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Abstract

Continuous collision detection (CCD) between deforming triangle
mesh elements in 3D is a critical tool for many applications. The
standard method involving a cubic polynomial solver is vulnerable
to rounding error, requiring the use of ad hoc tolerances, and nev-
ertheless is particularly fragile in (near-)planar cases. Even with
per-simulation tuning, it may still cause problems by missing colli-
sions or erroneously flagging non-collisions. We present a geomet-

rically exact alternative guaranteed to produce the correct Boolean
result (significant collision or not) as if calculated with exact arith-
metic, even in degenerate scenarios. Our critical insight is that only
the parity of the number of collisions is needed for robust simula-
tion, and this parity can be calculated with simpler non-constructive
predicates. In essence we analyze the roots of the nonlinear sys-
tem of equations defining CCD through careful consideration of
the boundary of the parameter domain. The use of new conserva-
tive culling and interval filters allows typical simulations to run as
fast as with the non-robust version, but without need for tuning or
worries about failure cases even in geometrically degenerate sce-
narios. We demonstrate the effectiveness of geometrically exact
detection with a novel adaptive cloth simulation, the first to guar-
antee to remain intersection-free despite frequent curvature-driven
remeshing.
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1 Introduction

We consider continuous collision detection (CCD) as the process
of detecting if a mesh moving between initial and final configura-
tions comes into contact with itself at any point in time. CCD is a
critical element of many algorithms for physical simulation, when
a non-intersecting mesh invariant must be maintained, and for path
planning, when the feasibility of a path must be guaranteed. Beyond
efficiency, a good CCD algorithm should therefore be safe: no false
negatives, i.e. missed collisions, can be tolerated. It should also be
accurate in the sense of minimizing the number of false positives,
i.e. non-collisions being flagged as collisions, for the effectiveness
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Figure 1: Four layers of cloth folding over a spinning ball, with
on-the-fly adaptive remeshing driven by curvature, provide an ex-
ample where geometrically exact continuous collision detection has
advantages over previous techniques.

and efficiency of algorithms using CCD. This paper provides (1)

the first CCD algorithm to guarantee safety and accuracy despite
using rounded floating-point arithmetic, under the paradigm of Ex-
act Geometric Computation described by Yap [2004]: we compute
the correct Boolean answer (collision or not) as if exact arithmetic
were used. As part of our CCD algorithm we also present (2) a
new, efficient, geometrically exact ray vs. bilinear patch intersec-
tion parity test, which can be used to precisely determine if a point
is inside a quad-mesh-bounded volume or not. We also introduce
(3) a new adaptive cloth simulation simulation method which main-
tains intersection-free meshes despite remeshing, as an example of
the practical advantage of geometrically exact CCD, and show there
is no performance penalty for using geometrically exact CCD.

We restrict our attention to triangle meshes in 3D, with an
intersection-free initial configuration, so CCD can be reduced to
two primitive tests: does a moving point hit a moving triangle, or
does a moving edge hit another moving edge? Note that we ig-
nore the connectedness of the mesh: multiple meshes are treated
as lumped together, so there is no difference between inter-object
collision and self-collision. We further assume that vertices move
with constant velocity during the time step and that triangles are
linearly interpolated between their vertices at intermediate times.
If a collision does happen, we do not require its precise time and
location: simple approximations detailed below are quite adequate
for collision resolution.

2 Related Work

2.1 The Cubic Solver Approach

The most popular current method for continuous collision detection
for triangle meshes was introduced by Provot [1997]. First a cubic
equation is solved to determine coplanarity times, then the interpo-
lated geometry is checked for overlap at these times to determine
if a collision actually occurs. Bridson et al. [2002] significantly
reduced the number of false negatives due to floating-point error
by introducing error tolerances in the root-finding algorithm used
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to solve the cubic equation and using a static distance query at the
coplanarity times: collisions are reported if the mesh elements are
within some small distance of each other.

However, the minimum error tolerances required for safe CCD are
difficult to predict in advance. Especially in cases where the prim-
itives remain nearly coplanar for the entire step, such as hair seg-
ments [Selle et al. 2008] sliding against each other on skin, cancel-
lation error in simply computing the coefficients of the cubic can
eliminate almost all precision in the rest of the calculation. (Of
course, in constantly coplanar cases, the method breaks down en-
tirely.) Even if the cubic is represented exactly, its roots are in
general irrational and must be rounded to floating-point numbers.
Completing the error analysis with further bounds on the construc-
tion of the intermediate geometry at the rounded coplanarity time,
bounds on the calculated barycentric coordinates of closest points,
and then bounds on the distance appears intractable. In practice, a
usable tolerance can typically be found by trial and error for a large
class of similar simulations (e.g. cloth animations), but different ap-
plications such as adaptive cloth, hair, or liquid surface tracking can
require enervating per-simulation adjustment, which makes writing
a general purpose library especially tricky.

The cubic approach naturally gives false positives if the tolerance
is high enough to work. If the tolerance is too high (a definite pos-
sibility if restricted to single precision arithmetic, for example) this
can seriously slow down or even completely stymie collision reso-
lution: tuning the tolerance for a new simulation isn’t always easy.

A fully symbolic implementation could in principle resolve the
above problems, apart from the degenerate constantly coplanar
case, but the computational overhead would be drastic. In this paper
we show a different approach to CCD can be fully safe and accurate
without need for tuning, yet run just as fast.

2.2 Other Work in Continuous Collision Detection

Stam [2009] extended the cubic solver approach to explicitly test if
two mesh elements approach closer than a given distance during the
time step, resulting in a sixth degree polynomial to solve for poten-
tial collision times. This helps to resolve the coplanar-motion de-
generacy mentioned above, but poses an even less tractable round-
ing error analysis problem for safe CCD, suffers from the same
false-positive issues, and is a heavier burden computationally.

Alternative methods for computing the time of possible collisions,
such as conservative local advancement [Tang et al. 2010a] offer
potential speed-ups over the cubic solver approach, but don’t ro-
bustly deal with rounding error, relying on user-set tolerances to
account for slight non-planarities in intersection/proximity testing.

The constant vertex velocity model underlying this paper and the
cubic solver approach is perhaps the most natural for general de-
formable motions. However, for rigid bodies, constant linear and
angular velocity of the entire model makes more sense — though
the helical trajectories of vertices are somewhat more difficult to
handle. Zhang et al. [2007] demonstrate significant acceleration
of conservative advancement using the Taylor model generalization
of interval arithmetic, but again rely on user-set tolerances to cope
with the inexact solve and rounding error.

Brochu & Bridson [2009a; 2009b] suggest using a simplicial space-
time mesh to model the motion of the mesh, reducing CCD to sim-
plex intersection tests in four dimensions. While these tests could
be computed exactly with known determinant-based predicates, this
approximation leads to an unintuitive model for the mesh geome-
try at intermediate times: mesh edges develop kinks and triangles
develop folds; normals do not vary continuously over time. This

precludes the use of CCD culling techniques which assume the ge-
ometry is linearly interpolated at intermediate times [Tang et al.
2010b]. More importantly, the unusual model of motion causes un-
intuitive and undesired collisions. For example, two close but par-
allel triangles can move together with no collisions in the standard
model, but their non-standard model can crease the triangles in an
inconsistent way, causing a hard-to-resolve collision.

Raytracing can be seen as a special case of CCD, generally easier
since the geometry is static relative to the “motion” of the light ray.
We highlight Ramsey et al.’s ray-bilinear patch test [2004] as par-
ticularly relevant, as our 3D CCD test in fact relies on ray-bilinear
patch intersection parity tests. However, our new approach is geo-
metrically exact and fully robust, unlike Ramsey et al.’s constructive
approach which is vulnerable to rounding error; on the other hand
our test only provides the parity of the number of intersections, not
their location.

The related problem of culling collision tests is very well studied
in computer graphics. Several approaches using bounding volume
hierarchies have been proposed, as well as culling using bounding
boxes with regular grids, sweep-and-prune testing, and sweeping-
plane testing: see Ericson’s book for example [2004]. We observe
that except for axis-aligned methods which only use comparisons
(no arithmetic), the culling literature generally does not worry about
verifiably handling rounding error. We briefly address this issue
later, but emphasize our focus is the correctness of the core element
vs. element test, not the efficiency of broader culling methods.

2.3 Exact Geometric Computation

The cubic solver approach is an example of a constructive geomet-
ric algorithm, in that intermediate geometric quantities are com-
puted (such as planarity times and interpolated positions) and used
in a sequence of calculations. In this, as in many other geometric
tests, the necessary rounding analysis to get a provably correct al-
gorithm (accounting for the errors in all intermediate quantities) is
intractable while the symbolic or exact arithmetic version would be
too slow (necessitating radicals in this case).

An alternative approach is to decompose a geometric test into a set
of simpler predicates, providing discrete answers such as “does a
point lie to the left, to the right or on a line?” rather than continuous
values. Approximate continuous values may be computed along-
side, of course, but the discrete correctness of the algorithm as a
whole relies only on the correctness of the discrete answers from
the predicates. Several approaches to defining and implementing
correct predicates exist; the most successful is the paradigm of Ex-
act Geometric Computation (EGC). We recommend Yap’s article as
an excellent review of the topic [2004], and the CGAL project for
examples of applications and ongoing research [CGA ]. In brief, a
geometrically exact predicate must return the same discrete answer
as if computed with exact arithmetic (from the floating point input)
even if under the hood it takes a faster approach. Our method is
the first geometrically exact CCD test for general CCD, but exact
predicates for other problems have long been used in graphics and
elsewhere.

Building on previous work by Dekker [1971] and Priest [1991],
Shewchuk presented practical systems for exactly evaluating a
number of geometric predicates needed for Delaunay mesh genera-
tion [1996]. These sign-of-determinant predicates are equally use-
ful for detecting self-intersections for triangle meshes. When higher
precision than provided by floating point hardware is required, the
system uses floating-point expansions (the sum of a sequence of
floats) leveraging fast floating-point hardware even for exact arith-
metic.



In this paper we decompose CCD into a set of simplex intersection
tests, based on the same standard sign-of-determinant tests, together
with the evaluation of the sign of a simple polynomial function.
No radicals or even divisions are required, making it straightfor-
ward to implement exactly using expansion arithmetic like Priest
and Shewchuk. Furthermore, through the use of fast interval arith-
metic filters, we can rapidly find the provably correct signs with-
out need for high precision expansions in all but the most extreme
cases, leading to highly efficient execution on average.

3 Continuous Collision Detection in 3D

In 3D CCD, there are two fundamental collisions tests: point-
triangle and segment-segment. The input to each are the location
of the vertices at the beginning and end of the time step. We denote
the location in space of vertex i at the beginning of the time step as
xi, and its location at the end of the time step as ˆ

xi. Then for each
test, we are given 8 points: x0, x1, x2, x3, ˆx0, ˆx1, ˆx2, and ˆ

x3. For
convenience, we will normalize the time step so that t 2 [0, 1]. The
constant velocity model of motion gives the location of a vertex at
an intermediate time as xi(t) = (1� t)xi + tˆxi.

First consider the point-triangle test. In the following we will index
the moving vertex with 0, and the triangle vertices as 1, 2, and 3.
Any point on the triangle can be written as: x(u, v) = (1 � u �
v)x1 + ux2 + vx3, where x1, x2, and x3 are the triangle corners,
and u, v 2 [0, 1] with u + v  1. The vector between a point on
the moving triangle defined by the coordinates (u, v) and the other
vertex, at time t, can then be written as:

F(t, u, v) =x0(t)�
⇥
(1� u� v)x1(t) + ux2(t) + vx3(t)

⇤

=(1� t)x0 + tˆx0

� (1� u� v)
�
(1� t)x1 + tˆx1

�

� u
�
(1� t)x2 + tˆx2

�

� v
�
(1� t)x3 + tˆx3

�
.

This is a tri-affine function which is zero precisely when the ver-
tex lies on the triangle. The domain for the point-triangle test is
therefore ⌦ = [0, 1]⇥ {u, v � 0 | u+ v  1}, a triangular prism.

A similar tri-affine function can be defined for the segment-segment
collision test, the vector between the point at fraction u 2 [0, 1]
along one segment and the point at fraction v 2 [0, 1] along the
other, at time t 2 [0, 1]. The domain is then [0, 1]3, the unit cube.

CCD then amounts to discovering if such a function has a root in
the domain, a point in ⌦ which F maps to 0. We make an impor-
tant simplification: we report a collision if there is any zero on the
domain of the boundary (i.e. at the initial or final time, or at any
edge or endpoint of the geometry) or if there is an odd number of
roots in the interior. We justify ignoring the case of a nonzero even
number of interior roots by noting that an edge-triangle intersection
cannot be introduced in the mesh if the total number of collisions
between the edge and triangle has even parity. Likewise a vertex
cannot enter or exit a closed mesh without either colliding with an
edge or colliding with the triangles an odd number of times, and
therefore with at least one triangle an odd number of times, so our
method cannot miss essential collisions in this category either; see
the supplemental material for more discussion.

3.1 Determining Root Parity

Write the image of ⌦ under F as F(⌦) = {y | y = F(x),x 2 ⌦},
and similarly F(�) = {y | y = F(x),x 2 �} for the image of the
domain boundary � = @⌦.

Figure 2: Root parity test. In this case there are no roots in the
domain, so the origin is outside of F(⌦).

Figure 3: One and two roots in the domain. A ray cast from the
origin will have odd and even parity, respectively.

If F were smooth and one-to-one, determining if 0 2 F(⌦) could
be done by counting the number of crossing of a ray to infinity from
0 through the boundary image F(�): an odd number of crossings
indicates a root by the usual Jordan-Brouwer Theorem argument.
However, our F may not be one-to-one: the image of ⌦ can “fold
over itself”. The more general Brouwer topological degree theory
[O’Regan et al. 2006] can be applied in this case. It is the parity of
the ray crossings with F(�) that gives us the parity of the number of
roots: the sum of an odd number of intersections for each separate
root leads to an odd total if and only if there is an odd number of
roots — with the proviso that if 0 2 F(�), i.e. we have a root on
the domain boundary, we always report a collision. More formally:

Root Parity Lemma. Suppose ⌦ ⇢ Rn is an n-polytope.

Suppose F : ⌦ 7! Rn is C2, has p < 1 roots in ⌦, has no roots
on � = @⌦, and has non-singular Jacobian at each root.

Suppose R is a ray from 0 to infinity. Call any point x 2 � such
that F(x) 2 R a crossing point, then the crossing number q is
the number of crossing points. Suppose that F(�) is smooth at the
image of any crossing points, that the ray is not tangent to F(�) at
any these points, and that q <1.

Then, p ⌘ q mod 2.

We offer a sketch of a proof of the lemma, and that it applies to the
particular functions we need for CCD, in the supplemental material.

This lemma also describes our algorithm. We report a collision if
the image of the boundary F(�) passes through 0, and otherwise
cast a ray from 0 in an arbitrary direction, and then count the num-
ber of crossings of the ray though F(�), choosing a different direc-
tion and trying again if any crossings are tangent or lie on corners.
Figures 2 and 3 illustrate this approach for the 2D case, showing
cases where we have zero, one, and two roots in the domain.

We transform the boundary of these domains (cube or triangu-
lar prism) by the corresponding function F to get a generalized



hexahedron or prism, and test for ray crossings on each of their
faces. The hexahedron has potentially non-planar bilinear patches
for faces (the restriction of the tri-affine function to a face of the
domain is bi-affine), and the prism is composed of three bilinear
patches and two triangles. Computing ray-triangle crossings can be
done with exact arithmetic — however, we know of no prior prac-
tical method for quickly and exactly computing the crossings of a
ray through a bilinear patches, or even the parity of the number
of crossings which is all we need. We thus introduce an efficient
method for exactly computing this parity.

3.2 Ray-Bilinear-Patch Crossing Parity Testing

We first define a continuous scalar function �(x) which is positive
if x is on one side of the patch and negative on the other side, and
to permit exact evaluation with floating-point expansions define it
using only multiplication, addition, and subtraction — see appendix
A for the derivation.

Next consider the tetrahedron spanned by the four corners of the
bilinear patch. It is composed of two pairs of triangles, one pair
corresponding to each side of the bilinear patch. For the “positive”
triangle pair, any point x on either triangle has the property that
�(x) � 0, and vice versa for the “negative” pair of triangles. For
the test, we consider two cases depending on whether the ray origin
0 lies inside the tetrahedron or not — which can be determined
directly from standard sign-of-determinant “orientation” predicates
with the tetrahedron’s triangular faces.

If the ray origin 0 lies inside the tetrahedron, we can determine the
sign of �(0) and replace the ray-patch test with two ray-triangle
tests, using the triangles corresponding to the opposite sign of �(0).
Ray-triangle intersection can also be broken down into determinant
predicates [Guigue and Devillers 2003]. If there is an intersection
between the ray and either triangle, then the ray must also pass once
through the bilinear patch.

If instead the ray origin lies outside of the tetrahedron, we can use
either set of triangles as an equivalent proxy for the bilinear patch.
The parity of the number of intersections between the ray and the
triangle pair matches the parity of the number of intersections be-
tween the ray and the bilinear patch.

Pseudocode for the test is given in algorithm 1; figure 4 illustrates
the 2D analog. Since it relies only on determinants and the evalu-
ation of �, i.e. just multiplication and addition/subtraction, the test
can be evaluated using floating-point expansions to give the geo-
metrically exact result.

Algorithm 1 Ray-bilinear-patch crossing parity

Given: Ray origin 0, direction R, and a bilinear patch.
Form the tetrahedron from the bilinear patch corner vertices.
Let F+

1 , F+
2 be the tetrahedron faces where � � 0.

Let F�
1 , F�

2 be the tetrahedron faces where �  0.
if 0 is inside the tetrahedron then

if �(0) > 0 then

return intersect( 0, R, F�
1 ) _ intersect( 0, R, F�

2 )
else

return intersect( 0, R, F+
1 ) _ intersect( 0, R, F+

2 )
end if

else

{Use either pair of triangles}
return intersect( 0, R, F+

1 ) XOR intersect( 0, R, F+
2 )

end if

Figure 4: A 2D analog of the ray-vs-bilinear-patch parity test.
Rays A and B have origins on the “negative” side of the patch,
and so we test against the proxy geometry on the “positive” side.
Ray A intersects both the patch and the proxy geometry, while B
intersects neither. Rays C and D have origins outside the bounding
simplex, and so can be tested with either proxy geometry.

3.3 Putting it Together

We now have the tools we need for determining the intersection
parity of a ray versus a set of bilinear patches and triangles. For
segment-segment CCD, our algorithm runs 6 ray-vs-patch tests for
the faces of the hexahedron, and for point-triangle CCD, we run 3
ray-vs-patch and 2 ray-vs-triangle tests for the faces of the triangu-
lar prism, and determine the parity of the total number of intersec-
tions. If we have an odd parity, we know there is an odd number
of roots in the domain, and so we must flag this as a collision. Al-
gorithm 2 shows the point-vs-triangle test (the segment-vs-segment
test is analogous).

There are a few special cases we must watch for. If the origin lies
exactly on a patch or a triangle (i.e. there is a root on the boundary
of the domain), then we report the collision and skip the ray testing.
This includes, for example, the fully degenerate cases of exactly
planar motion (such as two edges sliding into each other along a
flat surface) that entirely defeats the cubic solver. In our simulations
this type of collision is vanishingly rare unless artificially induced.

We must also take care if the ray hits an edge shared between two
patches, between two triangles (acting as proxy geometry in the
ray-vs-patch test), or between a patch and a triangle. If this occurs,
we will see two positive ray intersection tests. In the context of
inside-outside testing, this may or may not be correct (see figure 5).
Fortunately, since we are using exact arithmetic, we can precisely
detect these degenerate cases (one barycentric coordinate will be
exactly zero). In such a case, we simply choose a new ray direction
at random and run the test again. Again, in our testing this happens
only extraordinarily rarely.

4 Implementation

Fast implementation of exact intersection testing is crucial for mak-
ing our approach practical. Computing intersections with expan-
sion arithmetic is expensive, so we use a filter: we evaluate the
determinants and � first with interval arithmetic, only switching to
exact expansions when the sign is indeterminate (the final interval
contains zero). See Brönnimann et al. for the case of determinants
[2001].

To avoid repeatedly switching the rounding mode during interval
arithmetic, we use the standard “opposite trick”, storing the neg-
ative of the lower bound and defining new operations that rely on
one rounding direction only. We have also experimented with using
SIMD vectors to store the intervals and using vector intrinsics for
arithmetic operations [Lambov 2006; Goualard 2010], but found



Figure 5: Two rays, each hitting two segments at their common
endpoint. If we are testing each segment individually, then in both
cases the parity of ray intersections is even. Here the parity of
intersection count cannot determine whether points A and B are
inside the quadrilateral. Perturbing the rays slightly would produce
the correct results in both cases.

Algorithm 2 Point-triangle collision test

Given: corner vertices of the domain, X
Create ray (0,R) with arbitrary direction R

S  0

for i = 1! 3 do

Form bilinear patch i with appropriate F(X)

pi  intersection parity of ray (0,R) vs bilinear patch i
S  S + pi

end for

for j = 1! 2 do

Form triangle j with appropriate F(X)

if Ray (0,R) intersects triangle j then

S  S + 1

end if

end for

return S ⌘ 1 (mod 2)

that our implementation of this strategy was not significantly faster
in practice than simply operating on two doubles.

Collision test culling is also critical for efficiency. We compute the
axis-aligned bounding box (AABB) of each moving edge, triangle
and vertex and only run collision detection when AABBs overlap,
accelerating this test with a regular background grid. We further
cull tests by checking if, for any of several non-axis normal direc-
tions, there is a plane separating the origin from the transformed
hexahedron or prism. Our implementation of this plane test uses
interval arithmetic for robustness: only when all vertices are defi-
nitely on the negative or positive side of a plane (no interval con-
tains zero), do we consider the plane to be a separating plane. This
relatively inexpensive plane-based testing eliminates 99% of the
tests, considerably improving performance.

4.1 Resolving Collisions

We implemented our new algorithm using interval filtered floating-
point expansion arithmetic, providing practical, provably robust
CCD code for deforming meshes without any user-tuned tolerances.
However, at this point we can only guarantee collision detection:
this says nothing about resolving these collisions, i.e. finding a
physically consistent adjustment to the final configuration of the
mesh that eliminates all collisions. Indeed, taking into account that
the final positions are quantized to a finite number of bits of preci-

sion, provably robust but ideally physical collision resolution may
involve the solution of a rather daunting large-scale integer pro-
gramming problem. As an example of the complications involved,
even just transformation of an intersection-free mesh with a rota-
tion matrix can potentially create self-intersection once the results
are rounded again.

We use the velocity filtering approach initiated by Provot [1997]
and extended by Bridson et al. [2002] and Harmon et al. [2008].
First repulsion forces are applied to proximal mesh elements, fol-
lowed by several sweeps of CCD, applying individual impulses
when collisions are detected. If there remain unresolved collisions
after these sweeps, we gather overlapping collisions into “impact
zones” and solve for the set of impulses which will resolve all col-
lisions in the zone simultaneously. If this system is degenerate,
we compute a single rigid motion for the vertices of the offending
impact zone, ensuring no collision (modulo the quantization issue
mentioned above). This was referred to as “rigid impact zones” in
Bridson’s original paper [2002].

While those previous works used the normal at the time of collision
(typically from the triangle or from the cross-product of edges), we
have found this is not a crucial choice. Interpolating the geometry
at t = 0.5 and computing the normal from the vector between the
closest points on the two mesh elements has worked equally well in
our experiments, and is more computationally efficient.

5 Examples

We tested our new CCD routines in a standard mass-spring cloth
simulator with an initially curved sheet of cloth of resolution of
40⇥400 vertices, dropped on a solid ground plane. As shown in
figure 6, this results in a large number of collisions as the cloth
stacks up on itself.

Figure 6: CCD stress test.

Although mass-spring systems are popular due to their simplicity
and ease of implementation, implementers of cloth animation sys-
tems have been turning to increasingly sophisticated models in re-
cent years. For example, the Finite Element Method (FEM) can
achieve accurate results and is less dependent on the mesh structure
than using edge-based springs [Etzmuss et al. 2003].

In the related sub-field of simulating volumetric elastic solids for
graphics, it is becoming increasingly popular to perform on-the-
fly optimization of the volumetric simulation mesh [Bargteil et al.
2007; Wojtan and Turk 2008; Wicke et al. 2010]. The benefits
of remeshing include reducing error for highly-sheared elements,
and concentrating computational effort where it is needed to resolve



small-scale details. For cloth, an additional important benefit of
remeshing is to increase vertex density in regions of high curvature,
so that curved regions can be accurately represented without having
to globally refine the surface mesh.

A few authors have suggested refining the simulation elements for
cloth [Li and Volkov 2005; Villard and Borouchaki 2005], however,
the idea has not been as popular for cloth as it has for solid elastic-
ity. One reason for the lack of uptake is the difficulty in dealing
with collisions. For example, adding and removing vertices with-
out introducing self-intersections is a major concern if continuous
collision detection assumes that the mesh is intersection-free at the
beginning of each time step. Adding and removing vertices and al-
tering the triangulation at discrete times compounds the difficulty
in choosing suitable collision and intersection error tolerances.

Armed with our parameterless collision detection system, we
demonstrate a complete FEM simulator with on-the-fly, adaptive
remeshing. We use linear elasticity with rotated finite elements,
as described by Etzmuß et al. [2003], and simple edge crossover
springs for bending forces. We choose simple edge splitting, flip-
ping, and collapsing as our mesh optimization operations, and make
them all collision safe, using CCD on “pseudo-trajectories”, as de-
scribed by Brochu & Bridson [2009b]. To increase the vertex den-
sity in high-curvature areas, we scale the measured edge lengths
by local curvature estimates when deciding to collapse or split
edges. (We note that these operations are perhaps not as suitable for
cloth simulation as a regular subdivision scheme, but it is a reason-
able proxy for examining the challenges faced when maintaining
intersection-free adaptive surfaces.) Figure 7 shows a frame from
a simulation with a single piece of cloth, and the underlying rest-
state mesh. We also show a more challenging CCD scenario, with
several layers of cloth draped over a solid sphere (figure 1).

Figure 7: Cloth with an adaptive simulation mesh

All of our tests were performed on a single core of a 2.7 GHz Intel
i5 processor with 4GB of RAM. We integrated our new CCD algo-
rithm into the open-source El Topo surface tracking library [Brochu
and Bridson 2009b], as it provides an intersection-free remeshing
framework, suitable for adaptive cloth simulation, and provides an
implementation of the cubic-solver based CCD approach for com-
parison. To test our new CCD, we simply substituted El Topo’s
inexact CCD and intersection testing functions with our new imple-
mentation.

The average time spent per call to CCD, not including culling based
on AABB comparisons, but including plane-based culling, was
approximately 614 nanoseconds for segment-segment testing, and
439 ns for point-triangle testing. By comparison, the average time
in El Topo’s cubic solver CCD implementation (again not including
AABB culling) was 649 ns and 659 ns.

Counting only tests which were positive (exercising the entire path
of our code), the average time per call was 19 microseconds for
segment-segment, and 15 µs for point-triangle, compared to 1.2 µs

for both tests with the cubic solver CCD. This indicates that without
culling, our new algorithm is more expensive than the cubic-solver
version, as expected, but also that our culling is very effective.

6 Conclusions

We have presented a novel approach to continuous collision detec-
tion, constructed from a set of predicates which can be evaluated
exactly. We have shown that the collision detection problem can
be rephrased as determining whether a function has an odd num-
ber of roots in a given domain. We then showed how this problem
can be reduced to testing a ray from the origin against the image of
the domain boundary and counting the parity of the crossings. This
in turn reduces to a set of ray-vs-triangle and ray-vs-bilinear-patch
tests, built from determinant and � sign evaluations.

Our implementation uses a floating-point filter approach for effi-
ciency — first determining if the correct Boolean result can be de-
termined using interval arithmetic, and only using floating-point
expansions for exact evaluation if required. We demonstrated the
utility of our approach with a challenging test case: simulation of
cloth undergoing on-the-fly remeshing with a large amount of con-
tact. To our knowledge, this is the first time an adaptive cloth sim-
ulation scheme has been presented which explicitly deals with the
challenges of continuous collision detection.

There are several avenues of future work. While irrelevant for the
simulations we presented, being able to distinguish zero from a pos-
itive even number of roots could be critical for other applications.
Our approach should extend naturally from multi-affine functions to
testing intersections with higher-degree polynomial patches. Rigid
body motion is more naturally expressed in terms of screw motions;
though the intermediate positions involve trigonometric functions
of time, reparametrization similar to the NURBS approach to conic
sections would lead to a multivariate polynomial problem amenable
to this attack.
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A Implicit Function for a Bilinear Patch

We define the following multivariate polynomial �(x) where the
indices 0 to 3 refer to the patch corner vertices:

�(x) = h12(x)� h03(x).

The two h-functions are designed to be zero on the straight edges of
the patch via products of plane g-functions for the various subsets
of three vertices:

h12(x) = g012(x) g132(x)

h03(x) = g013(x) g032(x)

gpqr(x) = (x� xp) · (xq � xp)⇥ (xr � xp).

We claim that the zero level set of �(x) contains the bilinear patch.
To confirm this is indeed the function we seek, take an arbitrary
point x with barycentric coordinates ↵, �, �, and � w.r.t. the corners
of the patch:

x = ↵x0 + �x1 + �x2 + �x3.

Recall that the barycentric coordinates of a point with respect to a
tetrahedron are proportional to the signed volumes of the tetrahedra
formed by the point and each of the triangular faces. Letting V be
six times the signed volume of the tetrahedron spanning the corners
of the patch, observe that:

g132(x) = ↵V g032(x) = �V

g013(x) = �V g012(x) = �V

Therefore our function evaluates to:

�(x) = �↵V 2 � ��V 2.

Assuming V 6= 0, this is zero if and only if ↵� = ��, which occurs
precisely for the parameterized bilinear surface:

↵ = (1� s)(1� t) � = (1� s)t

� = s(1� t) � = st.

Moreover, it is clear that �(x) changes sign across the zero level
set, dividing space into positive and negative regions separated by
the conic containing the bilinear patch.

This construction breaks down if V = 0. However this is the case
when the patch is perfectly flat, where we can simply replace the
entire ray-patch intersection test with two ray-triangle tests.
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1 The Root Parity Lemma and Proof of Correct-
ness

1.1 Outline

We present the root parity lemma to relate the roots of a function to the

action of that function on the domain boundary. First, we prove the analog

of the lemma for piecewise linear functions defined on a simplicial mesh.

Second, we show for any well-behaved C2

function there exists a piecewise

linear interpolant which approximates it su�ciently well to use the first

result to prove the root parity lemma. We demonstrate that the intersection

function used in collision detection falls into this class of well-behaved C2

functions, so we argue the correctness of our algorithm on top of the lemma.

1.2 Piecewise Linear Functions

Before proving the root parity lemma, we prove a related result for piecewise

linear functions.

Root Parity for Piecewise Linear Functions. Suppose ⌦ ⇢ Rn
has a

simplicial decomposition by mesh M .

Suppose F : ⌦ 7! Rn
is continuous, linear within each simplex of M ,

has p < 1 roots in ⌦, has no roots on � = @⌦, and is one-to-one in a

su�ciently small ball around each root.

⇤
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Suppose R is a ray from 0 to infinity. Call any point x 2 � such that

F(x) 2 R a crossing point, then the crossing number q is the number of

crossing points. Suppose that F(�) is smooth at the image of any crossing

points, that the ray is not tangent to F(�) at any these points, and that

q < 1.

Then, p ⌘ q mod 2.

Suppose the hypotheses are true. Then the image under F of any simplex
in this mesh is also a simplex. So, the image of the entire mesh is also a
simplicial mesh, M 0, though it may be self-intersecting. The function F is
uniquely defined by the position of the vertices of M 0, and roots of F are
given by simplices in M 0 that contain the origin.

We may make various simplifying assumptions about M 0. Such an as-
sumption will be without loss of generality if, for any mesh M 0, a perturba-
tion exists that modifies it to satisfy these conditions without changing the
parity of the number of roots or the parity of the crossing number for the
ray.

Assume the origin does not lie on any facets of M 0. This is possible
because F is invertible around each root. Therefore a small perturbation
exists which will push the origin from being on a facet to being in only one
of the adjacent simplices; therefore not changing the number of roots.

Assume also that M 0 has no degenerate simplices. That is, each simplex
has volume. Simulation of Simplicity [2] addresses almost exactly this prob-
lem. A similar argument applies here. The only additional concern is that
we do not modify the number of roots. Let ✏ > 0 be the distance from the
origin to the nearest facet. Since the perturbation can be arbitrarily small,
no vertex needs to be moved more than ✏, so the number of roots does not
change.

Now, consider a ray R from 0 to infinity satisfying the conditions of
the root parity lemma. Such a ray exists because F(�) is smooth almost
everywhere and does not include 0. Define a hit to be an intesection of the
ray with the boundary of a simplex. If the ray intersects a facet shared by
two simplices, then this is two hits. Each simplex can contribute hits.

First, consider a simplex from M with no roots in it. The image of this
simplex does not contain the origin. The ray crosses its boundary either
zero or two times. This simplex contributes an even number of hits.

Second, consider a simplex from M containing a root. By hypothesis,
the image of this simplex contains the origin in its interior. Consequently,
the ray intersects its boundary once, contributing an odd number of hits.

Summing up all the hits, only simplices with roots contribute odd parity
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to the sum, so the parity of the number of hits equals the parity of the
number of roots. Likewise, the parity of the number of hits equals the parity
of the crossing number. This is because any intersection of the ray with an
interior facet contributes two hits. Only the boundary facets, coincident
with �, contribute odd parity. So the parity of the number of roots equals
the parity of the number of crossings, as was to be shown.

1.3 The Root Parity Lemma

Root Parity Lemma. Suppose ⌦ ⇢ Rn
is an n-polytope.

Suppose F : ⌦ 7! Rn
is C2

, has p < 1 roots in ⌦, has no roots on

� = @⌦, and has non-singular Jacobian at each root.

Suppose R is a ray from 0 to infinity. Call any point x 2 � such that

F(x) 2 R a crossing point, then the crossing number q is the number of

crossing points. Suppose that F(�) is smooth at the image of any crossing

points, that the ray is not tangent to F(�) at any these points, and that

q < 1.

Then, p ⌘ q mod 2.

Suppose the hypotheses of the root parity lemma are true. Then, let the
entire domain ⌦ be tessellated with a simplicial mesh M , as is possible for
a polytope. Let each simplex have circumradius less than �

out

, and let each
root of F be at the centroid of a regular simplex. We take the existence of
such a mesh to be trivial. Let F̄ be the piecewise linear interpolant of F on
a the mesh M . We argue that there exists such a mesh for which F̄ and F

have the same number of roots, the same crossing number, and F satisfies
the hypotheses of the previous section. From this it follows that the root
parity lemma is true.

1.3.1 Roots

In this section, we show that if the mesh is su�ciently fine, then in any
simplex, either F and F̄ both have roots, or neither F or F̄ have roots.

Let x

?, be an arbitrary root of F, and let ⌃ be the simplex containing
it. Since this simplex is regular, it has inradius �

out

= �
in

with constant .
In addition to the functions F and F̄, we introduce F̂ = J(x� xi) which is
the linear approximation to F about the root (i.e. J = rF(x?)).

Clearly F̂(x?) = 0, so F̂ has a root in ⌃. Now, consider a point q on the
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surface of ⌃.

kF̂(q)k
2

= kJ(x� x

?)k
2

� kJ�1k�1

2

kx� x

?k
2

� �
in

kJ�1k�1

2

So, the image of ⌃ under F̂, which is also a simplex, has its surface at least
�
in

kJ�1

i k�1

2

away from the origin.
By Taylor’s Theorem, we have,

kF(q)� F̂(q)k  c
1

kq� qik2  c
1

�2
out

where c
1

< 1 is a constant related to ct. Similarly, by the approximation
quality of linear interpolants (for proof, see e.g. [4]), we have

kF(q)� F̄(q)k  c
2

�2
out

where c
2

< 1 is another constant related to ct. These can be combined to
get the relationship,

kF̂(q)� F̄(q)k  c
3

�2
out

.

The origin is at least �
in

kJ�1

i k�1

2

away from the surface of F̂(⌃), and

F̂(⌃) is no more than c
3

�2
out

away from F̄(⌃). Since F̄(⌃) is also a simplex,
it follows that if

�
in

kJ�1

i k�1

2

> c
3

�
out

2 , 1/(c
3

kJ�1k
2

) > �
out

,

then F̄(⌃) will also contain the origin, and F̄ will also have a root in ⌃.
Since c

3

kJ�1k
2

is some constant bounded away from zero, we can choose
such a �

out

. Consequently, both F and F̄ have a single root in ⌃, and F̂ is
locally invertible there. Since there are finitely many roots, this constraint
on �

out

can be met at all roots by some constant �
out

> 0.
Now we show that in the other simplices of the mesh, F̄ has no roots.

Continuing with the point q on the surface of the simplex around a root, we
find that

kF(q)k � kF̂(q)k � c
1

kq� xk2

� kJ(q� x)k � c
1

�
out

2

� kJ�1k�1kq� xk � c
1

�
out

2

� kJ�1k�1�
in

� c
1

�
out

2

� kJ�1k�1�
in

� c
1

2�
in

2

� kJ�1k�1�1�
out

� c
1

�
out

2

� ↵�
out

� c
1

�
out

2
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where ↵ > 0 is the minimum value over all roots of kJ�1k�1�1.
Let S be the union of the simplices which contain roots of F, as have

already been addressed. Then, ⌦
0

= ⌦ \ S is the remainder of the domain,
including the boundaries. In ⌦

0

, kFk > F
min

> 0. For su�ciently small
simplices, the minimum value of kFk will occur on the surface of one of the
simplices surrounding a root. For simplicity, assume that this is the case.
So, F

min

> ↵�
out

� c
1

�
out

2 everywhere outside the simplices surrounding the
roots. Then at all points x outside the root-simplices kF̄(x)�F(x)k  c

2

�2
out

,
and so

kF̄(x)k � kF(x)k � c
2

�2
out

� F
min

� c
2

�2
out

> ↵�
out

� c
1

�
out

2 � c
2

�2
out

> ↵�
out

� �
out

2(c
1

+ c
2

)

For su�ciently small �
out

, we have kF̄(x)k > 0 because ↵ > 0. So, outside
of the simplices surrounding the roots, F̄ has no roots.

It follows that F(x) and F̄(x) have the same number of roots.

1.3.2 Crossing Points

To show that F̄ also has the same crossing number as F(�), we construct two
new functions H : � 7! R and G : � 7! Rn�1. Without loss of generality, by
a simple rotation, let the ray be the positive x

1

axis. Then, letH(x) = F

1

(x)
be the first component of F(x). It measures the distance along the ray of
the closest point to F(x). Second, let G(x) be components 2 through n
of F(x). So, it measures a vector-distance from F(x) to the closest point
on the ray. Consequently, a point x is a crossing point of R and F(�) i↵
H(x) > 0 and G(x) = 0.

Now, consider the functions Ḡ and H̄ defined as above, but using F̄

instead of F. As before, x is a crossing point of R and F̄(�) i↵ H̄(x) > 0
and Ḡ(x) = 0. Notice also, H̄ and Ḡ are the linear interpolants of H and
G on the boundary elements of the mesh, which form an n� 1 dimensional
simplex mesh in �. So we can use similar arguments as above to establish
an exact correspondence between the crossing points of R and F(�) and the
crossing points of R and F̄(�) by matching the roots of G and Ḡ and the
signs of H and H̄ at those roots.

G may not be locally invertible at all of its roots, so we take a di↵erent
approach than above for F. Add all of the crossing points of R and F(�) as
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vertices to the mesh, by hypothesis there are a finite number of them. This
does not contradict the earlier construction of a single simplex around each
root of F, because F has no roots on �. With these vertices in the mesh,
H(x) > 0 and G(x) = 0 implies Ḡ(x) = 0. Let any simplex containing a
root of G be small enough that it contains only one. By construction, it
will be at a vertex, the root-vertex. All the other vertices of this simplex
form an (n � 2)-face, the far-face. By using anisotropic simplices around
the roots, the far-face can always be distance � > 0 from the root, but fit
in an arbitrarily small ball of radius r. Consequently, kGk > ↵ > 0 on the
far-face. A described earlier, with a su�ciently fine mesh, Ḡ will have no
roots on the far-face, and consequently no roots anywhere in the simplex,
except at the root-vertex.

Let ✏ be half the minimum magnitude of H at any root of G. When
�✏ < H < ✏, then kGk > � > 0. So, in a su�ciently fine mesh, Ḡ 6= 0. This
follows from the same bound used above to analyze F̄. When H < �✏, in
a su�ciently fine mesh we get H̄ < 0. Finally, when H > ✏, a su�ciently
fine mesh will have H̄ > 0 and, outside of the simplices constructed above,
Ḡ 6= 0. Combined with the results above, we conclude that F and F̄ have
the same crossing points.

Combined with the earlier result, we have that F and F̄ have the same
number of roots, and exactly the same crossing points. So we have shown
that the root parity lemma is true.

1.4 Toplogical Degree

The root parity lemma is closely related to proofs and concepts from topo-
logical degree theory. In some sense, it is a specialization, and our proof is
subsequently tailored for our application.

Topological degree defines a multidimensional generalization of the wind-
ing number. One definition of topological degree is the sum of the signs of
the Jacobian determinants at all the roots of F. For non-singular roots, the
parity of topological degree is the same as the parity of the number of roots,
which is what we want to measure. We refer the interested reader to the
text by O’Regan et. al [3] for more details about topological degree.

While the definition above is in terms of the roots in the domain’s in-
terior, an equivalent expression depends only on the boundary. In fact, it
can be calculated by summing ±1 (depending on some property of F and its
derivatives) at each intersection between a ray and the image of the bound-
ary. Such an approach is described, for example, by Aberth in his text on
numerical methods [1]. Because we only care about parity, our algorithm
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can simply count the number of intersections.

1.5 Proof of the Collision Algorithm

The function that the algorithm uses is C2 with bounded curvature, defined
in a polytope domain. When the input geometry to the collision detection
algorithm produces a function F satisfying the hypotheses of the root parity
lemma, then the correctness of the algorithm follows trivially.

However, F doesn’t always satisfy the hypotheses. It is always C2 and
it always has bounded second derivative. However, it may have roots on �,
it may have infinitely many roots, and it may have a singular Jacobian at
any root. We argue here that the algorithm still does the right thing for
collision detection in this case.

If F(x) = 0 on �, then F(�) is at the origin. So, the ray’s vertex lies on
the surface. The algorithm immediately identifies this as a collision without
bothering with ray crossings.

If F has an infinite number of roots, then because of the multi-a�ne
form of F, it must have a root on �, and this case is detected as above.

Otherwise, if rF is not invertible at a root, then there exists a small
perturbation to F strictly in the interior of the domain, such that it is not
singular at any roots and is unchanged on �. This perturbation does not
a↵ect the initial and final configuration of the mesh or the linear trajectories
of the extremes of the mesh elements: it only causes an arbitrarily small
adjustment to the interpolated trajectories. Thus, it will not change whether
or not a significant collision has occurred, and the algorithm returns the
correct result.

The root parity lemma also has conditions on the ray that the algorithm
must meet. The only non-smooth regions of � are the edges. The algorithm
traces a new ray when an intersection with an edge is detected. If the
crossing number is infinite, then the ray must hit the edges, which is detected
as above. The requirement that the ray not be tangent is handled by the
ray-patch parity algorithm, which returns the correct (even) parity in that
case.

We note that while this proof contains several cases involving perturbing
F or the ray, the algorithm does not need to do this. This is only a conceptual
perturbation for use in the proof.
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2 Discussion of the odd-parity counting argument

In this section, we discuss the correctness of ignoring an even number of
collisions in the CCD algorithm outlined in the main paper. The claim
made in the paper is that if a pair of mesh elements (a triangle and point, or
two edges) whose vertices are moving on constant speed, linear trajectories
collide an even number of times over the course of a time step, we can safely
ignore the collisions (i.e. no collision resolution is required).

Although we do not have a rigorous proof for the correctness of this
approach, we argue here that at the very least, a few desirable properties
can be maintained. This model also will also clearly result in di↵erent be-
haviour than detecting and resolving every collision, however most collision
processing systems already make simplifying assumptions such as not solv-
ing collisions in order of simulation time, resulting in an approximate yet
plausible solution.

2.1 No self-intersections are introduced

Suppose we are given a mesh that is intersection-free at t = 0, and has at
least one edge-triangle intersection at t = 1. Setting aside collisions involving
time or geometry boundaries (which are always flagged by our algorithm),
this implies there must have been an odd number of total collisions between
the edge and triangle sub-elements (i.e. between the two edge end points and
the triangle, and between the three triangle edges and the intersecting edge).
This follows from the fact that any such collision changes the edge-triangle
pair from an intersecting state to a non-intersecting state, or vice-versa.

2.2 Disjoint volumes defined by closed mesh surfaces remain
disjoint

Suppose we have two closed meshes which define disjoint volumes (i.e. one
mesh does not intersect or lie inside the other) at t = 0. Then at t = 1, if one
mesh lies inside the other, our CCD algorithm would report a collision. A
vertex outside a closed surface must collide with the surface an odd number
of times to end up inside the surface. If there is an odd number of collisions
between the vertex and the surface as a whole, then there must be at least
one triangle with an odd number of collisions against the vertex.
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