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Abstract

We present the first quality physics-based smoke animation method which runs in time approximately linear in
the size of the rendered two-dimensional visual detail. Our fundamental representation is a closed triangle mesh
surface dividing space between clear air and a uniformly smoky region, on which we compute vortex sheet dy-
namics to accurately solve inviscid buoyant flow. We handle arbitrary moving no-stick solid boundaries and by
default handle an infinite domain. The simulation itself runs in time linear to the number of triangles thanks to
the use of a well-conditioned integral equation treatment together with a Fast Multipole Method for linear-time
summations, providing excellent performance. Basic zero-albedo smoke rendering, with embedded solids, is easy
to implement for interactive rates, and the mesh output can also serve as an extremely compact and detailed input
to more sophisticated volume rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—
Physically based modeling

1. Introduction

Tantum videt, quantum computato: as much as one sees, that
much one should compute. While the last decade and a half
has seen a revolution in the quality of cinematic smoke ani-
mation through the use of physical simulation, scalability re-
mains a serious impediment to high quality real-time smoke
effects and interactive artistic design. To achieve ∼ n× n
visual detail in 2D renders, all prior methods have needed
at least O(n3) time per step, due to the simulation or the
rendering or both. In this paper we develop a purely La-
grangian vortex sheet model of smoke simulation, and ar-
gue that in the most useful asymptotic limit it captures all
essential dynamic and visual detail in a closed 2D surface.
We discretize the model with an adaptive dynamic triangle
mesh, implement time integration using an optimal linear-
time Fast Multipole Method (FMM), and render the result
at interactive rates — computing only what is seen. Addi-
tionally, our method handles arbitrary no-stick moving solid
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boundaries and provides output for more sophisticated of-
fline rendering.

Previous smoke simulation methods in graphics can
loosely be divided between velocity-pressure formulations
and vorticity approaches. The classic example of a velocity-
pressure solver is Stam’s Stable Fluids approach [Sta99]:
this requires an n3 grid of the volume, and even with an
optimal linear-time multigrid solver for the pressure projec-
tion, is an order of magnitude more costly than the desired
O(n2) rendered output. Vortex methods use a much richer
representation whereby in principle many fewer elements
(such as our vortex sheet of O(n2) triangles) can replicate
the same detailed dynamics. However, so far in graphics the
solvers hit a simulation bottleneck when calculating veloc-
ity from the vorticity and solid boundary conditions, result-
ing in a dense n2× n2 matrix solve which can be as bad as
O(n4) storage and O(n6) run-time using LU factorization.
Prior vortex methods also have used simpler volumetric soot
particle tracking for providing output to the renderer, which
introduces another expensive O(n3) bottleneck. For film vi-
sual effects, this strains the file system and network capacity
in particular, as simulation is generally run separately from
rendering, and so all particle data must be stored and trans-
ferred to the renderer.
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Figure 1: We represent smoke with an adaptive triangle
mesh both for linear-time simulation, as a vortex sheet,
and linear-time interactive rendering as the boundary of the
smoky region. Here a deforming torus influences the buoyant
smoke flowing around and through it.

Our basic model in this paper treats air as an incompress-
ible inviscid fluid with the Boussinesq buoyancy approxima-
tion,

∂~u
∂t

+~u ·∇~u+ 1
ρ
∇p = α~g (1)

∇·~u = 0 (2)

where α~g is the buoyancy force, with α = 0 in the ambient
clear air, and α in the smoky region depending on the ratio
of smoke temperature to ambient temperature as well as the
density of soot particles. At solid boundaries we take the no-
stick boundary condition,

~u · n̂ =~usolid · n̂, (3)

and at infinity the far-field condition~u = 0. We assume~u = 0
initially. Without viscosity, the vorticity ~ω =∇×~u remains
zero apart from where buoyancy creates it; vorticity is ad-
vected and stretched by the flow, but doesn’t diffuse away
from smoke/temperature gradients.

Just as the viscosity in air is virtually negligible for most
practical scenarios, hence the inviscid equations are an ex-
cellent model, the rate of molecular diffusion of tempera-
ture and soot particles in air is vanishingly small, so they are
just advected through the velocity field. Under the assump-
tion that smoke sources have uniform temperature and soot
concentration, and also using the incompressibility condi-
tion, the air is precisely divided into uniformly clear and uni-
formly smoky regions. This in turn implies buoyant vorticity

is only generated at the surface separating the two, where
α jumps in the normal direction, hence all vorticity is con-
centrated in that surface, making a vortex sheet. As Stock et
al. show [SDT08], the vorticity is further constrained to re-
main tangent to this sheet — in section 3, we show that our
discretization identically enforces this constraint.

2. Related Work

Fluid simulation for computer animation has become a broad
topic in recent years. A thorough survey of techniques is
beyond the scope of this paper, so we refer the reader to
the textbook by Bridson [Bri08], and focus on work re-
lated to smoke. Foster and Metaxas animated smoke using
a one-phase, grid-based Navier-Stokes solver [FM97]. They
used marker particles to track smoke through the simula-
tion, transferring particle density onto a grid at render time
to make use of volumetric rendering techniques. Stam intro-
duced an unconditionally stable time integration scheme to
computer graphics [Sta99], and his method was later adapted
to use a staggered grid with vorticity confinement [FSJ01].
His method uses a grid-based scalar density field to track the
concentration of smoke. Recent work has focused on reduc-
ing the damping effect of numerical diffusion by introducing
improved integration schemes [ZB05, KLLR07, SFK∗08],
adding sub-grid-scale turbulence on top of a simulation
[KTJG08, SB08, NSCL08], or through the use of procedu-
ral methods [SRF05, BHN07].

Losasso et al. improved the scalability somewhat with
the replacement of the uniform grid by an octree structure,
but adaptivity in velocity-pressure formulation is difficult as
much of the volume must still be finely gridded for adequate
behaviour [LGF04]. Other fluid solvers (e.g. [Exo12]) only
run a solve on a sparse tiled grid instantiated in a bounded
envelope around the smoke, but need a substantial envelope
to approximate an unbounded domain, and run at full volu-
metric resolution inside the smoke, likewise limiting scala-
bility.

The use of triangulated surface meshes in fluid animation
has traditionally been eschewed in favour of grid- or particle-
based surface tracking methods, such as the particle level
set method [EFFM02]. Recently, however, some researchers
in the computer graphics community have begun turning
to triangle mesh-based surface tracking for liquid simula-
tion [WTGT09,Mül09,BBB10,WTGT10,YWTY12]. These
authors generally use explicit surfaces to track the fluid in-
terface in a free-surface simulation, whereas in this paper,
we use surfaces themselves as simulation elements.

Mesh surfaces have been used for visualizing 3D vec-
tor fields since Hultquist generalized streamlines to stream
surfaces [Hul92]. More recently, streak surfaces (moving
open surfaces seeded continuously from a curve), and time
surfaces (seeded instantaneously from a surface) have been
treated using surface tracking methods similar to the one
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used in this paper. Krishnan et al. [KGJ09] recently intro-
duced an algorithm which advects an adaptive mesh through
a 3D vector field to treat both of these categories of sur-
face. A similar visualization method which explicitly uses
a smoke metaphor was introduced by von Funck et al.
[vFWTS08]. Their method does not use adaptivity, but in-
stead gradually reduces the opacity of poor quality triangles,
giving the appearance of dissipating smoke or steam.

Brochu & Bridson [BB09a] used surface tracking to visu-
alize a procedural smoke simulation. Park et al. [PSCN10]
constructed NURBS surfaces from particle streamlines to
achieve thin, sheet-like surface renderings of smoke simula-
tions. These techniques are useful for visualizing an external
simulation, however neither approach uses the surface ele-
ments for simulation, as we propose in this paper.

Vortex methods for fluid dynamics were developed during
the 1980s as an efficient and high-order, purely Lagrangian
method of numerically solving the Euler equations for fluid
flow [BM82,AG85]. Subsequent work was done on develop-
ing viscous vortex methods for the Navier-Stokes equations
and semi-Lagrangian contexts [CK00]. Though the grid dis-
tortion in fully Lagrangian vortex methods makes them less
useful for scientific application, their efficiency in preserving
rotational flow makes them appealing for fluid animation.

In computer graphics, early 2D simulations discretized
vorticity on a grid [YUM86], or used vortex-in-cell methods,
advecting Lagrangian parcels of vorticity through the do-
main but relying on a grid-based Eulerian solver [CMTM94,
GLG95]. Park and Kim [PK05] introduced a fully Lan-
grangian vortex particle method, using the Biot-Savart for-
mula to compute velocity on the particles without a grid. Re-
cently, Weißmann and Pinkall [WP10] have demonstrated a
complete vortex filament method, with adaptive filaments.
Both approaches discretize solid boundaries with vortex
sheets and rely on static geometry to enable precomputation
for efficiently handling boundary conditions. In comparison,
our linear-time approach can handle arbitrary moving solid
boundaries, as demonstrated in section 4.

Several papers have used vortex primitives to aug-
ment Eulerian fluid simulations, including vortex particles
[SRF05] and Eulerian vortex sheets [KSK09]. Concurrent
with this work, Pfaff et al. have introduced a Lagrangian
vortex sheet method for augmenting an Eulerian fluid solver
[PTG12]. Their vortex sheet discretization is similar to the
one presented in this paper; however their vortex sheet inter-
actions are purely local, with global flow handled by an un-
derlying grid-based, Eulerian fluid solver. Their use of com-
pact kernels avoids the need for FMM, but the reliance on
the grid-based solver limits scalability and complicates the
simulation process.

Boundary integral equations were initially developed a
century ago as a tool for proving the uniqueness and exis-
tence for solutions to PDEs, particularly Laplace’s equation.

They have had a modern renaissance as effective numeri-
cal methods for solving a variety of PDEs [GGM93]. This
has been primarily motivated by the construction of effective
summation methods such as the FMM which allows rapid
solution of the dense linear equations resulting from the nu-
merical treatment of many integral equations.

3. The Vortex Sheet Mesh

Our discretization of the vortex sheet closely follows Stock
et al. [SDT08] and Pfaff et al. [PTG12] (though unlike their
methods which rely on a 3D background grid for bulk veloc-
ity computation, we directly compute it in linear time on the
surface itself with FMM, including arbitrary solid bound-
aries, as we will see in section 5). In particular, we discretize
the vortex sheet surface with a triangle mesh, and store cir-
culation values, Γi, on each mesh edge i. The per-triangle
vortex sheet strength is then:

~γp =
1

ap
∑

j
~e jΓ j, (4)

for triangle edges j, where ~e j is the vector between the end
points of edge j, and where ap is the area of triangle p.

The vorticity on a triangle is then computed as required
with the formula:

~ωp = ap~γp = ∑
j
~e jΓ j. (5)

for triangle edges j, where ~e j is the vector between the
end points of edge j. The main advantage of using these
scalar circulations as our fundamental variable is that they
are conserved along particle paths. The vorticity stretching is
thus implicitly handled by the stretching of the vortex sheet
mesh. Recomputing the vortex sheet strength when needed
for the velocity update is done according to (5). Using (5)
also guarantees that ~ω is tangent to the triangle plane.

We apply a buoyancy force α~g = 〈0,α,0〉 to each triangle
as ∆~ωi = α~g×~niAi for triangle normal ~ni and area Ai. We
then compute the change in circulation for each triangle edge
by solving the overdetermined system of equations 5 for Γ

as suggested by Stock et al. [SDT08]. We solve this in the
least-squares sense. We note that recomputing the total edge
circulations in this way would introduce numerical damping
manifesting as undesirable loss of vorticity, so we only solve
for the change in edge vorticity due to the buoyancy force.

With no solid boundaries, the velocity at any point in the
domain can be computed explicitly with the Biot-Savart law,
with S being the vortex sheet surface, and K being a (molli-
fied) fundamental solution to Laplace’s equation:

~ufluid(~x) =
∫

S
∇K(~x−~y)×~ω(~y)dy (6)

This is discretized on a mesh surface using midpoint
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quadrature as:

~ufluid(~x)≈∑
j
∇K(~x−~c j)× ~ω j (7)

where ~c j is the barycentre of triangle j, and ~ω j is the con-
stant vorticity on triangle j.

Since we require the velocity at each vertex, and every
velocity evaluation depends on the entire surface, this di-
rect summation has computational complexity O(M2) in the
number of mesh vertices. Later in this paper we will discuss
using the Fast Multipole Method to achieve an approxima-
tion which runs in O(M) time.

The gradient of the fundamental solution ∇K(~x−~y) is
singular when ~x =~y and becomes large as ~x approaches ~y,
therefore a mollified approximation is often used. Our im-
plementation follows Beale and Majda’s form [BM85]:

∇K̃(~x−~y) =−(~x−~y)1− e(r/β)3

r3 , (8)

where r = ||~x−~y||, and β is a mollification parameter.

As our mesh evolves due to this self-imparted velocity, it
naturally expands and curls up. Without some form of sur-
face mesh refinement, the simulation would quickly lose ac-
curacy and visual appeal. On the other hand, we wish to keep
the number of mesh elements as low as possible, to keep
the computational cost down. Therefore, removing small el-
ements (recoarsening) is also desirable. For mesh refine-
ment and recoarsening operations, we use the open-source
El Topo surface tracking library [BB09b]. This library also
has the ability to perform changes in topology, such as merg-
ing and pinching. By merging nearby surface patches, we
can eliminate very thin sheets, thereby further reducing the
total number of mesh triangles while still maintaining a good
quality simulation.

3.1. Circulation redistribution

El Topo’s surface remeshing operations add and remove
edges. As we are storing scalar circulation values on the
edges, we must update these values as the mesh connectiv-
ity changes. One way of doing so is to compute per-triangle
vorticity values using equation 5, performing the remeshing
operations, then solving equation 5 for Γ in a least-squares
sense. However, we have found that repeatedly solving this
overdetermined system leads to diffusion of vorticity.

An alternative is to explicitly update the edge circulation
values using some rules of thumb when a remeshing oper-
ation is performed. Though heuristic, we have found these
rules reduce vorticity diffusion as compared to repeatedly
projecting back and forth between edge and triangle values.
Of the local remeshing operations available in El Topo, we
use only edge splitting, edge collapsing, and mesh merging
via deletion and creation of new triangles.

Figure 2: Edge split operation. New edges AE and EB are
assigned circulation from original edge AB.

3.1.1. Edge split

As shown in figure 2, splitting edge AB with opposite ver-
tices C and D introduces a new vertex E. We store the circu-
lation value on the original edge AB, and assign it to both of
the new edges:

ΓAE = ΓEB = ΓAB. (9)

The two other new edges, CE and ED, receive no circulation.
This ensures that the sum of vorticities over the new trian-
gles (by equation 5) equals the sum of vorticities on the new
triangles:

~ωABC +~ωDBA =~ωAEC +~ωCEB +~ωDBE +~ωDEA (10)

3.1.2. Edge collapse

When collapsing an edge, we simply allow the circulation
on that edge to disappear from the system. Since we col-
lapse only very short edges, the loss in circulation is gener-
ally minimal.

3.1.3. Mesh merge

El Topo merges surface meshes by removing two nearby
edges and their incident triangles, and introducing new tri-
angles, forming a neck between the surfaces [BB09b]. From
the new edges introduced, we pick the two edges whose as-
sociated vectors (difference of end points) best match the
removed edges, i.e. finding new edges i and j such that

||~ei−~e0||+ ||~e j−~e1||

is minimized, where edges 0 and 1 are the removed edges.
We assign the original edge circulations to these “best
match” new edges (see figure 3).

4. Solid Boundaries

Boundary conditions for Lagrangian vorticity-based fluid
animation have generally been constructed by defining a vor-
tex sheet on the surface of the solid boundaries. Park and
Kim [PK05] implemented boundary conditions in 3D by en-
forcing the tangential and normal components of the fluid
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Figure 3: Edge merge operation. Left: The red and green
edges and their incident triangles are removed from the
mesh, leaving two quad-shaped holes. Right: The resulting
holes are zippered with new triangles. Suppose the red and
green edges in the right diagram are the closest matches to
the corresponding red and green edges in the left diagram
(comparing Euclidean distances of associated edge vectors).
These new edges are then assigned the circulation values
from the deleted edges.

velocity to be equal to those of the boundary using a vortex
sheet, which resulted in an over-determined matrix solve. To
avoid finding an optimal solution each time-step, they re-
stricted themselves to a simple static boundary for which
they precomputed a pseudo-inverse, requiring only a matrix-
vector multiplication instead of a matrix solve. Weißmann
and Pinkall [WP10] defined their vortex sheet in terms of a
scalar potential, avoiding the extra dimensionality of the tan-
gential vorticity field. They regularized the resulting matrix
and also precomputed a factorization, again limiting their
domain to a single boundary with static geometry.

We incorporate solid boundaries by adding an irrotational,
divergence-free vector field that corrects the boundary veloc-
ity induced by the vorticity to account for solids. To do so we
define the irrotational flow by the gradient of a scalar poten-
tial function Φ that satisfies Laplace’s equation ∇2

Φ = 0 in
the domain. The potential due to a single point charge with
value σ, at point~y, is:

σ

4π|~x−~y| . (11)

We represent Φ by a continuous distribution of point
charges {σ(~y)|y ∈ S} where S is the boundary of our do-
main.

Φ(~x) =
∫

S

σ(~y)
4π|~x−~y|dy. (12)

This representation of Φ is called the single layer poten-
tial. The normal derivative of the single layer potential has a
discontinuity across the domain boundary. When satisfying
boundary conditions, this leads to the following Fredholm
integral equation of the second kind for σ [Kel29, HS62].
Given the normal derivative f of Φ on the boundary we have:

f =−σ(~x)/2+
∫

S
σ(~y)

∂

∂nx

1
4π|~x−~y|dy, ~x,~y ∈ S. (13)

Fredholm equations of the second kind are integral equations
consisting of the identity operator plus an integral operator
that is "compact". While the definition for compact requires
an understanding of functional analysis and is therefore be-
yond the scope of this paper, an integral operator is com-
pact if the multiplicative terms in the integral are themselve
square integrable, which is the case in (13). The solvabil-
ity of Fredholm equations of the second kind can be deter-
mined by examining the null-space of the equation, similar
to determining the solvability of linear systems. For smooth
boundaries, (13) has only a trivial null-space and thus its so-
lution exists and is unique for any right hand side f . In addi-
tion, solvable Fredholm equations of the second kind tend to
lead to well conditioned numerical approximations. While
our description of integral equations is cursory and incom-
plete, there exists ample mathematical literature for the in-
terested. Solving (13) for σ and evaluating Φ from equation
(12) satisfies the exterior Neumann problem for Laplace’s
equation,

∇2
Φ = 0 (14)

∂

∂n
Φ(x) = f , x ∈ S. (15)

Let ~ufluid be the velocity due to the fluid, and ~usolid be the
velocity of the solid object. Setting f = (~usolid−~ufluid) ·~n,
solving for potential Φ, and calculating the gradient yields
a potential flow which will cancel the normal component of
velocity at the solid boundary, effecting a free-slip, no-entry
boundary condition.

The advantages of this scalar formulation over the pre-
viously described vortex sheet boundary implementations
are that it is solvable for arbitrary smooth solid boundaries
and is particularly amenable to numerical solutions based on
iterative matrix solvers and fast summation methods. Inte-
gral equations for implementing boundaries based on vortex
sheets are more difficult to implement, and though one can
derive Fredholm integral equations of the second kind for
finding a boundary vorticity [CK00], these formulations be-
come singular if the domain is multiply-connected.

Discretizing (13) with midpoint quadrature yields the fol-
lowing equation for triangle i:

fi ≈−σi/2+∑
j

σ j
∂

∂ni

1
4π|~ci−~c j|

A j (16)

Directly evaluating this summation for all triangles yields
an M × M linear system where M is the number of tri-
angles on the solid boundary. In practice, this matrix is
very well-conditioned; for such problems, iterative Krylov
solvers such as BiCGSTAB have been observed to converge
in O(1) iterations, resulting in total complexity of O(M2) for
the solid solve. We can additionally accelerate this to O(M)
by using the FMM to compute the matrix-vector product in
the iterative solve rather than explicitly constructing the sys-
tem.
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Once we have solved for a density σ, we can compute Φ

as in equation (12). The gradient of Φ is then evaluated as:

∇xΦ(~x) =
∫

S

−σ(~y)
4π|~x−~y|3

(~x−~y)dy (17)

The midpoint quadrature rule for this integral yields:

∇xΦ(~x)≈∑
j

−σ jA j

4π|~x−~c j|3
(~x−~c j) (18)

We use this to modify our fluid surface vertex velocities:

~ufinal(~x) =~ufluid(~x)+∇Φ(~x) (19)

5. Fast Multipole Method

The Fast Multipole Method (FMM), initially introduced
by Greengard and Rhoklin [GR87], reduces the asymptotic
complexity of the N-body problem from O(N2) to O(N).
The FMM is used in two different areas of our fluid sim-
ulation. Computing the velocity from the vorticity using the
Biot-Savart law can be accomplished using an FMM for each
component of the vorticity. In addition, computing the ma-
trix multiply in the iterative solver for the solid-boundary
potential flow can be reduced from O(M2) to O(M) by us-
ing the FMM to approximate Φ:

Φ(~xi) = ∑
j

σ j

|~xi−~x j|
, i, j = 1..N, (20)

and its gradient,

∇Φ(~xi) = ∑
j

−σ j(~xi−~x j)

|~xi−~x j|3
(21)

for a set of points~xi and “charges” σi. Our 3d FMM imple-
mentation follows that described by Cheng et al. [CGR99].

Mild controversy surrounds the FMM’s claim to O(N)
complexity, since straightforward computation of the octree
data structure required by the FMM is O(N logN). We com-
pute our octree in O(N) complexity. To do so, we specify
beforehand the maximum depth of the octree. We then com-
pute unsigned integer coordinates for each particle that cor-
respond to the grid cell of the finest octree subdivision that
contains the particle. A single key is then created by inter-
leaving the bits of each of the three coordinates creating a 3D
Morton ordering of the occupied grid cells. We sort the parti-
cles by these interleaved keys using a radix sort in O(N). The
result of the sort is that the particles are arranged in a linear
octree, from which the hierarchical octree structure can be
constructed in O(N).

The log-log plot in figure 4 shows the order of complex-
ity for computing velocity due to vorticity using the direct
summation method vs. the FMM. Performance plots for the
solid solver are shown in figure 5.

Figure 4: Simulation time per frame for computing velocity
via the Biot-Savart law, for both the direct method and Fast
Multipole Method

Figure 5: Simulation time per frame for computing the sin-
gle layer potential on a sphere using BiCGSTAB, comput-
ing the matrix multiply with both the direct method and Fast
Multipole Method. Note that the direct method is nearly ex-
actly O(N2) showing the O(1) convergence of BiCGSTAB
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6. Rendering

Our interactive-rate smoke rendering is accomplished
through a simple set of OpenGL shaders, which compute the
optical depth of the smoke volume. We then apply a zero-
albedo absorption model based on this depth, taking into ac-
count the solid objects in the scene. More sophisticated real-
time smoke rendering methods do exist (cf. [ZRL∗08]), and
exploring self-shadowing and light scatter for triangle mesh
models in real time is an area of potential future work.

As Brochu and Bridson [BB09b] point out, for high qual-
ity cinematic smoke rendering in a typical film pipeline, the
critical bottleneck is often the load on the file system and net-
work from tracking smoke per frame with hundreds of mil-
lions of soot particles, or similarly high resolution grids. The
surface mesh representation is vastly more efficient for cap-
turing the volumetric bulk of the smoke, and as Brochu and
Bridson note can be directly ray-traced for self-shadowing
smoke rendering. We extend their idea noting that the inte-
rior of the surface mesh, at render time, can easily be raster-
ized into a lower resolution 3D texture for scattering compu-
tation, at least using a box filter via polygon clipping; if this
grid is aligned with the light source or the view, especially
efficient calculation of single-scattering is possible. The di-
rect render can use triangle rasterization of the mesh, stor-
ing depths in an A-buffer, looking up into the 3D texture
for smooth lighting calculations. Going even further, we can
track the age of mesh elements since their emission from
a source, and splat this into another render channel to pro-
vide age-proportional blurring, thus giving the visual effect
of smoke dissipation from turbulent mixing or diffusion at
render time, for every frame in parallel. Figure 6 illustrates
the effect of an image-space age-dependent blur.

7. Results

Our FMM-accelerated vortex sheet solver was implemented
in C++, using El Topo for surface tracking, and tested on sev-
eral Linux and Mac OS X computers. Figures 4 and 5 show
that our tests have empirically near-linear time complexity.
Since we do not rely on precomputing the solution to the ex-
terior Neumann problem, we can easily handle non-rigidly
deforming solid objects, as shown in figure 1.

Our interactive smoke renderer implemented in GLSL
runs at 4 FPS for 168K triangles on an AMD Radeon 6770M
with 512 MB of memory (shown in figure 1). Our proof-of-
concept software renderer uses CPU-based volumetric ras-
terization and self-shadowing to produce the images shown
in figure 6. These images were produced from 126K trian-
gles at 1600×1200 resolution with a 167×125×82 shadow
texture in around 5.5 s on a single thread of a 2.3GHz Intel
Core i7 CPU, including all file IO.

Figure 6: Our proof-of-concept volume renderer produces,
from left to right on the top row, an alpha channel from the
smoke mesh, a scattering channel with self-shadowing, and
an image-space age channel. Below on the left is a sharp
composite of the first two, and below on the right includes
an age-dependent blur, simulating diffusion in image-space
at render-time.

7.1. Mesh simplification

As mentioned in section 3, remeshing operations are crucial
for allowing the surface mesh to move freely while keep-
ing the number of triangles manageable. The effectiveness
of edge splitting and collapsing to control the explosion of
mesh elements has been shown by Stock et al. [SDT08] and
others, but we also make use of El Topo’s topology change
operations — specifically the merging and pinching of mesh
surfaces. We have found this to be an effective tool in mit-
igating the explosion of surface area (and number of mesh
elements), which is a known problem in vortex sheet simu-
lations.

As an example, we ran a simulation twice, once with
topology changes enabled, and once with these changes dis-
abled. The number of triangles per time step is shown in
figure 7. Note that without topology changes enabled, the
number of triangles grows exponentially, but with aggres-
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Figure 7: Geometry creation when simulating a smoke
plume without topological changes (Without TC) and with
topological changes (With TC).

sive topological merging and splitting, the number of trian-
gles remains bounded (see the accompanying video).

Pfaff et al. [PTG12] also address this explosion in the
number of mesh elements. Their approach identifies trian-
gles which are deep within the volume of smoke (using
a grid-based signed distance field), or otherwise occluded
from the camera view, and marks them for deletion. By con-
trast, our approach uses only Lagrangian mesh-based opera-
tions, without additional structures or heuristics.

8. Future Work

We have demonstrated that interactive-rate, near-cinematic-
quality smoke simulation and rendering is within reach, but
there are many avenues to explore further:

• Code optimization and parallelization of the FMM solver
to achieve interactive simulation rates.
• Porting our software A-buffer rasterizer to run self shad-

owing and diffusion in GPU hardware.
• View-dependent, level-of-detail mesh refinement, coars-

ening, and topology changes.
• Incorporating the creation of vorticity from solid interac-

tions (vortex shedding).
• Simulation of flame front propagation to achieve vortex

sheet based fire simulation, combined with real-time light-
ing techniques on the rendering side.
• Simulation of ocean wave free surfaces — much of our

vortex sheet work could apply to rough and vast simula-

tions, which are currently infeasible with volumetric sim-
ulation methods.
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