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Abstract

An explicit method for fluid surface tracking is presented. The method repre-

sents the surface as a triangulated mesh of points in space, rather than as an

implicit surface function. Utilizing well-developed algorithms designed for col-

lision detection and resolution in cloth simulation, the system is able to handle

topology changes robustly and efficiently. When fluid surfaces collide, we per-

form topology changes only in the most trivial cases — we reject any degenerate

cases and use the cloth algorithm to keep the surfaces separated.

Taking advantage of the explicit surface representation, we introduce new

approaches to simulating surface tension and conserving fluid volume. Finally,

we propose a boundary element method for enforcing fluid incompressibility

which uses only data points on the fluid surface, rather than a full volumetric

discretization of the fluid over a grid.
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Chapter 1

Introduction

Despite its potential advantages, explicit surface tracking is generally not used

for the animation of fluids, as dynamically changing the connectivity and topol-

ogy of the surface is deemed too complicated. The potential for degenerate cases

in geometric collision detection algorithms adds another layer of complexity. For

these reasons, implicit surfaces or particle methods are generally favoured for

use in fluid animation.

However, explicit surfaces do offer many benefits, the most obvious being

control over topology changes of fluid surfaces. Using implicit surfaces, a fluid

in contact with itself will automatically merge. With explicit surfaces, however,

we can potentially simulate other physical chemistry surface interactions, such

as non-adhesion, much more easily.

Rendering is also time-consuming when using implicit surfaces, since a mesh

is usually constructed using marching cubes at each time step. Motion blur is

then achieved by moving the explicit mesh back in time for one frame using

velocity from the simulation. Our method keeps a persistent triangle mesh

throughout the course of the simulation, allowing for quick rendering and motion

blur.

A further advantage to using explicit surfaces is the possibility of grid-free,

boundary-only fluid dynamics. This approach to fluid simulation is different

from both the conventional grid-based and particle-based methods currently

favored in fluid animation (see chapter 2). Such a system would use only in-
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formation on the fluid surface, rather than on a regular grid or on unorganized

points throughout the computational domain. With such a discretization, infi-

nite or large domains such as oceans could potentially be simulated efficiently.

To make explicit surface tracking feasible, we take advantage of existing

algorithms developed for the animation of cloth. Utilizing robust collision de-

tection, originally developed to keep cloth free of self-intersections [8], our fluid

surfaces are kept in a state guaranteed to be free of intersections. We take a

conservative approach to topology change and surface adaptivity, modifying the

connectivity only when we can guarantee the result will be collision-free. We

describe our method for tracking surfaces in chapter 3.

In modern fluid simulation for animation applications, surface tension effects

are usually simulated using potentially non-momentum-conserving approxima-

tions to mean curvature. In section 4.3, we introduce a comparatively simple,

conservative alternative, based on the actual tension statement of the phenom-

ena.

Boundary Element Methods are used to numerically solve partial differen-

tial equations over volumes using data only on boundaries of the computational

domains. When dealing with fluids, these boundaries corresponds to the fluid

surfaces, and so our surface discretization is a natural framework for applying

boundary methods. In chapters 4 and 5, we propose a boundary-only, La-

grangian, incompressible fluid simulation method.
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Chapter 2

Previous Work

2.1 Eulerian Schemes

There are two main approaches to fluid simulation in animation: Eulerian and

Lagrangian. The Eulerian, or grid-based, approach uses discrete function values

throughout the computational domain, on a regular volumetric grid. Foster and

Metaxas [16] began the current research thrust in Eulerian fluid simulations

for animation. Their method has been used for liquid, smoke [14] and sand

simulation [29]. Their technique has been steadily improved with advancements

in implicit surface tracking [13, 15], unconditionally stable time integration [26],

adaptive grid construction [20], and vorticity preservation [25].

For high quality smooth surfaces, Eulerian methods using level sets are typ-

ically used. Here the surface is implicitly represented by the zero level set of

a surface function, which is usually the signed distance from the surface. This

surface function is then advected by the velocity field defined on the grid (often

using particles to avoid mass conservation errors in advection [13]). The obvious

drawback with this method is that it cannot reliably resolve any detail at or

below the scale of a grid cell: thin sheets and other attractive structures cannot

be handled efficiently by the approach, no matter how accurate the advection

method.
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2.2 Lagrangian Schemes

An alternative to grid-based methods are Lagrangian methods. These methods

often track moving samples or “particles” of fluid through the domain. Examples

include work by Müller et al. [22] and Clavet et al. [9] based on Smoothed Par-

ticle Hydrodynamics [21]. Reconstructing a smooth surface from the particles

remains challenging, though recent work on point based level sets by Corbett

[10] is promising. Vortex particle and vortex filament methods [1, 2] for the

simulation of smoke also fall into this category.

2.3 Explicit Surfaces

Explicit surfaces have seen limited use in animation beyond shallow water sim-

ulations. Bargteil et al. [4] recently presented a surface tracking method where

an explicit mesh is constructed at each time step from a signed distance func-

tion via contouring. However, their method still relies on sampling an implicit

surface function on a grid, and cannot overcome the fundamental problem of

unreliably tracking features at or beyond the grid resolution.

This subject has received much more attention in the field of computational

physics. Recently, Jiao [19] presented a new method of advecting explicit sur-

faces. This paper also provides a pointer to some of the most recent develop-

ments in the area of surface tracking. Their method appears to offer improved

tracking in the presence of high-curvature surfaces, but it does not handle on-

the-fly topological changes. It would be interesting to combine their method for

advection with our method for topology changes.

Handling degeneracies in geometric algorithms has also received some atten-

tion, whether through determining consistent orientations in degenerate situa-

tions [11], or perturbing the geometry slightly using exact arithmetic [23]. Our
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method requires neither of these methods, as our surface geometry is guaranteed

to never enter into a degenerate state.

2.4 Boundary Element Methods

Using a surface discretization similar to the one presented in this thesis, James

and Pai [18] used a boundary element method to model deformable elastic bodies

at interactive rates. We note that the linear elasticity model used in that work

becomes degenerate in the incompressible limit: how to adapt that approach to

incompressible fluids isn’t clear.

An introduction to Boundary Element Methods (BEM) can be found in the

textbook [6]. Although there is significantly more sophisticated work in BEM

(including a long-running annual conference [5]), this book provides adequate

background for our work in chapter 5.



6

Chapter 3

Explicit Surface Tracking

A high-level view of our surface tracking method is shown in algorithm 1. We

begin each time step by performing some operations to locally improve mesh

quality (see section 3.3). These operations could change the mesh connectivity

and topology. We then update our face velocities, either from an underlying grid

simulation, or from a boundary-only dynamics simulation. In the next phase, we

predict the locations of the mesh vertices based on these face velocities. Next

we resolve any collisions, possibly changing mesh topology (see section 3.2).

This collision resolution could potentially adjust the predicted vertex locations,

and so we update the face velocities to be the difference between the predicted

and current vertex locations. Finally, we move the vertices to their (adjusted)

predicted locations and proceed to the next time step.

Algorithm 1 Surface tracking overview
perform local mesh improvement
get face velocities
predict vertex locations
resolve collisions
update velocities
update vertex locations

3.1 Discretization

We discretize each fluid surface as a polygon in 2D, or polyhedron with trian-

gular faces in 3D. We base our method on the robust collision detection and
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handling treatment of Bridson et al. [8], which provides an algorithm for guar-

anteeing that fixed-connectivity meshes will never suffer (self-)intersection.

We extend this to incorporate the connectivity changes required for fluid

simulation (such as mesh adaptation and fluid merging or pinching off), but

in a conservative fashion to still guarantee that our explicit surface remains in

an intersection-free state (or legal state) after each advection step. That is, we

handle topological changes selectively, merging and separating fluid only when

the resulting surfaces are collision-free, and otherwise sequentially applying re-

pulsion forces, geometric collision impulses and rigid impact forces as needed to

resolve the surface collisions, as per cloth simulation.

We also adaptively add and remove vertices or flip edges to maintain a

good discretization, again doing so only when the resulting configuration is

intersection-free, or legal. That is, we delay mesh connectivity changes until

we know that they are safe. Otherwise, and for fluid surfaces that shouldn’t

merge or detach (e.g. between immiscible fluids, or a material with surface

characteristics that prevent merging such as flour-coated dough, or viscoelastic

properties that resist fracture), we treat the contact just as for cloth—in fact, a

convenient mental model for this type of interaction is of bags of fluid coming

into contact with each other.

The resulting dynamic fluid surface can simply be advected by a velocity field

on a grid in order to capture sub-grid-scale detail, similar to passive marker

particles, but the explicit formulation naturally provides new possibilities for

surface tension simulation. Furthermore, the topological changes can be easily

controlled to allow or prevent fluid merging according to the surface physical

chemistry.
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3.1.1 Data structures

We initially used a half-edge data structure to allow for efficient traversal of the

meshes. We later realized, however, that we must allow an edge to be incident

to more than two triangles in some situations (see section 3.3.3). We therefore

use a simple set of triangles augmented with a set of auxiliary structures. These

auxiliaries store information such as which triangles are adjacent to a given tri-

angle, which triangles are incident to a given vertex, which vertices are adjacent

to a given vertex, and which two vertices comprise each edge. These auxiliary

structures must be rebuilt whenever the topology or connectivity changes, but

they then allow for easy traversal of the mesh structures.

3.2 Collisions

The standard cloth collision resolution algorithm proceeds in three stages, which

we will now summarize. In the first stage, proximities in the current positions

(e.g. a point very close to a triangle) are handled by repulsion forces, aiming at

providing a natural separation distance between disjoint mesh elements. While

this handles the majority of cases, high speed impacts may be missed, requiring

a second stage where we perform temporal collision detection—i.e. detecting

collisions even in the middle of the time step—and apply inelastic collision

impulses to colliding pairs of mesh elements. Finally, as a last resort, if there

are still collisions to be resolved, we project out the motion of colliding regions

(“impact zones”) to an affine space. In the original paper [8] this was limited to

the space of rigid body motions: we generalize this to include shearing as well

(see [7] for more details), which means less kinetic energy is artificially dissipated

by the projection while we still are guaranteed collisions are impossible within

the impact zone. We extend this in a conservative manner to support the
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connectivity changes fluid simulation requires.

Our method extends this cloth collision algorithm to handle topological

changes between surfaces. Our collision resolution method is outlined in al-

gorithm 2.

Algorithm 2 Collision resolution
detect edge-edge proximities
if non-degenerate edge-edge proximity then

perform zippering operation to change topology
else

apply edge-edge repulsion force
end if
detect vertex-triangle proximities
apply vertex-triangle repulsion force
for a small number of iterations or until no collisions detected do

detect edge-edge and vertex-triangle collisions
if any collision detected then

apply collision impulse
end if

end for
if collisions still exist then

apply impact zones
end if

3.2.1 Topological changes

If two volumes of miscible fluid come into close contact, we attempt to merge

the two surfaces. Likewise, when two surfaces of the same fluid volume come

into close proximity, we wish to produce a hole in the surfaces, increasing the

genus of the surface. Both of these operations can be performed with a similar

method. We begin with a discussion of the two-dimensional case, then extend

into 3D.

In two dimensions, when a vertex is found to be in close proximity to an

edge in the current (guaranteed intersection-free) state, we try the following

operation. We delete the vertex and its two incidental edges, as well as the edge
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it is penetrating. We are then left with a non-manifold geometric structure,

i.e. open curves. We resolve this by connecting all boundary vertices to their

appropriate counterparts on the opposite boundary (see figure 3.1).

Figure 3.1: Proximity event and response in 2D.

Once these operations are performed, we check the resulting set of new

surfaces for intersections. If a new intersection is found, the new configuration

is deemed illegal, and we undo the previous delete-reconnect operation, and

instead apply a repulsion force to discourage interpenetration (the subsequent

cloth collision steps will guarantee this). That is, we delay the topology change

to possibly the next time step.

In three dimensions, we have two proximity cases to deal with: a point near

a triangle or an edge near another an edge. (For the sake of discussion, we

assume in this section that we are dealing with two separate surfaces which

are coming into contact, but the algorithms discussed here are also applicable

for self-intersection.) In the point-triangle case, we apply repulsion forces and

do not attempt to merge surfaces. We have found that it is too difficult to

guarantee a collision-free result after a point-triangle merging. In the edge-edge

case, we delete the four triangles incident to the edges, then zipper up the gap

using eight new triangles. If the new triangles intersect any other mesh elements

or each other, we undo this zipper operation.

Figure 3.2 shows the zippering operation. This diagram should not be inter-

preted as a mesh in 3D space, but rather as a graph showing connectivity. The

two interfering edges, shown as dashed lines, are drawn apart for clarity. New
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edges are created between the vertices of triangles incident to the interfering

edges. These new edges are drawn as arcs in the diagram.

Figure 3.2: Graph view of zippering operation after an edge-edge proximity
event

Implicit in the discussion thus far is that the eight vertices on the four inci-

dent triangles are distinct. However, we may have edge-edge proximity events

where this is not the case (i.e. the edge neighbourhoods share one or more

vertices, as in figure 3.3). Rather than trying to foresee all possible configura-

tions of neighbourhood connectivity, we choose to perform zippering only when

we know the edge neighbourhoods are distinct, and handle all other situations

with the cloth collision resolution. We also avoid the case when the vertices

in both neighbourhoods are distinct but are already connected by one or more

edges (see figure 3.4), since the result of this operation would be a non-manifold

mesh. Therefore, the only possible results of a zippering operation will be an

increase in genus (when the edges involved are on the same surface) or a merging

(when the edges are on distinct surfaces).

3.3 Local mesh improvement

Since very small or very large edge lengths or face areas can introduce significant

numerical error, we adaptively add or remove vertices to keep edge lengths and

face areas within a specified range. We also flip edges to maintain a Delaunay
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Figure 3.3: Edge-edge proximity with non-distinct neighbourhoods

Figure 3.4: Edge-edge proximity with already-connected neighbourhoods

triangulation, and to minimize surface area. These edge flips can result in a

change in topology, depending on the connectivity of the edge to be flipped.

Our method for mesh improvement is outlined in algorithm 3.

Algorithm 3 Local mesh improvement
subdivide long edges
contract short edges
flip edges {may change topology}
handle non-manifold geometry
determine new mesh topology

3.3.1 Edge subdivision

Adding a vertex in the middle of a long edge is simple enough: we split the inci-

dent triangles in two. Since we are merely tesselating the existing intersection-

free geometry more finely, this cannot induce intersections, thus we do not need

to check for any.
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3.3.2 Edge collapse

To delete vertices, we must take a little more care to ensure that the resulting

configuration is legal. When a vertex is scheduled for deletion (because its

neighbourhood is too small in area), we check if the pseudo-motion induced in

the incident triangles by moving the vertex to its closest neighbour causes any

collisions. We stress that this “motion” is not done with the real time step, but

rather with the rest of the geometry held fixed and without advancing time. If

the pseudo-motion does cause collisions, we do not do anything; otherwise we

perform an edge contraction, deleting the vertex. Figure 3.5 illustrates a vertex

deletion operation. We check the trajectory shown with an arrow in the middle

diagram for collisions before deleting the edge.

Figure 3.5: Vertex deletion on a 3D mesh

In 2D, an equivalent alternative is to move the doomed vertex to be collinear

with its neighbours: if this motion does not cause collisions, we delete the vertex,

reconnecting the neighbours: see figure 3.6.

Figure 3.6: Vertex deletion in 2D
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3.3.3 Edge flip

We make use of a standard edge flip operation for two purposes: improving

triangle aspect ratio and minimizing surface area.

Since we are allowing non-manifold surfaces, we must consider that an edge

may be incident to more than two triangles. When dealing with such an edge, we

iterate through all pairs of incident triangles which have consistent orientation1,

handling one pair at a time. Each edge flip operation therefore works on an edge

and two incident triangles, regardless of how many triangles are actually incident

to the edge.

The edge flip operation proceeds as follows: given an edge we wish to flip,

we first locate two vertices on the current pair of incident triangles which are

not connected by this edge. We construct a “candidate” edge joining these two

vertices. Our aim is to delete the given edge and replace it with the candidate

edge, but we must first ensure that doing so will not introduce any collisions in

the mesh.

To ensure this, we construct the tetrahedron formed by connecting the given

and candidate edges, and test to make sure nothing interferes with it. This boils

down to ensuring that no vertex lies within the tetrahedron (a simple “point-

in-tet” test), and that no edge intersects any face of the tetrahedron (“segment-

triangle” test). Once this test is complete, we may delete the given edge and

its incident triangles, and add the candidate edge and the new triangles that

go with it. This procedure is shown in figure 3.7, where the candidate edge is

shown as a dashed line.
1For each triangle in our data structure, we store the three vertices in an order which

determines the triangle’s orientation. To determine if two triangles incident to the same edge
have a consistent orientation, we simply check the order of the vertices that make up the
shared edge. If the ordering is the same for the two triangles, the triangles do not have a
consistent orientation. If the vertices are in reverse order on one of the triangles, the triangles
have a consistent orientation. Intuitively, we can think of two consistently oriented triangles
as being on the same surface passing through the edge, and inconsistent triangles as belonging
to different surfaces.
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Figure 3.7: Edge flip operation

If the candidate edge already exists, the edge flip operation will result in this

candidate edge being incident to more than two triangles. Our data structure

can handle this, and indeed this non-manifold situation is necessary to allow for

surface separation and genus decrease.

Improving aspect ratio The usual reason for performing an edge flip is to

locally improve the aspect ratio of the triangles in a mesh. Flipping an edge

when its counterpart candidate edge is shorter produces better aspect ratios,

which is desirable for simulation reasons. Poor aspect ratios can produce low-

area triangles, which in turn can introduce significant numerical error in the

simulation. For this reason, we consider the difference in length between an

edge and its candidate edge in our decision of whether or not to flip an edge.

Reducing surface area The other objective that edge flips can help us

achieve is the reduction of surface area. We would like to perform an edge

flip when it would decrease the surface area of the mesh. This will help achieve

a larger goal: simulation of surface tension, which has the effect of minimiz-

ing surface area for a given volume. Therefore, we also take into account the

potential reduction in surface area when deciding whether to flip an edge.

3.4 Handling non-manifold meshes

Since we do not use a half-edge data structure, we can represent surfaces which

are not strictly manifold. In particular, we allow more than two triangles to be
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incident to an edge. We do not, however, allow two triangles to share the same

three vertices, thus creating a zero volume tetrahedron. After an edge collapse

or edge flip, we search the surface meshes for such a situation, and delete the

offending triangles. We also delete triangles which may have repeated vertices

(“collapsed” triangles).

After this sweep, we deal with surfaces which may be connected at a single

vertex. These so-called “standalone” vertices can be detected if their incident

triangles are not all connected. If this is the case, we partition the set of incident

triangles into connected components. For each component, we create a duplicate

vertex and map all triangles in the component to this new vertex. A similar

procedure is described in [17]. We also move the duplicate vertices very slightly

towards the centroid of their associated triangles to avoid problems with collision

detection and resolution.

3.5 Axis-aligned bounding boxes

To increase the efficiency of collision detection, we use a hierarchy of axis-aligned

bounding boxes, as in [8]. We begin construction of the hierarchy by first cre-

ating bounding boxes for each triangle. These form the leaf nodes of a binary

tree hierarchy. We then sweep in alternating directions, pairing up adjacent

bounding boxes. For each pair, we create a parent node, taking the union of

the children’s extents to create the parent’s bounding box. We continue until

we are left with one root node whose bounding box covers all triangles in the

mesh.

When we wish to check a triangle for collisions, we check the triangle’s

bounding box against the root’s bounding box, recursively checking versus the

child nodes when the triangle’s box overlaps their bounding boxes. We proceed

down the binary tree until we end up with a set of leaf nodes — these are the
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triangles which could possibly interfere with the triangle being checked. We can

then perform edge-edge, point-triangle, or segment triangle collision detection

as required.
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Chapter 4

Boundary-Only Fluid

Dynamics

The explicit surface described so far could be passively advected on an Eulerian

grid, and the surface tension force could even be fed back into the underlying

simulation. However, one major advantage of explicit surfaces lies with the

possibility of a grid-free, purely Lagrangian fluid simulation, using only data

points on the fluid surface. In this section, we present our contribution to a

boundary-only fluid simulation, targeting small-scale phenomena. The benefit

of a boundary-only formulation is immediately apparent: we reduce the dimen-

sionality of the problem by one, from the discretization of a full 3D grid to that

of a 2D manifold. We can view this as a generalization of the shallow water

equations to arbitrary geometry. In particular, we will target flow dominated by

the free surface, e.g. thin sheets, small drops, etc. that are especially challenging

for volumetric methods.

This chapter will provide a broad overview of the discretization and our

approach. The next chapter will cover some of the mathematical details in

depth.



Chapter 4. Boundary-Only Fluid Dynamics 19

4.1 Velocity Discretization

Rather than sampling the velocity of the fluid surface on the vertices, we instead

choose to sample on the faces (the edges in 2D, the triangles in 3D). These

elements have well-defined normals, which permits us to easily measure the rate

of volume change of the fluid. If the fluid occupies a volume Ω with boundary

∂Ω and moves with velocity ~u then

d

dt
volume(Ω) =

∫
∂Ω

~u · n̂ (4.1)

This is reminiscent of the staggered MAC grid used in most grid-based incom-

pressible flow solvers, where velocity unknowns are arranged to easily estimate

this volume change integral. Note, however, that we sample the full vector

velocity on the mesh faces, not just the normal component.

When we need to actually move the mesh we move each vertex with the

average of its incident faces’ velocities. This motion is corrected by the collision

algorithm from the previous section, giving possibly modified end-of-time-step

positions for the vertices. We then take the difference between the end-of-time-

step and initial positions to find the average velocity over the time step for each

vertex. Finally, we set the new velocity of a mesh face to be the average of its

incident vertices. For an alternate method of surface advection, see [19].

4.2 Viscosity

Our model of the internal velocity field is such that it should contain no details

that are not apparent on the boundary (e.g. no vortices). The most conve-

nient physical approach is to specify that each component of the velocity is

harmonically interpolated from the boundary values. That is, the velocity sat-

isfies ∇2~u = 0 in the interior. This corresponds to Stokes flow, where we take
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the limit as viscosity dominates inertia in the interior of the flow, bringing it

into quasi-static equilibrium with the viscous stress. This model is plausible for

small-scale phenomena such as water drops. Since we never directly refer to

the velocity in the interior, however, we do not actually need to calculate this

interior velocity field.

The velocities on the fluid surface, however, should be affected by viscosity.

One method for simulating viscosity on the boundary would be to decompose

the velocity into rigid and non-rigid components, then applying a damping to

the non-rigid components. We have not implemented this method, and thus

cannot speak for its effectiveness, nor have we shown that it converges to the

usual method for viscosity simulation.

4.3 Surface Tension

Conventional fluid simulation techniques, based on volumetric grids, have se-

vere challenges in modeling surface tension effects, particularly with thin fluid

structures. For example, the recent method of Wang et al. [28] suffers from

huge computational and memory costs. Ad hoc procedural methods based on

blobbies [9] are also inadequate for dealing with thin structures such as sheets.

With an explicit surface, we are in a much better position to accurately treat

surface tension.

Rather than the conventional approach based on mean curvature driven flow

[20, 28], we model surface tension as an actual tension per unit length, permit-

ting a more accurate conservative discretization. In two dimensions, we add two

forces to each edge, proportional to a surface tension coefficient, parallel to the

directions of the two neighboring edges (see figure 4.1). In three dimensions,

we add three forces to a given face, corresponding to all neighboring faces. The

force is proportional to the surface tension coefficient times the edge length,
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in the direction normal to the edge and coplanar to the neighbouring face (see

figure 4.2). We note this exactly conserves the momentum of the volume of

fluid, unlike other approaches to surface tension, since these forces are always

balanced by the opposite forces on neighbouring faces.

Figure 4.1: 2D surface tension forces acting on the top edge

Figure 4.2: 3D surface tension forces acting on the shaded triangle

4.4 Volume conservation

Equation 4.1 gives us a clear constraint on the surface velocities for incompress-

ible flow: the rate of volume change should be zero. We could modify the normal
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component of velocities on the faces to ensure that
∫

∂Ω
~u · n̂ = 0 at each time

step. However, to avoid accumulated truncation error in the advection step, we

use a more robust technique to modify velocities to preserve volume.

At the start of the simulation, we calculate and store the exact volume of

each disjoint region of fluid. To compute the volume of fluid, first notice that the

integral of 1 over a closed domain is equal to the total volume of that domain:

volume(Ω) =
∫

Ω

1 dx

We transform this volume integral into a surface integral using the Gauss

divergence theorem, which can be written as:

∫
Ω

∇ · ~F dV =
∫

∂Ω

~F · n̂ dS

To leverage this theorem, we specify a function whose divergence equals 1,

for example:

~F (x) =
~x

3

∇ · ~F (x) = 1

We can now apply the divergence theorem to get a formula for volume in terms

of a surface integral:

volume(Ω) =
∫

Ω

1 dV =
∫

Ω

∇ · ~x
3
dV =

∫
∂Ω

~x

3
· n̂ dS

Thus we have a method for computing volume using only surface positions and

normals.

At every time step, after adding all other forces such as gravity and surface

tension, we move the vertices to candidate new positions and calculate the
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volume of each region based on those candidate positions. We measure how

different this is from the stored true volume for the region, and add a corrective

constant to the normal component of velocity on each face:

∆uN =
1
2

(
[true volume]− [predicted volume]

[current surface area]

)
(4.2)

~unew
i = ~ui + ∆uN n̂i for all i (4.3)

The factor of 1/2 is there to prevent us overshooting the correct volume in the

subsequent time step. This method for volume conservation is illustrated in

figure 4.3.

volume
preserving
impulses

volume
changing
force

Figure 4.3: Non-physical volume conservation in 2D

In any topological operation, we adjust the true volume stored for the fluid

accordingly. If two disjoint regions of fluid merge, we add their true volumes

together. If one region detaches into two separate regions, we split the old true

volume up between them according to the ratio of their current volumes.

Used by itself, this simple, non-physical heuristic can be surprisingly effec-

tive in providing the effect of incompressibility. However, it really is just a

post-process and not a true pressure solve—for example, it cannot handle the

hydrostatic case of fluid resting in a container under gravity. Thus while we

will keep this as a final correction to velocities, we require a more sophisticated
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method to constrain the velocities to be incompressible.

4.5 Mesh element masses

This section will introduce a more rigorous approach to volume conservation.

More mathematical details will be given in the next chapter. We begin by

defining a harmonic partition of unity in the fluid volume. Let the fluid volume

be Ω with boundary ∂Ω. For each mesh element i (edge in 2D, triangle in 3D),

we define a function φi(x) that is equal to 1 on element i and zero on the rest of

∂Ω, and is harmonic in the interior of the volume: ∇2φi(x) = 0 for x ∈ Ω. Note

that these are guaranteed to be non-negative functions, and they must add up

to 1 inside Ω, since their sum is harmonic and equal to 1 on all of ∂Ω. Thus

they are indeed a partition of unity.

We define the mass, mi, of mesh element i to be the integral of its basis

function times the density ρ which we will assume is constant and rescale to be

equal to 1.

mi =
∫

Ω

φi(x) dx (4.4)

Note that the sum of the masses is the integral of
∑
φi(x) ≡ 1 over the fluid,

i.e. the total mass of the fluid.

The actual calculation of mi can be done using the Boundary Element

Method, converting the volume integral to boundary integrals which can then

be easily performed on the mesh. At no time do we need to calculate any-

thing inside the volume of the fluid. See the next chapter for details on this

calculation.

Similar to our basis functions, “Harmonic Coordinates” [27] have recently

been used as a generalization to barycentric coordinates. However, use of these

coordinates requires the solution of Laplace’s equation over the entire domain
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using a volumetric grid, whereas our method requires only a boundary dis-

cretization of the variables.

4.6 Pressure

One interpretation of pressure in an incompressible fluid is that it is simply

the Lagrange multiplier which enforces the divergence-free constraint on the

velocity field. Thus if we can appropriately discretize this constraint, and define

an appropriate mass to accompany each velocity unknown (as we have done),

we can simply use Lagrange multiplier dynamics (e.g. [3]) to get the full effect

of pressure. We will thus focus on capturing the incompressibility constraint

now.

We calculated the mass mi of each mesh face above. Intuitively, if we think

of that as defining a volume of fluid associated with each face and suppose that

the velocity field in the interior is as smooth as possible (i.e. there exist no

arbitrary vortices or other features that don’t show up on the boundary), it

makes sense that we would want this volume to stay constant. We therefore

propose the constraint dmi/dt = 0.

We conjecture that dmi/dt is in fact just a linear combination of the mesh

velocities, so we have a simple linear constraint to enforce. Note that summing

up these constraints gives us that the total mass of the fluid is conserved, as

expected. (However, again due to truncation errors in advection we still apply

a post-correction to the velocities described in section 4.4 to closely track the

true mass.) In section 5.3 we provide a more mathematical justification for this

constraint, relating it to the classical statement ∇·~u = 0, but admit we are still

stymied in making this fully rigorous. Also, in section 5.4 we discuss calculating

the coefficients of the face velocities in the expression dmi/dt, but here again

we have not yet worked out all the details.
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We further note that if dmi/dt = 0, advecting the faces conserves the linear

momentum mi~ui (up to truncation error). As a result, simulations without this

constraint sometimes display odd artifacts of momentum loss or gain.
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Chapter 5

Incompressibility via the

Boundary Element Method

5.1 BEM in two dimensions

We begin with a description of the standard Boundary Element Method in two

dimensions (see [6] section 2.6 for an alternate introduction).

Let Ω be a polygonal domain with boundary ∂Ω. Let φ be a harmonic basis

function, i.e. ∇2φ(x) = 0 for x ∈ Ω. We will assume that φ is constant over

each boundary segment (polygon edge).

When x ∈ Ω \ ∂Ω,

φ(x) =
∫

Ω

φ(y)δ(x− y)dy =
∫

Ω

−φ(y)∇2G(x− y)dy

for Green’s function, G(p) = − ln ‖p‖
2π . Using integration by parts twice yields:

φ(x) =
∫

∂Ω

∇φ(y) · n̂(y)G(x− y)dy −
∫

∂Ω

φ(y)∇G(x− y) · n̂(y)dy −∫
Ω

∇2φ(y)G(y − x)dy

and since ∇2φ(y) = 0 for y ∈ Ω,

φ(x) =
∫

∂Ω

∇φ(y) · n̂(y)G(x− y)dy −
∫

∂Ω

φ(y)∇G(x− y) · n̂(y)dy (5.1)
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When x ∈ ∂Ω, things are not so simple, however, it can be shown that

c(x)φ(x) =
∫

∂Ω

∇φ(y) · n̂(y)G(x− y)dy −
∫

∂Ω

φ(y)∇G(x− y) · n̂(y)dy

where c(x) is the fraction of the neighbourhood of x that is inside Ω. However,

as we shall soon see, it will not be necessary to compute this fraction. Introduce

a set of basis functions {ψ} such that φ(x) =
∑

j φjψj(x) where φj are constant

values of φ on the boundary segments ∂Ωj . The previous equation becomes:

c(x)
∑

j

φjψj(x) =

∑
j

[(∫
∂Ω

G(x− y)ψj(y)dy
)
∇φj · n̂

]
−

∑
j

[(∫
∂Ω

∇G(x− y) · n̂(y)ψj(y)dy
)
φj

]

Evaluating at x = xi:

ci
∑

j

φjψj(xi) =

∑
j

[(∫
∂Ω

G(y − xi)ψj(y)dy
)
∇φj · n̂

]
−

∑
j

[(∫
∂Ω

∇G(y − xi) · n̂(y)ψj(y)dy
)
φj

]

If we let ψj = 1 on edge ∂Ωj and zero on other edges, we can rewrite this

equation in matrix notation:

Cf = Gf ′ − Ĥf
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where

f = a vector of values of φ at edge midpoints, e.g. φj

f ′ = a vector of values of ∇φ · n̂ at edge midpoints, e.g. ∇φj · n̂j

C = diag(ci)

Gij =
∫

∂Ωj

G(y − xi)dy

Ĥij =
∫

∂Ωj

∇G(y − xi) · n̂(y)dy

Letting H = Ĥ + C, we get the system

Hf = Gf ′

The integrals Gij and Ĥij could be approximated with a quadrature rule, how-

ever we found that this introduces unacceptable numerical error. Therefore, we

compute all of the integrals above analytically, and use theses values for Gij

and Ĥij except for Ĥii. To compute these diagonal elements, we note that if f

is constant, then f ′ = 0. In this case, Hf = 0, so H must have zero row sums.

Thus Hii = −
∑

j 6=i Ĥij , eliminating the need for computing both Cii and Ĥii.

Once these matrices are populated we can rearrange this linear system to

solve for any unknown constant values of φ and ∇φ · n̂ on the edges, resulting

in a dense linear system:

Av = z

This linear system is NxN in the number of boundary segments. In the

sequel, we will be given values for f (usually a vector with one non-zero entry),

and we will solve for values of f ′ by inverting G:
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f ′ = G−1Hf

5.2 Mass Calculation

In this section we will demonstrate how to compute a measure of mass for

one face of a polytope. We do this by defining a harmonic basis function corre-

sponding to the face, and calculating the integral of this function over the entire

computational domain. As we shall see, this integration can be done using only

boundary integrals, without having to compute anything inside the domain. In

our discussion, the computational domain refers to the volume of the fluid, and

the boundary refers to the fluid surface.

Let Ω be the fluid domain with boundary mesh ∂Ω. We define a set of

harmonic basis functions {φ} as follows. Each face i has a corresponding φi

which has the value 1 on face i (∂Ωi), and the value 0 on all other edges. In

other words,

∇2φi(x) = 0 for x ∈ Ω

φi(x) =

 1 for x ∈ ∂Ωi

0 for x ∈ ∂Ω \ ∂Ωi

Given values for φi on the boundary in this way, the Boundary Element Method

can be used to obtain values for ∇φi ·n̂ on the boundary. This gives the following

integral expression for φi in the interior of the fluid:

φi(x) =
∫

∂Ω

∇φi(y) · n̂(y)G(x− y)dy −
∫

∂Ω

φi(y)∇G(x− y) · n̂(y)dy

where G is the fundamental solution of the Laplacian, G(x) = − log ‖x‖/(2π)

in 2D and G(x) = 1/(4π‖x‖) in 3D. We then integrate this over the fluid region
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to define our mass measure for the face:

mi =
∫

Ω

φi(x)dx (5.2)

Subsituting in the boundary integral expression gives:

∫
Ω

φi(x)dx

=
∫

Ω

∫
∂Ω

∇φi(y) · n̂(y)G(x− y)dydx−
∫

Ω

∫
∂Ω

φi(y)∇yG(x− y) · n̂(y)dydx

=
∫

∂Ω

∇φi(y) · n̂(y)
∫

Ω

G(x− y)dxdy −
∫

∂Ω

φi(y)
∫

Ω

∇yG(x− y)dx · n̂(y)dy

We can turn these volume integrals into surface integrals using the gradient

and divergence theorems:

∫
Ω

∇yG(x− y)dx =
∫

Ω

−∇xG(x− y)dx =
∫

∂Ω

−G(x− y)n̂(x)dx

and:

∫
Ω

G(x− y)dx =
∫

Ω

∇x · F (x− y)dx =
∫

∂Ω

F (x− y) · n̂(x)dx

where F is an antiderivative ofG, the fundamental solution: F (r) = − 1
4π

(
r ln ‖r‖ − r

2

)
in 2D and F (r) = r/(8π‖r‖) in 3D. Now we have mi in terms of (nested) bound-

ary integrals:

mi =∫
∂Ω

∇φi(y) · n̂(y)
(∫

∂Ω

F (x− y) · n̂(x)dx
)
dy +∫

∂Ω

φi(y)
(∫

∂Ω

G(x− y)n̂(x)dx
)
· n̂(y)dy
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We have closed forms for G and F , φi is specified on the boundary, and we can

obtain values for ∇φi · n̂ on the boundary via the BEM. Using the fact that

the φi functions are constant along faces, we can apply a quadrature rule by

evaluating at midpoints xj :

mi =∑
j

[
∇φi(xj) · n̂jAj

(∫
∂Ω

F (x− xj) · n̂(x)dx
)

+

φi(xj)
(∫

∂Ω

G(x− xj)n̂(x)dx
)
· n̂jAj

]

where nj are face normals, Aj are face areas (lengths in 2D), and xj are face

midpoints. We compute the integrals of F (x − y) · n̂(x) and G(x − y)n̂(x)

analytically, similar to the elements of our BEM matrices.

We now have enough information to compute the volume integral of a face’s

basis function, giving us the face’s mass. Figure 5.1 shows the computed masses

for a 2D square which has been subdivided into 20 edges.

5.3 Enforcing Incompressibility

As discussed in section 4.6, we ensure incompressibility of the fluid by enforcing

a linear constraint on the velocity of the fluid at the surface. In this section,

we will discuss the formulation and properties of such a linear constraint, in

particular how it relates to the classical statement of incompressibility, ∇·~u = 0.

Note that we have not yet implemented this method and thus cannot provide

support for the conjectures made here. Hypothesized implementation details

are covered in the following section.

The continuum statement of our proposed dmi/dt = 0 constraint is as fol-
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Figure 5.1: Computed element masses for square geometry

lows. Let φ(x) be harmonically interpolated in Ω from its boundary values,

and suppose that those boundary values are advected along with the boundary:

Dφ/Dt = 0 on ∂Ω. Then we require that the integral of φ(x) over the volume

remains constant:
d

dt

∫
Ω

φ(x) dx = 0 (5.3)

Using the Green’s function H(x, y) for the problem we can express φ(x) as a

boundary integral:

φ(x) =
∫

∂Ω

H(x, y)φ(y) dy (5.4)

Here ∇2
xH(x, y) = 0 in Ω and H(x, y) = 2δ(x− y) for x, y on the ∂Ω. Then the

constraint is:

0 =
d

dt

∫
Ω

∫
∂Ω

H(x, y)φ(y) dy dx

=
∫

∂Ω

(∫
∂Ω

H(x, y)φ(y) dy
)
~u(x) · n̂(x) dx+

∫
Ω

∫
∂Ω

H(x, y)
∂

∂t
φ(y) dy dx
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Using the δ property of H for x ∈ ∂Ω in the first integral, and the material

derivative ∂φ/∂t+ ~u · ∇φ = 0 on the boundary in the second, we get:

0 =
∫

∂Ω

φ(x)~u(x) · n̂(x) dx−
∫

Ω

∫
∂Ω

H(x, y)~u(y) · ∇φ(y) dy dx

Notice the second term is in fact the integral of the harmonic interpolant of the

boundary values of ~u·∇φ. We assume—but do not have a rigorous justification—

that under the assumption of ~u being harmonic itself in the interior, this integral

is actually exactly equal to the integral of ~u · ∇φ. In any case, it is a plausible

estimate. We then would have:

0 =
∫

∂Ω

φ(x)~u(x) · n̂(x) dx−
∫

Ω

~u(x) · ∇φ(x) dx

=
∫

Ω

φ(x)∇ · ~u(x) dx

where we used integration by parts in the last step. If this is zero for arbitrary

φ, then ∇ · ~u = 0: the fluid is incompressible.

5.4 Discrete Incompressibility

We note again that details presented this section have not yet been imple-

mented, and thus cannot be verified. We have yet to formulate a consistent

finite difference method over our piecewise constant function approximations.

We now need to calculate dmi/dt in terms of the face velocities. From the

previous section, taking φ = φi, this is:

dmi

dt
=

d

dt

∫
Ω

φi(x) dx

=
∫

∂Ω

φi(x)~u(x) · n̂(x) dx−
∫

∂Ω

∫
Ω

H(x, y) dx~u(y) · ∇φi(y) dy
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where we switched the order of integration in the second integral. The Green’s

function H(x, y) integrated over x ∈ Ω and y over a mesh face j is nothing other

than the mass mj . Also using the fact φi is 1 or 0 over the boundary faces, we

can approximate the expression as:

dmi

dt
= ~ui · n̂i −

∑
j

mj~uj · ∇φi(xj) (5.5)

The Boundary Element Method we mentioned earlier lets us determine the

normal component of ∇φi, and the tangential component can be estimated by

finite differences along the mesh. Exact details for using a finite difference

method over a piecewise linear boundary with constant function values have yet

to be worked out.

We can express dmi/dt = 0 for all i as a matrix equation Du = 0, where

the coefficients of D come from the previous equation and u is the vector of

all face velocities. To constrain this to zero, we introduce Lagrange multipliers

(pressures) and with the diagonal mass matrix M , project as follows:

DM−1DT p = Du

unew = u−DTM−1p

which looks exactly like a standard pressure projection step.
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Chapter 6

Results

Figures in this section are screen captures from a 3D OpenGL application de-

veloped to test our method, except for the “Enright Test” (see below), which

was rendered using pbrt [24].

Our surface tracking method can reliably handle basic topological changes,

such as merging, separation and genus increase. Theses examples are intended

only to highlight our surface tracking algorithm, and thus there is no underlying

physics simulation beyond surface tension and the heuristic volume conservation

method outlined in section 4.4. Figure 6.1 shows two surfaces merging into one.

Figure 6.1: Surface merging

Figure 6.2 shows a surface mesh separating.

Figure 6.3 demonstrates genus change: a sphere turning into a torus.

Finally, we subjected our method to the “Enright Test” [12] by advecting
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Figure 6.2: Surface separation

Figure 6.3: Genus change

a surface passively through a velocity field. In this test, vertex velocities were

taken directly from a closed-form function, not from triangle velocities as dis-

cussed earlier. We also did not include effects due to surface tension, nor did we

add the heuristic volume conservation method. We advected the surface using

a fourth-order explicit time integration scheme. The test began with around

200 vertices on the surface, and had about 1500 vertices at its most extended

(compared to a 1003 grid with 40 particles per grid cell in the original test).

Figure 6.4 shows our results at frames 0, 25, 35, 50, 60, 75, 95, 100, 105, 115,

125 and 150. The volume enclosed by the surface at frame 150 is 98.8% of the

volume at frame 0.
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Figure 6.4: The “Enright Test”
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Chapter 7

Conclusions

Contributions to explicit surface tracking and incompressible fluid flow via the

BEM were presented. A fail-safe scheme for surface separation via cloth collision

algorithms allows us to neatly sidestep severely degenerate cases common in

most explicit surface tracking methods. This in turn, makes the topological

changes necessary in fluid simulation tractable.

Local mesh improvement techniques are employed to maintain an accurate

discretization of the fluid, including edge subdivision, edge collapse and edge

flipping. We perform these improvement operations only if it does not result in

a mesh intersection.

Two techniques for volume conservation were discussed: a simple heuristic

adjustment of normal velocities, and a more rigorous scheme using Lagrange

multiplier dynamics. Using a Boundary Element Method, we defined a per-face

mass function, and conjectured that constraining each of these mass functions

to be constant over time would conserve volume. This has not been fully imple-

mented, nor has this constraint formulation been related back to the standard

statement of incompressibility. It is not yet clear how the assumptions made on

the nature of the fluid flow will restrict the usability of this method for generic

cases. We also introduced a method for simulating surface tension, taking ad-

vantage of the explicit surface discretization.
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7.1 Future work

An obvious advantage of our method is that it provides a framework for adding

incremental improvements, while still being able to rely on guaranteed surface

separation. This allows us to pick and choose further cases to handle. For

example, an immediate next step would be to handle merging from edge-edge

collisions where the edge neighbourhoods are not distinct. This could result in

some degenerate situations, but we would be able to choose which situations can

be handled and which are “too degenerate” and should instead be separated by

the cloth collision code.

Some further future steps include:

• Plug the surface tracking method into a grid-based fluid simulation.

• Prove that dm
dt = 0 is equivalent to ∇ · u = 0.

• Implement the discrete version of incompressibility as in section 5.4.

• Implement the face moving algorithm of [19] for the advection phase.

• Add effects of viscosity on the surface, as described in section 4.2.
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