaches~y, therefore a mollified approximation is often used.

Our implementation follows Beale and Majda’s form [BM85]:

∇K̃(~x−~y) =−(~x−~y)1− e(r/β )3

r3 , (6.8)
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where r = ||~x−~y||, and β is a mollification parameter.

As our mesh evolves due to this self-imparted velocity, it naturally expands and

curls up. Without some form of surface mesh refinement, the simulation would

quickly lose accuracy and visual appeal. On the other hand, we wish to keep the

number of mesh elements as low as possible, to keep the computational cost down.

Therefore, removing small elements (recoarsening) is also desirable. For mesh

refinement and recoarsening operations, we use the open-source El Topo surface

tracking library [BB09c]. This library also has the ability to perform changes in

topology, such as merging and pinching. By merging nearby surface patches, we

can eliminate very thin sheets, thereby further reducing the total number of mesh

triangles while still maintaining a good quality simulation.

6.3.1 Circulation redistribution

El Topo’s surface remeshing operations add and remove edges. As we are storing

scalar circulation values on the edges, we must update these values as the mesh

connectivity changes. One way of doing so is to compute per-triangle vorticity val-

ues using equation 6.5, performing the remeshing operations, then solving equation

6.5 for Γ in a least-squares sense. However, we have found that repeatedly solving

this overdetermined system leads to diffusion of vorticity.

An alternative is to explicitly update the edge circulation values using some

rules of thumb when a remeshing operation is performed. Though heuristic, we

have found these rules reduce vorticity diffusion as compared to repeatedly pro-

jecting back and forth between edge and triangle values. Of the local remeshing

operations available in El Topo, we use only edge splitting, edge collapsing, and

mesh merging via deletion and creation of new triangles.

Edge split

As shown in figure 6.2, splitting edge AB with opposite vertices C and D introduces

a new vertex E. We store the circulation value on the original edge AB, and assign

it to both of the new edges:

ΓAE := ΓEB := ΓAB. (6.9)
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Figure 6.2: Edge split operation. New edges AE and EB are assigned circu-
lation from original edge AB.

The two other new edges, CE and ED, receive no circulation. This ensures that

the sum of vorticities over the new triangles (by equation 6.5) equals the sum of

vorticities on the new triangles:

~ωABC +~ωDBA = ~ωAEC +~ωCEB +~ωDBE +~ωDEA (6.10)

Edge collapse

When collapsing an edge, we simply allow the circulation on that edge to disappear

from the system. Since we collapse only very short edges, the loss in circulation is

generally minimal.

Mesh merge

El Topo merges surface meshes by removing two nearby edges and their inci-

dent triangles, and introducing new triangles, forming a neck between the surfaces

[BB09c]. From the new edges introduced, we pick the two edges whose associated

vectors (difference of end points) best match the removed edges, i.e. finding new

edges i and j such that

||~ei−~e0||+ ||~e j−~e1||
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Figure 6.3: Edge merge operation. Left: The red and green edges and their
incident triangles are removed from the mesh, leaving two quad-shaped
holes. Right: The resulting holes are zippered with new triangles. Sup-
pose the red and green edges in the right diagram are the closest matches
to the corresponding red and green edges in the left diagram (comparing
Euclidean distances of associated edge vectors). These new edges are
then assigned the circulation values from the deleted edges.

is minimized, where edges 0 and 1 are the removed edges. We assign the original

edge circulations to these “best match” new edges (see figure 6.3).

6.4 Solid boundaries
Boundary conditions for Lagrangian vorticity-based fluid animation have generally

been constructed by defining a vortex sheet on the surface of the solid boundaries.

Park and Kim [PK05] implemented boundary conditions in 3D by enforcing the

tangential and normal components of the fluid velocity to be equal to those of the

boundary using a vortex sheet, which resulted in an over-determined matrix solve.

To avoid finding an optimal solution each time-step, they restricted themselves

to a simple static boundary for which they precomputed a pseudo-inverse, requir-

ing only a matrix-vector multiplication instead of a matrix solve. Weißmann and

Pinkall [WP10] defined their vortex sheet in terms of a scalar potential, avoiding

the extra dimensionality of the tangential vorticity field. They regularized the re-

sulting matrix and also precomputed a factorization, again limiting their domain to

a single boundary with static geometry.

We incorporate solid boundaries by adding an irrotational, divergence-free vec-
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tor field that corrects the boundary velocity induced by the vorticity to account for

solids. To do so we define the irrotational flow by the gradient of a scalar potential

function Φ that satisfies Laplace’s equation ∇2Φ = 0 in the domain. The potential

due to a single point charge with value σ , at point~y, is:

σ

4π|~x−~y|
. (6.11)

We represent Φ by a continuous distribution of point charges {σ(~y)|y ∈ S}
where S is the boundary of our domain:

Φ(~x) =
∫

S

σ(~y)
4π|~x−~y|

dy. (6.12)

This representation of Φ is called the single layer potential. The normal derivative

of the single layer potential has a discontinuity across the domain boundary. When

satisfying boundary conditions, this leads to the following Fredholm integral equa-

tion of the second kind for σ [Kel29, Hes72]. Given the normal derivative f of Φ

on the boundary we have:

f =−σ(~x)/2+
∫

S
σ(~y)

∂

∂nx

1
4π|~x−~y|

dy, ~x,~y ∈ S. (6.13)

Fredholm equations of the second kind are integral equations consisting of the

identity operator plus an integral operator that is ”compact”. While the definition

of compact requires an understanding of functional analysis and is therefore be-

yond the scope of this chapter, an integral operator is compact if the multiplicative

terms in the integral are themselves square integrable, which is the case in (6.13).

The solvability of Fredholm equations of the second kind can be determined by

examining the null-space of the equation, similar to determining the solvability of

linear systems. For smooth boundaries, (6.13) has only a trivial null-space and

thus its solution exists and is unique for any right hand side f . In addition, solvable

Fredholm equations of the second kind tend to lead to well conditioned numer-

ical approximations. While our description of integral equations is cursory and

incomplete, there exists ample mathematical literature for the interested. Solving

(6.13) for σ and evaluating Φ from equation (6.12) satisfies the exterior Neumann

98



problem for Laplace’s equation,

∇
2
Φ = 0 (6.14)

∂

∂n
Φ(~x) = f , ~x ∈ S. (6.15)

Let ~ufluid be the velocity due to the fluid, and ~usolid be the velocity of the solid

object. Setting f = (~usolid−~ufluid) ·~n, solving for potential Φ, and calculating the

gradient yields a potential flow which will cancel the normal component of velocity

at the solid boundary, effecting a free-slip, no-entry boundary condition.

The advantages of this scalar formulation over the previously described vortex

sheet boundary implementations are that it is solvable for arbitrary smooth solid

boundaries and is particularly amenable to numerical solutions based on iterative

matrix solvers and fast summation methods. Integral equations for implementing

boundaries based on vortex sheets are more difficult to implement, and though one

can derive Fredholm integral equations of the second kind for finding a boundary

vorticity [CK00], these formulations become singular if the domain is multiply-

connected.

Discretizing (6.13) with midpoint quadrature yields the following equation for

triangle i:

fi ≈−σi/2+∑
j

σ j
∂

∂ni

1
4π|~ci−~c j|

A j (6.16)

Directly evaluating this summation for all triangles yields an M× M linear

system where M is the number of triangles on the solid boundary. In practice,

this matrix is very well-conditioned; for such problems, iterative Krylov solvers

such as BiCGSTAB have been observed to converge in O(1) iterations, resulting in

total complexity of O(M2) for the solid solve. We can additionally accelerate this

to O(M) by using the FMM to compute the matrix-vector product in the iterative

solve rather than explicitly constructing the system.

Once we have solved for a density σ , we can compute Φ as in equation (6.12).

The gradient of Φ is then evaluated as:

∇xΦ(~x) =
∫

S

−σ(~y)
4π|~x−~y|3

(~x−~y)dy (6.17)
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The midpoint quadrature rule for this integral yields:

∇xΦ(~x)≈∑
j

−σ jA j

4π|~x−~c j|3
(~x−~c j) (6.18)

We use this to modify our fluid surface vertex velocities:

~ufinal(~x) =~ufluid(~x)+∇Φ(~x) (6.19)

6.5 Fast Multipole Method
The Fast Multipole Method (FMM), initially introduced by Greengard and Rhoklin

[GR87], reduces the asymptotic complexity of the N-body problem from O(N2) to

O(N). The FMM is used in two different areas of our fluid simulation. Computing

the velocity from the vorticity using the Biot-Savart law can be accomplished using

an FMM for each component of the vorticity. In addition, computing the matrix

multiply in the iterative solver for the solid-boundary potential flow can be reduced

from O(M2) to O(M) by using the FMM to approximate Φ:

Φ(~xi) = ∑
j

σ j

|~xi−~x j|
, i, j = 1..N, (6.20)

and its gradient,

∇Φ(~xi) = ∑
j

−σ j(~xi−~x j)

|~xi−~x j|3
(6.21)

for a set of points~xi and “charges” σi. Our 3D FMM implementation follows that

described by Cheng et al. [CGR99].

Mild controversy surrounds the FMM’s claim to linear complexity, since a

straightforward computation of the octree data structure required by the FMM is

O(N logN). We compute our octree in O(N) complexity. To do so, we specify

beforehand the maximum depth of the octree. We then compute unsigned integer

coordinates for each particle that correspond to the grid cell of the finest octree

subdivision that contains the particle. A single key is then created by interleaving

the bits of each of the three coordinates creating a 3D Morton ordering of the oc-

cupied grid cells. We sort the particles by these interleaved keys using a radix sort
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Figure 6.4: Simulation time per frame for computing velocity via the Biot-
Savart law, for both the direct method and Fast Multipole Method

in O(N). The result of the sort is that the particles are arranged in a linear octree,

from which the hierarchical octree structure can be constructed in O(N).

The log-log plot in figure 6.4 shows the order of complexity for computing

velocity due to vorticity using the direct summation method vs. the FMM. Perfor-

mance plots for the solid solver are shown in figure 6.5.

6.6 Rendering
Our interactive-rate smoke rendering is accomplished through a set of OpenGL

shaders, which compute the optical depth of the smoke volume. We then apply
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Figure 6.5: Simulation time per frame for computing the single layer poten-
tial on a sphere using BiCGSTAB, computing the matrix multiply with
both the direct method and Fast Multipole Method. Note that the di-
rect method is nearly exactly O(N2) showing the O(1) convergence of
BiCGSTAB

a zero-albedo absorption model based on this depth, taking into account the solid

objects in the scene. More sophisticated real-time smoke rendering methods do

exist (cf. [ZRL+08]), and exploring self-shadowing and light scatter for triangle

mesh models in real time is an area of potential future work.

As Brochu and Bridson [BB09c] point out, for high quality cinematic smoke

rendering in a typical film pipeline, the critical bottleneck is often the load on the

file system and network from tracking smoke per frame with hundreds of millions

of soot particles, or similarly high resolution grids. The surface mesh representa-
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tion is vastly more efficient for capturing the volumetric bulk of the smoke, and

as Brochu and Bridson note can be directly ray-traced for self-shadowing smoke

rendering. We extend their idea noting that the interior of the surface mesh, at

render time, can easily be rasterized into a lower resolution 3D texture for scat-

tering computation, at least using a box filter via polygon clipping; if this grid is

aligned with the light source or the view, especially efficient calculation of single-

scattering is possible. The direct render can use triangle rasterization of the mesh,

storing depths in an A-buffer, looking up into the 3D texture for smooth lighting

calculations. Going even further, we can track the age of mesh elements since

their emission from a source, and splat this into another render channel to provide

age-proportional blurring, thus giving the visual effect of smoke dissipation from

turbulent mixing or diffusion at render time, for every frame in parallel. Figure 6.6

illustrates the effect of an image-space age-dependent blur.

6.7 Results
Our FMM-accelerated vortex sheet solver was implemented in C++, using El Topo

for surface tracking, and tested on several Linux and Mac OS X computers. Figures

6.4 and 6.5 show that our tests have empirically near-linear time complexity. Since

we do not rely on precomputing the solution to the exterior Neumann problem, we

can easily handle non-rigidly deforming solid objects, as shown in figure 6.1.

Our interactive smoke renderer implemented in GLSL runs at 4 FPS for 168K

triangles on an AMD Radeon 6770M with 512 MB of memory (shown in figure

6.1). Our proof-of-concept software renderer uses CPU-based volumetric rasteri-

zation and self-shadowing to produce the images shown in figure 6.6. These images

were produced from 126K triangles at 1600×1200 resolution with a 167×125×
82 shadow texture in around 5.5 s on a single thread of a 2.3GHz Intel Core i7

CPU, including all file I/O.

6.7.1 Mesh simplification

As mentioned in section 6.3, remeshing operations are crucial for allowing the sur-

face mesh to move freely while keeping the number of triangles manageable. The

effectiveness of edge splitting and collapsing to control the explosion of mesh el-
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Figure 6.6: Our proof-of-concept volume renderer produces, from left to
right on the top row, an alpha channel from the smoke mesh, a scattering
channel with self-shadowing, and an image-space age channel. Below
on the left is a sharp composite of the first two, and below on the right
includes an age-dependent blur, simulating diffusion in image-space at
render-time.
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ements has been shown by Stock et al. [SDT08] and others, but we also make use

of El Topo’s topology change operations — specifically the merging and pinching

of mesh surfaces. We have found this to be an effective tool in mitigating the ex-

plosion of surface area (and number of mesh elements), which is a known problem

in vortex sheet simulations.

As an example, we ran a simulation twice, once with topology changes en-

abled, and once with these changes disabled. The number of triangles per time

step is shown in figure 6.7. Note that without topology changes enabled, the num-

ber of triangles grows exponentially, but with aggressive topological merging and

splitting, the number of triangles remains bounded (see the accompanying video).

Pfaff et al. [PTG12] also address this explosion in the number of mesh ele-

ments. Their approach identifies triangles which are deep within the volume of

smoke (using a grid-based signed distance field), or otherwise occluded from the

camera view, and marks them for deletion. By contrast, our approach uses only

Lagrangian mesh-based operations, without additional structures or heuristics.

6.8 Future work
We have demonstrated that interactive-rate, near-cinematic-quality smoke simula-

tion and rendering is within reach, but there are many avenues to explore further:

• Code optimization and parallelization of the FMM solver to achieve interac-

tive simulation rates.

• Porting our software A-buffer rasterizer to run self shadowing and diffusion

in GPU hardware.

• View-dependent, level-of-detail mesh refinement, coarsening, and topology

changes.

• Incorporating the creation of vorticity from solid interactions (vortex shed-

ding).

• Simulation of flame front propagation to achieve vortex sheet based fire sim-

ulation, combined with real-time lighting techniques on the rendering side.
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Figure 6.7: Geometry creation when simulating a smoke plume without
topological changes (Without TC) and with topological changes (With
TC).

• Simulation of ocean wave free surfaces — much of our vortex sheet work

could apply to rough and vast simulations, which are currently infeasible

with volumetric simulation methods.
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Chapter 7

Matching fluid simulation
elements to surface geometry and
topology

7.1 Introduction
One of the most visually compelling aspects of liquids is the variety of complex

thin sheets and droplets that arise during splashing. However, these remain among

the most difficult features to simulate plausibly and accurately with existing tech-

niques. Such detailed behaviour is extremely computationally expensive to resolve

because of the tremendous grid resolution required for both the fluid solver and the

surface tracking mechanism.

Recent advances in explicit surface tracking with triangle meshes [WTGT09,

BB09c, Mül09] have made feasible the geometric representation and manipulation

of small features, without the loss of detail exhibited by implicit surface methods.

However, when the surface is coupled to a standard Eulerian simulator, the liquid

volume must first be resampled onto the simulation mesh or grid to provide geo-

metric information for boundary conditions. As this resampling process typically

destroys small details, they are invisible to the fluid solver and cannot be advanced

appropriately. This can lead to a variety of visible artifacts including lingering sur-
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Figure 7.1: Coupling an explicit surface tracker to a Voronoi simulation mesh
built from pressure points sampled in a geometry-aware fashion lets us
capture very fine details in this sphere splash animation that uses only
314K tetrahedra.

face noise, liquid behaving as if it were connected when it is not (and vice versa),

and thin features simply halting in mid-air because the simulator fails to see them

[BGOS06, KSK09]. When combined with surface tension forces, noisy sub-mesh

details can also severely hamper stability if they are not artificially smoothed out.

We will address these problems by constructing a simulator that “sees” every

detail in the explicit liquid surface. We carefully generate pressure sample points

near the liquid surface, build a Voronoi simulation mesh from these points and a

background lattice, and apply a ghost fluid/finite volume pressure discretization

which captures the precise position of the liquid interface. We couple this with a

semi-Lagrangian advection scheme and a new approach to surface tension, arriving

at a complete liquid simulator.

In summary, our key contribution is coupling an explicit surface tracker to a

Voronoi-based liquid simulator with:
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1. a pressure sample placement strategy that captures the complete liquid sur-

face geometry,

2. an accurate surface tension model combining mesh-based curvature esti-

mates and ghost fluid boundary conditions,

3. embedded free surface and solid boundary conditions adapted to Voronoi

cells, avoiding the need for more onerous conforming tetrahedral mesh gen-

eration,

4. and a new velocity interpolant over unstructured meshes.

The practical benefits of such a system include:

1. improved animation of detailed liquid features, including very thin sheets,

tendrils and droplets,

2. elimination of surface noise in explicit surface tracking without non-physical

smoothing,

3. more detailed and less damped surface tension effects,

4. and faster semi-Lagrangian advection on unstructured meshes without in-

creased dissipation.

7.2 Related work

7.2.1 Fluid animation on unstructured meshes

The use of unstructured and semi-structured meshes has a long history in compu-

tational fluid dynamics, and has gained traction in computer animation as well. An

important reason for their popularity is that careful control of the mesh geometry

can often simplify the discretization or improve accuracy. For example, matching

the simulation mesh to solid walls makes the no-flow boundary condition trivial:

just set the normal velocity on the boundary faces to zero. Adaptivity can also

be easily introduced by grading mesh elements as desired. These ideas have been

studied extensively in the context of finite volume methods for tetrahedral meshes
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[FOK05, FOKG05, KFCO06, CGFO06, ETK+07, WBOL07, CFL+07], and as

a result, many of the features present in standard grid-based solvers are now sup-

ported on tetrahedra, including free surfaces and implicit coupling to dynamic rigid

and deformable objects. Work by Batty et al. [BXH10] augmented this approach

with embedded boundaries [ENGF03, BBB07], to improve free surface accuracy

and reduce the complexity of remeshing. Our method extends these advantages to

Voronoi meshes.

In a related approach, Sin et al. [SBH09] developed a particle-based method

that solves a finite-volume pressure projection on a Voronoi diagram generated

from the set of liquid particles. An advantage of this approach is that the pressure

degrees of freedom are directly tied to the number of particles, so there can never

be a resolution mismatch between the surface geometry and the simulator. This

idea motivates the work in this chapter.

7.2.2 Surface resolution vs. simulation resolution

Most of the earliest level-set-based liquid animation papers [FF01, EMF02] used

one level set sample per pressure sample (i.e., per grid cell), presumably to avoid

resolution inconsistencies. Goktekin et al. [GBO04] experimented with using a

double-resolution level set, which improved volume conservation while introduc-

ing slight artifacts. Bargteil et al. [BGOS06] similarly coupled their octree-based

semi-Lagrangian contouring surface tracking method to a regular grid fluid simu-

lator. Moreover, they explicitly discussed potential artifacts due to this resolution

mismatch, including surface details or noise being erroneously maintained and the

simulator interpreting disconnected fluid regions as connected. Similarly, Kim et

al. [KSK09] coupled a high resolution particle level set surface to a low resolution

ghost-fluid-based liquid simulator. To ensure that all liquid geometry is captured

by the pressure projection, their method resamples the high resolution level set

onto a new level set at the grid resolution, after conceptually inflating it. This en-

sures that the resampled surface completely encloses the original so that no liquid

components are missed. However, this can exacerbate other resolution mismatch

artifacts, since liquid components behave as though they are half a cell-width larger

than they appear visually. To reduce the retention of sub-grid surface noise in the
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high resolution surface, Kim et al. also smooth the surface by applying artificial

diffusion.

Mismatched resolutions have also been applied in embedded deformable object

simulation, such as in work by Wojtan & Turk [WT08]. They used a high resolu-

tion mesh surface coupled to a low resolution finite element solid simulator. This

approach is often quite useful for solids, because solids are generally expected to

maintain their surface details over time. Forcing the simulation mesh to have the

same topology as the high resolution embedded surface mesh can also improve

realism [TSB+05, NKJF09].

Terashima and Tryggvason [TT09] introduced a method for coupling the ghost-

fluid method [FAMO99] on a Cartesian grid with an explicit surface tracker, de-

scribing an approach for extrapolating surface normals from the surface mesh onto

the grid.

Müller [Mül09] introduced a liquid simulation coupled with an explicit surface

tracking method, using an enriched set of marching cubes templates on a regular

grid to rebuild the surface mesh at each time step. This ensures the simulation grid

has the same level of detail as the surface. Wojtan et al. [WTGT09] use a similar

approach, but reconstruct the surface only on grid cells where the surface topology

is more complex than the implicit grid representation. This approach maintains

surface detail smaller than the scale of a grid cell; they do not specifically handle

these small details with simulation, but since their simulation treats a cell with any

geometry as liquid, the surface is advected in a plausible way.

In work developed concurrently with the publication of this chapter, Wojtan et

al. [WTGT10] have also addressed the sub-grid-scale detail problem with a dif-

ferent, somewhat complementary approach: simplifying the surface to match the

resolution of the simulation, rather than adapting the simulation to match the sur-

face.

7.2.3 Surface tension

Approaches to surface tension generally fall into two categories. The first com-

prises methods that apply surface tension as a body force restricted to a region

around the interface through the use of a smeared delta function [BKZ92, HK03,
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ZYP06, WTGT09]. Methods in the second category apply the surface tension force

discontinuously at the interface, typically by integrating it as a boundary condition

on the pressure projection step. This approach is exemplified by the ghost fluid

method and related approaches [ENGF03, HK05, HSKF07], and has been shown

to provide more realistic results.

Surface tension models can also be compared in terms of how they actually

compute the surface tension force itself. In level set-based schemes, finite dif-

ferences on the level set values are often used to estimate mean curvature: how-

ever, this has been shown to be rather inaccurate without careful modification (e.g.,

[Shi07]) and cannot capture small details. If a surface mesh is available, a more

accurate approach is to compute surface tension forces using either mesh-based

curvature operators (e.g., [MDSB02]), or, as proposed recently, as a physical ten-

sion on the surface mesh geometry [TBE+01, PN03, Bro06, WT08].

Concurrent with the work in this chapter, Thürey et al. [TWGT10] introduced

an approach to simulating surface tension which uses explicit surface meshes. They

set boundary conditions for the pressure projection by fictitiously advecting the sur-

face mesh forward according to volume-preserving mean curvature flow, following

ideas by Sussman and Ohta [SO09].

7.3 Algorithm outline
We simulate incompressible, inviscid liquids according to the Euler equations:

d~u
dt

= −(~u ·∇)~u− ∇p
ρ

+
~F
ρ

(7.1)

∇ ·~u = 0. (7.2)

Our numerical solution employs semi-Lagrangian advection and an embedded-

boundary finite volume pressure projection. We generally follow the tetrahedral

scheme of Batty et al. [BXH10] with modifications to use Voronoi meshes in-

stead. Like Sin et al. [SBH09], we place pressure samples on the vertices of a

Delaunay tetrahedral mesh, corresponding to the sites of the dual Voronoi diagram

(Figure 7.7a and Figure 7.7b). Normal components of velocity lie on the faces of

the Voronoi cells, so that the velocity sample is parallel to the line segment con-

112



necting the pressure samples in the Delaunay mesh. This configuration requires a

slightly different velocity reconstruction compared to previous methods, but semi-

Lagrangian advection is otherwise straightforward.

For front tracking, we used the El Topo code developed in Chapter 3, in partic-

ular using its triangle mesh surface to determine the location of pressure samples

for our Voronoi simulation mesh.

Purely explicit front tracking algorithms generally use mesh refinement and

coarsening to maintain a high quality discretization as the surface deforms. As

described in Chapter 3, El Topo uses a sequence of edge subdivision, collapse and

flipping operations, combined with null-space Laplacian smoothing. While these

operations change mesh connectivity, they are designed to be geometry-preserving.

For example, the smoothing moves vertices only in the null space of the local

quadric metric tensor [GH97], as suggested by Jiao [Jia07]. If the vertex lies on a

locally smooth patch it is moved in the plane tangent to the surface, but if on a ridge

or corner it is moved only along this line. Therefore, sharp features are preserved,

allowing the present algorithm to handle them physically.

The solver runs through the following stages each time step:

1. Advect the explicit surface with El Topo.

2. Generate a new simulation mesh as the Voronoi diagram of a lattice with

extra samples near the liquid surface (Section 7.4).

3. Advect velocities onto the new mesh with semi-Lagrangian advection (Sec-

tion 7.6).

4. Add external forces—typically just gravity.

5. Solve for the embedded-boundary pressure projection on the Voronoi mesh,

including surface tension forces (Section 7.5).

7.4 Mesh generation
An advantage of a Voronoi-based discretization is the freedom to explicitly choose

pressure sample locations, which is critical for accurate ghost fluid free surface
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Figure 7.2: Left: Even with the ghost fluid method, regular sampling may
miss surface details which do not align with the simulation mesh, such
as this wave crest. Right: Adaptive samples (shown in red) placed on ei-
ther side of each mesh vertex ensure that all geometric detail is resolved
by the simulation.

conditions as the signed distance at these samples communicate the surface geom-

etry to the solver. We can visualize the solver’s “knowledge” by contouring this

level set: Figure 7.2 and Figure 7.3 illustrate how uniform sampling may fail.

Careful pressure sample placement with respect to the surface helps in three

important ways. First, we can inform the solver of all local geometric extrema,

allowing the physics to act upon them correctly. This eliminates the accumulation

of erroneous surface noise without requiring non-physical smoothing; this is espe-

cially vital for surface tension where spurious noise affects the curvature estimates

and induces disastrously large yet futile compensating velocities that destabilize the

simulation. Second, we can ensure that the solver sees the correct surface topology

so that the physics responds to merging or splitting only when the surface mesh

itself merges or splits. Lastly, grid-scale features often disappear and reappear in

regular grid sampling, from the perspective of the solver, as the surface translates

through the grid. By specifically placing points inside such small features, we

ensure they cannot be missed.

Comparison to Adaptive Lattices: The brute-force approach to these issues

is to locally refine using octree grids or graded BCC lattice tetrahedra to capture

smaller features. However, this scales poorly since many of the extra samples yield

little benefit, while incurring memory and computational overhead. Furthermore,

there remains no guarantee that features below the smallest grid cell size will be
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Figure 7.3: Left: The input surface geometry. Centre: The resulting sur-
face after resampling onto a regular lattice simulation mesh. Note the
spurious topology change, rounding of sharp features, aliasing of high
frequency details, and the complete disappearance of one small fluid
component due to poor placement relative to the mesh samples. Right:
The resampled surface after adding geometry-aware sample points to
the simulation mesh; the result is much more consistent with the in-
put. (Mesh sample locations are indicated by points, colored blue when
inside, red when outside.)

captured. By choosing sample points to precisely capture the geometry rather than

naı̈vely increasing sample density, we can guarantee sampling of features which

would require potentially orders of magnitude more samples with pure adaptive

lattices.

Comparison to Conforming Tetrahedra: While the tetrahedral method of

Chentanez et al. [CFL+07] also builds a volumetric mesh that attempts to respect

the liquid surface, it matches boundary faces rather than positioning pressure sam-

ples. This is considerably more difficult than non-conforming Delaunay tetrahe-

dralization, and generally requires more Steiner points, worse-shaped tetrahedra,

and/or the loss of the Delaunay property. Since our method uses embedded bound-

ary conditions (described in Section 7.5), we do not require conforming elements.

(Note that this advantage is shared by the method of Batty et al. [BXH10].) More-

over, the position of pressure samples plays a more important role in free surface

conditions than the position of element faces. As accuracy requires that tetrahedral

schemes store pressures at circumcenters [KFCO06, BXH10], and since circum-

centers often lie outside their associated tetrahedra, even filling a thin feature with

conforming tetrahedra provides no guarantee that its interior will be sampled at all.
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7.4.1 Pressure sample placement strategy

We begin by choosing a characteristic length scale for the simulation, ∆x, and con-

figure El Topo to try to maintain triangle edge lengths in the range [1
2 ∆x, 3

2 ∆x]. To

resolve all surface details with our volumetric mesh, we need to place pressure

samples so that they capture the surface’s local geometric extrema, i.e. around sur-

face mesh vertices. In particular, we try to ensure that one edge of the Delaunay

triangulation passes through each surface vertex, with one sample inside and one

outside. Therefore we take the inward and outward normal at each surface ver-

tex (averaged from the incident surface triangles), and attempt to place a pressure

sample a short distance along each. We placed outward samples at 1
2 ∆x and inner

samples at 1
4 ∆x, though other ratios would work as well. As a result, surface mesh

normal directions will often align exactly with a velocity sample in the simula-

tion mesh; this lends additional accuracy to the vertex’s normal motion, and to the

incorporation of the normal force due to surface tension calculated at the vertex.

This placement may miss very thin sheets or other fine structures: to robustly

sample such features, we check line segments of length ∆x from each surface vertex

in both offset directions for intersection with the rest of the surface mesh. If we

find any triangle closer than ∆x, we store the distance d to the closest intersection,

and use d in place of ∆x in the offset distance calculations above (see Figure 7.4).

We further reject new pressure samples which are too close to an existing sample

by some epsilon, which would cause a very short edge in the final mesh.

If the distance between the surface vertex and the first intersection is below

some threshold (e.g. 1
20 ∆x) at which we consider the two surfaces to have effec-

tively collided, and the proposed sample is an air sample, we also discard it. This

is necessary because the divergence constraint is not enforced on air cells, so they

can act as liquid sinks [LSSF06] and destroy liquid volume until the geometry fi-

nally merges. Unfortunately, merging in this scenario can often take several time

steps to resolve because the interpolated velocity in the air gap still averages to

zero, thereby preventing surface geometry from actually intersecting and flagging

a collision. By not placing a sample point in these very small gaps, our simulator

treats the two liquid bodies as merged and prevents volume loss; the geometric

merge is usually then processed within a few timesteps. (With regular sampling,
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Figure 7.4: A pressure sample is seeded along the outward normal direction
from a surface vertex (black square). The initial proposed pressure lo-
cation (empty black circle) would land in the wrong component and
potentially fail to resolve the intervening air gap. We instead place the
final pressure sample (filled black circle) midway between the starting
vertex and the first intersection point (red X).

by contrast, merging will depend on where grid points happen to fall with respect

to the surface; hence the physics can respond as if merged when the surfaces are

still as much as ∆x apart, as in Figure 7.6. This generates non-physical air bubbles

which linger for many timesteps before they self-collide and are eliminated.)

After placing the surface-adapted pressure samples, we complete the sampling

of the domain by adding regularly-spaced points from a BCC lattice with cell size

2∆x, again rejecting samples which fall too near existing samples—of course, a

graded octree or any other strategy could also be used to fill the domain. All sam-

ples are then run through a Delaunay mesh generator such as TetGen [Si06]. Fig-

ure 7.5 illustrates in 2D how this sampling approach is able to capture thin features

such as splashes. Further experimentation with relative mesh spacing parameters

could yield improved results.

7.5 Embedded boundaries on Voronoi meshes
We use finite volumes on a Voronoi mesh for the pressure projection step, simi-

lar to Sin et al. [SBH09]. However, rather than applying boundary conditions as

they describe, we adapt the embedded boundary methods of Batty et al. [BXH10]

to Voronoi meshes. Conveniently, the duality/orthogonality relationship between

Voronoi and Delaunay meshes lets the accuracy benefits of the method carry over.

Figure 7.7 illustrates our mesh configuration, and the computation of the required

weights, as discussed below. We solve the resulting symmetric positive definite
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Figure 7.5: A 2D example of a thin feature simulated with our method. The
zoom on the right illustrates the sample placement with respect to sur-
face vertices, and the resulting Voronoi mesh. Notice that even the very
sharp tip contains a pressure sample, as indicated by the surrounding
Voronoi cell.

Figure 7.6: Left: Regular sampling erroneously identifies a topology change,
causing a premature reaction in both liquid bodies. Right: Geometry-
aware sampling responds correctly.

linear system using an incomplete Cholesky-preconditioned conjugate gradient

solver.

To enforce embedded solid boundary conditions, we need to estimate the par-

tial unobstructed area of each element face (Figure 7.7d). Batty et al. [BXH10]

used marching triangles cases for computing tetrahedra face fractions from signed

distance values on the vertices. However, in the Voronoi setting, the faces are arbi-

trary convex planar polygons rather than triangles. To handle this, we temporarily

place an extra vertex at the face centroid, and use it to triangulate the face. We then

use signed distance estimates at the vertices to compute each sub-triangle’s partial

area, and sum them to determine the partial area for the complete face.
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(a) (b)

(c) (d)

Figure 7.7: Pressure samples are shown as green circles. (a) Delaunay trian-
gulation. (b) Voronoi diagram dual to the Delaunay triangulation (ve-
locity components for the central cell are shown as red arrows). (c)
Computation of ghost fluid weights on the edges of the triangulation.
(d) Computation of non-solid weights on the faces of the Voronoi dia-
gram. In 2D, Voronoi faces are simply line segments, so solid weights
are just fractions of segment lengths. In 3D, Voronoi faces are convex
polygons, so determining non-solid weights involves computing poly-
gon areas.
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The embedded (ghost fluid) free surface condition uses signed distance esti-

mates at pressure samples to estimate the surface position; these are now located

at Voronoi sites rather than tetrahedra circumcenters, but the method is otherwise

unchanged (Figure 7.7c). A slight improvement can be achieved by casting rays

to find the exact position of the surface mesh between pressure samples. In some

cases this is much more accurate than the estimate derived from signed distances,

but in practice we found it made minimal visual difference. To actually compute

the liquid signed distance field on the tetrahedral mesh, we compute exact geo-

metric distance for a narrow band of tetrahedra near the surface, then use a graph-

based propagation of closest triangle indices to roughly fill in the rest of the mesh.

This family of redistancing schemes is described by Bridson [Bri08], and is easily

adapted to tetrahedra.

7.5.1 Surface tension

To incorporate surface tension, we follow Enright et al. [ENGF03] in setting the

free surface pressure pfs = pair + γκfs, where pair is the constant air pressure, γ is

the surface tension coefficient and κfs is the mean curvature of the surface.

Rather than using level set finite differences, we compute curvature directly

from the surface mesh to accurately capture high-frequency features. We chose

the operator of Meyer et al. [MBLD02] because it provides high quality estimates

using just the one-ring of triangles surrounding each vertex, but others could work

too.

Curvature is evaluated at the intersection point between the triangle mesh sur-

face and the line joining an interior pressure sample to an exterior one. Often this

intersection point will coincide with a surface mesh vertex due to our choice of

sampling scheme; where it does not, we use simple linear interpolation between

the vertices of the surface triangle mesh. This method appears highly accurate, and

leads to much less damping than that of Wojtan et al. [WTGT09].

7.6 Interpolation and advection
Velocity interpolation methods for unstructured meshes typically proceed in two

steps [KFCO06, ETK+07, BXH10]. First, a full velocity vector is reconstructed at
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Figure 7.8: Our accurate surface tension model captures capillary waves even
on relatively low resolution meshes. From left to right: A cube in zero
gravity begins to collapse due to surface tension, inverts to become an
octahedron, and continues to oscillate rapidly before settling down to a
sphere.

selected mesh locations using a least-squares fit to the nearby velocity components.

Then barycentric or generalized barycentric interpolation between those locations

interpolates velocity over the full domain. Given such an interpolant, advection

of velocities and geometry is straightforward. We follow this general framework,

with two modifications.

In previous work, face normal components on tetrahedra were used to recon-

struct velocities at circumcenters (Voronoi vertices). In our configuration, velocity

components instead lie along the tetrahedra edges (Voronoi faces) so we perform

the least squares fit on this data instead. We could then apply the usual gener-

alized barycentric interpolant over Voronoi cells, but this is expensive [CFL+07]

and requires special case handling to avoid degeneracies [MDSB02]. A simple

and fast alternative discussed by Klingner et al. and Chentanez et al. is to first in-

terpolate velocities to Voronoi sites (tetrahedra vertices) and apply standard (and

fast) barycentric interpolation over each tetrahedron. However, the interpolation

onto tetrahedra vertices discards any local extrema at the Voronoi vertices, thereby

severely over-smoothing the velocity field in practice, damping out interesting flow

behavior.

Rather than discard extrema at Voronoi vertices, we use a slightly refined tetra-

hedral mesh that includes them. We conceptually tetrahedralize the Voronoi cells

themselves by placing additional vertices at Voronoi face centroids and Voronoi

sites (see Figure 7.9). Velocities for each of these new points need to be computed;
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while previous work used the generalized barycentric interpolant for this transfer

step, we found that simply averaging the velocities of the surrounding ring or cell

of Voronoi vertices is quicker and equally effective. For maximum fidelity at the

face centroids, we also replace the normal component of the averaged full velocity

with the exact normal component already stored at the face. Simple and efficient

barycentric interpolations can then be applied on the resulting smaller tetrahedra.

Because the sharper, more accurate velocities at the Voronoi vertices are retained

and merely augmented with additional data, this is far less dissipative, yielding

results that closely match generalized barycentric interpolation (see Figure 7.10).

Lastly, note that reconstructions should only use face velocities which were

assigned valid data by the pressure projection, and thus we can only reconstruct

reasonable velocities inside the fluid. We therefore extrapolate velocities outwards

from the fluid using a breadth-first graph propagation: each unknown point in a

layer is set by averaging all adjacent known points from previous layers, repeat-

ing until we have a sufficiently large band of velocities surrounding the surface.

This simple method, suggested in the context of cloth-fluid coupling by [GSLF05],

sufficed for all our animations.

In summary, the steps of our interpolation scheme are:

1. Reconstruct full velocity vectors at Voronoi vertices using least squares.

2. Assign full velocity vectors to Voronoi sites and faces using simple averaging

from neighboring vertices.

3. Subdivide the Voronoi cells into sub-tetrahedra using the sites and face cen-

troids (see Figure 7.9).

4. Apply a simple graph-based extrapolation of velocities to fill in velocities

near the liquid.

5. To interpolate at a point, locate the sub-tetrahedron containing the point and

apply basic barycentric interpolation from its four associated data points (i.e.

one site, one face centroid, and two Voronoi vertices).

One potential issue, not unique to our method, is that despite enforcing a lower

bound on the distance between pressure samples, our unstructured sampling can
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Figure 7.9: Rather than interpolating velocity over Voronoi regions directly,
we tetrahedralize them and use simple barycentric interpolation. Left:
A 2D Voronoi cell with standard dual Delaunay mesh overlaid. Centre:
The same cell subdivided into smaller triangles that include the Voronoi
vertices. Right: In 3D, each Voronoi face is triangulated using its cen-
troid, and joined to its Voronoi site to build a tetrahedralization.

cause sliver tetrahedra in the unmodified Delaunay tetrahedralization. While we

found this posed little problem for the pressure projection, it can cause the least

squares velocity reconstructions to be ill-conditioned due to nearly coplanar faces.

This can be readily resolved by requesting that the mesh generator add Steiner

points to enforce fairly lax quality bounds; because our embedded pressure pro-

jection does not require the mesh generator to match boundaries, this is relatively

inexpensive and effective. If mesh quality cannot be improved sufficiently, using

additional nearby velocity samples in the reconstruction can ameliorate this at the

cost of a smoother result.

7.7 Results

7.7.1 Sampling

The issues that arise from regular, non-geometry-aware pressure sampling are com-

mon and consistent across Cartesian grids, octrees, Voronoi meshes, and tetrahe-

dral meshes. We will therefore use Voronoi meshes throughout, and simply com-

pare our geometry-aware sampling against naı̈ve regular sampling.

Surface Noise: As discussed above, regularly-spaced pressure samples can
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(a) (b)

(c) (d)

Figure 7.10: (a) Initial conditions for the collapse of a liquid block due to
surface tension in zero gravity. (b) Naı̈ve barycentric interpolation on
tetrahedra generates very little detail. (c) Generalized barycentric in-
terpolation over Voronoi cells retains interesting small scale structure.
(d) Applying simpler barycentric interpolation over our refined tetra-
hedra produces qualitatively consistent results.

miss fine surface details, resulting in surface noise which is never smoothed out.

Figure 7.11 illustrates that our sampling approach successfully resolves and cor-

rects such small surface details. In contrast, regular samples cannot fully capture

the initial surface perturbation, so it cannot be rectified. Though the ghost fluid

method on regular samples does detect some differences in surface height, this ac-

tually exacerbates the problem because noisy sub-mesh details will appear to the

simulator as rapid discontinuous changes in surface position over time, inducing

noisy responses in the fluid velocity.

Topology Mismatch: Another visible artifact of using mismatched surface

and simulation resolutions is topological inconsistencies. For example, a surface
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(a) (b)

(c) (d)

Figure 7.11: (a) A perturbation is introduced into a smooth surface. (b) On
a regular tetrahedral mesh, the sub-mesh-resolution noise causes in-
stability. (c, d) With adaptively-placed samples, the surface noise is
accurately captured by the fluid solver and initially causes ripples be-
fore steadily settling.

with two disjoint volumes of liquid may appear to the solver as one volume, re-

sulting in a premature response. Figure 7.6 shows a liquid drop impacting a still

surface. With regular sampling, the droplet begins to influence the static liquid

before the surfaces are actually joined. Because our adaptively-placed samples

match the topology of the surface tracker, they easily correct this spurious motion.

Figure 7.1 also features such a topological merge, along with many splitting and

tearing operations, with timings listed in Table 7.1.

Thin Features: To illustrate our method’s ability to animate thin features, Fig-

ure 7.12 shows a scene in which we drop a small sphere of liquid onto the ground.

Thin sheets rapidly develop as the fluid spreads out across the floor. With regular

pressure samples, sheets of this kind often end up between samples, effectively dis-

appearing from the solver. Our sampling ensures that almost arbitrarily thin sheets

of liquid remain visible to the solver, and as such, interesting rippling and splashing

motion still occurs.

Our method also resolves thin sheets and small surface details generated by
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Figure 7.12: Seeding pressure samples directly inside the fluid volume allows
us to capture thin sheets.

large splashes, as shown in Figure 7.1. To counteract gradual volume drift, we do

add a corrective motion in the normal direction [Bro06, Mül09], which further aids

in preserving thin sheets. Our video also includes an example of a column of liquid

being released into a still pool. Although we are using only first-order accurate

semi-Lagrangian advection, the liquid motion remains lively and active throughout.

We suspect that because our method retains sharp wave peaks and splashes rather

than continually eroding them, their extra kinetic and gravitational potential energy

is retained in the simulation, accounting for this reduced dissipation.

Table 7.1 gives timings for our 3D examples. All figures are averages per

frame and all timings are in seconds. These simulations used no more than 320K

tetrahedra each, whereas recent tetrahedra-based free surface methods used up to 4

times more tetrahedra to achieve a similar level of detail.
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Statistic Thin sheet Liquid column Sphere Splash
# tetrahedra 141,701 197,911 313,587

Velocity reconstruction (s) 3 8 18
Surface tracking (s) 7 37 26

Volumetric remeshing (s) 15 39 69
Velocity advection (s) 7 18 15

Redistancing (s) 5 22 42
Pressure solve (s) 0.29 1.8 0.45

Total simulation time (s) 37 127 171

Table 7.1: Simulation statistics for 3D examples (all statistics are per-frame
values, averaged over all frames).

7.7.2 Surface tension

Figure 7.8 illustrates the action of our surface tension model on a low resolution

cube in zero gravity. Rather than quickly collapsing into a sphere, a cascade of

detailed capillary waves propagate along the surface, causing it to oscillate rapidly.

It initially inverts almost completely into an octahedron (the geometric dual of a

cube), and continues to oscillate for many subsequent frames. To illustrate the

benefits of our sampling approach in the context of surface tension, we launch an

identical simulation using the same time steps on a regular mesh. Because this

mesh cannot respond and correct high frequency sub-mesh details present in the

curvature estimates, the simulation becomes unstable almost immediately. Apply-

ing an excessively strict timestep restriction only brings the simulation to a halt as

the surface noise introduces increasingly sharp features.

Inspired by an example from the work of Wojtan & Turk [WT08], we run an-

other zero gravity simulation on a rectangular block. Because our simulation does

not use diffusive Laplacian mesh smoothing and applies accurate mesh-based sur-

face tension forces discontinuously at the interface, we retain substantially greater

detail in the resulting capillary wave motion.
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7.7.3 Interpolation

We revisit our surface tension block example to compare different interpolation

schemes. As seen in Figure 7.10, our barycentric method is substantially less

damped than the naı̈ve barycentric interpolation approach, and matches the more

complex generalized barycentric interpolant.

7.8 Discussion and limitations
Our implementation is not heavily optimized, and we defer various potential per-

formance gains to future work. Obvious optimizations include: reducing the num-

ber of tetrahedra through smarter sampling, improving the algorithm for point-

location queries, and streamlining the construction of mesh data structures. More

fundamentally, our Voronoi simulator is in many ways dual to a tetrahedral scheme,

and for a given mesh the number of velocity samples is identical; we believe that

approximately comparable costs are therefore reasonable to expect.

The main contribution of this chapter is the coupling of simulation elements to

an existing explicit surface tracking method, and not the explicit surface tracking it-

self. Therefore, not all artifacts due to surface tracking are addressed. For example,

El Topo delays handling some very difficult collisions for a few timesteps until the

topological operations can be safely processed, which occasionally yields visible

lingering surface noise. (Reducing the time step size can help by introducing fewer

and simpler collisions, and more aggressive simplification can also be enabled by

tuning the volume change tolerance that El Topo uses to decide whether to accept

a given simplification.) Likewise, despite the use of feature-preserving mesh im-

provement, some popping artifacts due to on-the-fly remeshing are still visible in

our animations. We chose El Topo because its resolution is not constrained to a

regular grid and it is therefore able to showcase very thin features; nevertheless our

method could adapt to any of the front tracking methods mentioned in Section 2.1.

Surface tension was only used for examples in Section 7.7.2 and Section 7.7.3.

Our goal in many of the other examples was to highlight the ability to track thin

sheets, whereas surface tension would break these sheets into droplets. Moreover,

explicit surface tension schemes, such as the ghost-fluid-based method used in this

chapter, suffer from a stringent O(∆x
3
2 ) time step restriction for stability, which is
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particularly costly when small scale capillary waves are not erroneously damped

out. Pursuing a more efficient, fully implicit surface tension model is a promising

future direction.

7.9 Conclusions and future work
We have shown that with careful placement of pressure samples, our Voronoi mesh-

based fluid solver makes it possible for explicit surface tracking to achieve its full

potential in capturing small scale liquid features. In addition, we adapted em-

bedded boundary pressure projection techniques to Voronoi meshes, introduced

a simple improvement to barycentric velocity interpolation for Voronoi/Delaunay

meshes, and extended the ghost fluid surface tension model with mesh-based cur-

vature in order to capture complex capillary waves with minimal damping.

Several directions for future work remain. For example, it may be possible

to enhance our sampling scheme in various ways, perhaps by exploiting curvature

adaptivity, topological information, or measures of vorticity and velocity variation.

Likewise, improvements to front tracking would be welcome, such as curvature-

driven adaptivity, or greater robustness and efficiency. Lastly, many common ex-

tensions to basic inviscid liquid simulation rely on regular grids, and would need

to be adapted to accomodate our approach.
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Chapter 8

Conclusion

Explicit surface tracking is a potentially powerful tool for physics-based anima-

tion and physically accurate simulation. Although at first it may appear overly

complicated and challenging to deal with the geometric and topological problems

that naturally arise in dealing with moving discrete meshes, in this thesis I have

presented a few tools to make such an approach tractable.

Each self-contained chapter of this thesis contains conclusions specific to that

particular branch of research; here we present an overall summary and some more

general future research topics.

8.1 Summary
In Chapter 3, we presented a framework for intersection-free remeshing and topol-

ogy changes on dynamic triangle meshes, and showed convergence in the presence

of topology changes. The benefits of this approach were illustrated with a prac-

tical implementation of grid-free surface tracking which robustly handles changes

in topology without mesh tangling or self-intersections, and tested with geometric

flow applications.

Chapter 4 introduced two new approaches to continuous collision detection

which are geometrically exact. We also presented a new, exact method for com-

puting intersection parity between a ray and a bilinear patch. These approaches

allow for parameter-free continuous collision detection implementations which are
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nearly optimal in the number of false positives, while incurring no false negatives.

The run-time computational cost for these new collision queries is competitive with

current state-of-the-art methods.

Chapters 5 and 6 applied the explicit surface tracking techniques described in

the previous chapters by treating smoke as a surface. We first introduced a novel

combination of explicit surface tracking and smoke simulation techniques, result-

ing in a method capable of high-resolution renders for a fraction of the storage cost

of particle or grid-based smoke simulations. We next integrated the Fast Multipole

Method into a working vortex sheet simulation, and introduced a fast smoke ren-

dering technique. The result is a comprehensive method for smoke simulation and

visualization that scales with the visual detail of the scene.

Finally, in Chapter 7 we combined explicit surface tracking with an adaptive

fluid simulation which captures the complete surface geometry of the liquid. We

used embedded free surface and solid boundary conditions, adapted to Voronoi

cells, avoiding the need for more onerous conforming tetrahedral mesh genera-

tion. We also introduced an accurate surface tension model combining mesh-based

curvature estimates and ghost fluid boundary conditions. The tangible benefits of

our approach include improved animation of detailed liquid features, elimination

of noise in explicit surface tracking without non-physical smoothing, and more

detailed, less damped surface tension effects.

8.2 Future directions
Concurrent work on explicit surface tracking for physics-based animation by others

[WTGT09, Mül09, WTGT10, TWGT10, YWTY12] hints at a shift in the way

researchers and practitioners think of fluid surfaces. In the conclusions of previous

chapters, we have suggested various future directions for this research, specific to

the topics covered in this thesis, and so we will make broader suggestions here.

Several directions to improving the quality of explicit surface tracking methods

remain. Improvements in remeshing which are well-suited to moving triangle mesh

surfaces would benefit a wide range of methods. For example, in Chapter 4 we

used a simple curvature-based metric to increase triangle density in some regions.

Further development of this idea could allow for high-quality surfaces without the
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computational expense of employing a uniformly high-resolution mesh.

Our surface tracking approach relies on collision detection and resolution to

prevent the mesh from becoming self-intersecting and tangled. Although we in-

troduced a fully robust collision detection scheme, the collision resolution prob-

lem remains an open area of research. Developing a completely robust collision

response system which is guaranteed to minimally perturb the surface vertex tra-

jectories appears to be a difficult problem, but would be extremely beneficial for

both surface tracking and the simulation of cloth and solids.

Promising future applications include boundary integral equations for elastic

solids, fracture, and deep water simulation. Outside of visual effects, other appli-

cations for explicit surface tracking include the segmentation of volumetric medical

data and the physical simulation of free surfaces.
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Appendix A

The root parity lemma and proof
of correctness for collision
detection

This appendix provides a proof of the root parity lemma, introduced in Chapter 4.

This proof is mostly due to Essex Edwards, and is included in this thesis for com-

pleteness.

A.1 Outline
We describe the root parity lemma, which relates the roots of a function to the

action of that function on the domain boundary. First, we show it to be true for

piecewise linear functions defined on a simplicial mesh. Second, we use a piece-

wise linear interpolant to approximate any sufficiently well behaved C2 function.

We show that this approximation is sufficiently good that the root parity lemma is

also true for these functions. The intersection-function used in collision detection

falls into this class of functions, so we argue the correctness of our algorithm on

top of the lemma.

A.2 The Root Parity Lemma
Suppose Ω⊂ Rn is a non-degenerate n-polytope.
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Suppose ~F : Ω 7→ Rn is continuous, has p < ∞ roots in Ω, has no roots on

Γ = ∂Ω, and is invertible in a ball around each root. Any such function is called

admissible.

Suppose R is a ray from~0 to infinity. Call any point x ∈ Γ such that ~F(x) ∈ R

a crossing point, then the crossing number q is the number of crossing points.

Suppose that ~F(Γ) is smooth at the image of any crossing points, that the ray is not

tangent to ~F(Γ) at any these points, and that q < ∞.

Then p≡ q mod 2.

A.3 Proof for Piecewise Linear Functions on a Simplex
Mesh

Consider a simplicial mesh M discretizing the domain Ω. Let ~F be an admissible

function which is linear within each simplex. The image under ~F of any simplex

in this mesh is also a simplex. So, the image of the entire mesh is also a simplicial

mesh, M′, though it may be self-intersecting. The function ~F is uniquely defined

by the position of the vertices of M′, and roots of ~F are given by simplicies in M′

that contain the origin.

We may make various simplifying assumptions about M′. Such an assumption

will be without loss of generality if, for any mesh M′, a perturbation exists that

modifies it to satisfy these conditions without changing the parity of the number of

roots or the parity of the crossing number for the ray.

Assume the origin does not lie on any facets of M′. This is possible because ~F is

invertible around each root. So a small perturbation will push the origin from being

on a facet to being in only one of the adjacent simplices; therefore not changing

the number of roots.

Assume also that M′ has no degenerate simplices. That is, each simplex has

volume. Simulation of Simplicity [EM90] addresses almost exactly this problem.

A similar argument applies here. The only additional concern is that we do not

modify the number of roots. Let ε > 0 be the distance from the origin to the

nearest facet. Since the perturbation can be infinitesimal, no vertex needs to be

moved more than ε , so the number of roots does not change.

Now, consider a ray R from~0 to infinity satisfying the conditions of the root

153



parity lemma. Such a ray exists because ~F(Γ) is smooth almost everywhere and

does not include~0. Define a hit to be an intersection of the ray with the boundary

of a simplex. If the ray intersects a facet shared by two simplices, then this is two

hits. Each simplex can contribute hits.

First, consider a simplex from M with no roots in it. The image of this simplex

does not contain the origin. The ray crosses its boundary either zero or two times.

This simplex contributes an even number of hits.

Second, consider a simplex from M containing a root. By hypothesis, the image

of this simplex contains the origin in its interior. Consequently, the ray intersects

its boundary once, contributing an odd number of hits.

Summing up all the hits, only simplices with roots contribute odd parity to the

sum, so the parity of the number of hits equals the parity of the number of roots.

Likewise, the parity of the number of hits equals the parity of the crossing number.

This is because any intersection of the ray with an interior facet contributes two

hits. Only the boundary facets, coincident with Γ, contribute odd parity. So the

parity of the number of roots equals the parity of the number of crossings. Conse-

quently, the Root Parity Lemma is true for this class of functions.

A.4 Proof for C2 Functions
Let ~F be an admissible C2 function with curvature bounded everywhere. In particu-

lar, the magnitude of the directional second derivative is bounded by some constant

0 < ct < ∞. And let R be a ray consistent with the hypotheses of the root parity

lemma. Also, suppose ~F has non-singular Jacobian at all the roots, which is a

stronger than the local invertibility requirement givn by admissility.

Let the entire domain Ω be tessellated with a simplicial mesh M. Let each

simplex have circumradius less than δout, and let each root of ~F be at the centroid

of a regular simplex. We take the existence of such a mesh to be trivial. Let ~FL be

the piecewise linear interpolant of ~F on a the mesh M. We argue that there exists

such a mesh for which ~FL and ~F have the same number of roots, the same crossing

number, and ~F is admissible. From this it follows that the root parity lemma is true

for ~F , and for the entire class of functions.
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A.4.1 Roots

In this section, we show that if the mesh is sufficiently fine, then in any simplex,

either ~F and ~FL both have roots, or neither ~F or ~FL have roots.

Let~x?, be an arbitrary root of ~F , and let Σ be the simplex containing it. Since

this simplex is regular, it has inradius δout = κδin with constant κ . In addition to the

functions ~F and ~FL, we introduce ~FA = J(~x−~xi) which is the linear approximation

to ~F about the root (i.e. J = ∇~F(~x?)).

Clearly ~FA(~x?) =~0, so ~FA has a root in Σ. Now, consider a point~q on the surface

of Σ.

‖~FA(~q)‖2 = ‖J(~x−~x?)‖

≥ ‖J−1‖−1
2 ‖~x−~x

?‖

≥ δin‖J−1‖−1
2

So, the image of Σ under ~FA, which is also a simplex, has its surface at least

δin‖J−1
i ‖

−1
2 away from the origin.

By Taylor’s Theorem, we have,

‖~F(~q)−~FA(~q)‖ ≤ c1‖~q−~qi‖2 ≤ c1δ
2
out

where c1 < ∞ is a constant related to ct . Similarly, by the approximation quality of

linear interpolants (for proof, see e.g. [She02]), we have

‖~F(~q)−~FL(~q)‖ ≤ c2δ
2
out

where c2 < ∞ is another constant related to ct . These can be combined to get the

relationship,

‖~FA(~q)−~FL(~q)‖ ≤ c3δ
2
out.

The origin is at least δin‖J−1
i ‖

−1
2 away from the surface of ~FA(Σ), and ~FA(Σ) is

no more than c3δ 2
out away from ~FL(Σ). Since ~FL(Σ) is also a simplex, it follows that

if

δin‖J−1
i ‖

−1
2 > c3δout

2⇔ 1/(κc3‖J−1‖2)> δout,
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then ~FL(Σ) will also contain the origin, and ~FL will also have a root in Σ. Since

κc3‖J−1‖2 is some constant bounded away from zero, we can choose such a δout.

It follows that the image Σ under ~FL will contain the origin if δin‖J−1
i ‖

−1
2 >

c3δout
2. For the regular simplex used in this case, δout = κδin with some constant

κ < ∞. So, choose a sufficiently small simplex such that 1/(‖J−1
i ‖

−1
2 c3κ) > δout.

Consequently, both ~F and ~FL have a single root in Σ, and ~FA is locally invertible

there. Looking at the whole set of roots, since there are finitely many of them, this

constraint on δout can be summarized as δout < δ roots
out , where 0 < δ roots

out is bounded

away from zero.

Now we show that the other simplices of the mesh, ~FL has no roots. Continuing

with the point~q on the surface of the simplex around a root, we find that

‖~F(~q)‖ ≥ ‖~FA(~q)‖− c1‖~q−~x‖2

≥ ‖J(~q−~x)‖− c1δout
2

≥ ‖J−1‖−1‖~q−~x‖− c1δout
2

≥ ‖J−1‖−1
δin− c1δout

2

≥ ‖J−1‖−1
δin− c1κ

2
δin

2

≥ ‖J−1‖−1
κ
−1

δout− c1δout
2

≥ αδout− c1δout
2

where α > 0 is the minimum value over all roots of ‖J−1‖−1κ−1.

Let S be the union of the simplicies which contain roots of ~F , as have already

been addressed. Then, Ω0 = ¯Ω\S is the remainder of the domain, including the

boundaries. In Ω0, ‖~F‖> Fmin > 0. For sufficiently small simplices, the minimum

value of ‖~F‖ will occur on the surface of one of the simplices surrounding a root.

For simplicity, assume that this is the case. So, Fmin > αδout− c1δout
2 everywhere

outside the simplicies surrounding the roots. Then at all points~x outside the root-
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simplices ‖~FL(~x)−~F(~(x))‖ ≤ c2δ 2
out, and so

‖~FL(~x)‖ ≥ ‖~F(~x)‖− c2δ
2
out

≥ Fmin− c2δ
2
out

> αδout− c1δout
2− c2δ

2
out

> αδout−δout
2(c1 + c2)

For sufficiently small δout, we have ‖~FL(~x)‖> 0 because α > 0. So, outside of the

simplices surrounding the roots, ~FL has no roots.

It follows that ~F(x) and ~FL(x) have the same number of roots.

A.4.2 Crossing Points

To show that ~FL also has the same crossing number as ~F(Γ), we construct two new

functions H : Γ 7→ R and ~G : Γ 7→ Rn−1. Without loss of generality, by a simple

rotation, let the ray be the positive x1 axis. Then, let H(x) = ~F1(x) be the first

component of ~F(x). It measures the distance along the ray of the closest point to
~F(x). Second, let ~G(x) be components 2 through n of ~F(x). So, it measures a

vector-distance from ~F(x) to the closest point on the ray. Consequently, a point ~x

is a crossing point of R and ~F(Γ) iff H(x)> 0 and ~G(x) =~0.

Now, consider the functions ~̄G and H̄ defined as above, but using ~FL instead of
~F . As before,~x is a crossing point of R and ~FL(Γ) iff H̄(x)> 0 and ~̄G(x)=~0. Notice

also, H̄ and ~̄G are the linear interpolants of H and ~G on the boundary elements of

the mesh, which form an n− 1 dimensional simplex mesh embedded in n-space.

So we can use similar arguments as above to establish an exact correspondence

between the crossing points of R and ~F(Γ) and the crossing points of R and ~FL(Γ)

by matching the roots of ~G and ~̄G and the signs of H at those roots.
~G may not be locally invertible at all of its roots, so we take a different approach

than above for ~F . Add all of the crossing points of R and ~F(Γ) as vertices to the

mesh, by hypothesis there are a finite number of them. This does not contradict

the earlier construction of a single simplex around each root of ~F , because ~F has

no roots on Γ. With these vertices in the mesh, H(~x) > 0 and ~G)(~x) =~0 implies
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~̄G(~x) =~0. Let any simplex containing a root of ~G be small enough that it contains

only one. By construction, it will be at a vertex, the root-vertex. All the other

vertices of this simplex form an (n− 2)-face, the far-face. By using anisotropic

simplices around the roots, the far-face can always be distance δ > 0 from the root,

but fit in an arbitrarily small ball of radius r. Consequently, ‖~G‖∞ > ε > 0 on the

far-face. A described earlier, a sufficiently fine mesh will have no roots on the far-

face and consequently no roots anywhere in the simplex, except at the root-vertex.

Let ε be half the minimum magnitude of H at any root of ~G. When−ε <H < ε ,

by definition of ε , ‖~G‖∞ > δ > 0. So, in a sufficiently fine mesh, ~̄G 6=~0. This

follows from the same bound used above to analyze ~FL. When H < −ε , in a

sufficiently fine mesh we get H̄ < 0. Finally, when H > ε , a sufficiently fine mesh

will have H̄ > 0 and, outside of the simplices constructed above, ~̄G 6=~0. Combined

with the results above, we conclude that ~F and ~FL have the same crossing points.

Combined with the earlier result, we have that ~F and ~FL have the same number

of roots, and exactly the same crossing points. So we have shown that the root par-

ity lemma holds for the entire class of C2 functions with bounded second derivative

and non-singular jacobian at each root.

A.5 Proof of the Collision Algorithm
The function that the algorithm uses is C2 with bounded curvature, but isn’t al-

ways admissible and with invertible Jacboian at the roots. We argue here that the

algorithm still does the right thing for collision detection, even with inadmissible

functions.

When the input geometry to the collision detection algorithm produces an ad-

missible function ~F , the correctness of the algorithm follows trivially from the root

parity lemma. The construction of a ray which is consistent with the lemma is done

by generating random rays and rejecting ones that intersect at non-smooth parts of
~F(Γ). This rejection is extremely rare.

If ~F(u) = 0 on Γ, the algorithm identifies this as a collision. This may be a false

positive for a ‘significant’ collision, but it is never a false positive that a collision

between these elements has occurred.

Otherwise, if ~F has an infinite number of roots, then because of the multi-affine

158



form of ~F , it has a root on Γ, and this case is detected as above.

Otherwise, if ∇~F is not invertible at a root, then there exists a small perturbation

to ~F such it is not singular at any roots and is unchanged on Γ. This perturbation

need not affect the initial and final configuration of the mesh, it only causes an

infinitesimal adjustment to their intermediate trajectories. Thus, it will not change

whether or not a significant collision has occurred, and the algorithm returns the

correct result.

The root parity lemma also has conditions on the ray that the algorithm must

meet. The only non-smooth regions of Γ are the edges. The algorithm traces a new

ray when an intersection with an edge is detected. If the crossing number is infinite,

then the ray must hit the edges, which is detected as above. The requirement that

the ray not be tangent is handled by the ray-patch parity algorithm, which returns

the correct (even) parity in that case.

We note that while this proof contains several cases involving perturbing ~F or

the ray, the algorithm does not need to do this. This was only a tool for use in the

proof.
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