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Abstract

Physically-based liquid animations often ignore the influence of air, giving up in-

teresting behaviour. We present a new method which treats both air and liquidas

incompressible, more accurately reproducing the reality observed at scales relevant

to computer animation.

The Fluid Implicit Particle (FLIP) method, already shown to effectively simu-

late incompressible fluids with low numerical dissipation, is extended to two-phase

flow by associating a phase bit with each particle. The liquid surface is reproduced

at each time step from the particle positions, which are adjusted to prevent mixing

near the surface and to allow for accurate surface tension. The liquid surface is

adjusted around small-scale features so they are represented in the grid-based pres-

sure projection, while separate, loosely coupled velocity fields reduce unwanted

influence between the phases.

The resulting scheme is easy to implement, requires little parameter tuning and

is shown to reproduce lively two-phase fluid phenomena.
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Preface

The entirety of this thesis has been submitted as a paper entitled “MultiFLIP for En-

ergetic Two-Phase Fluid Simulation” to the journal,ACM Transactions on Graph-

ics. The authors listed on the paper are, in order, Landon Boyd and Robert Bridson.

The paper was written by Landon Boyd with minor revisions from Robert Brid-

son. The research was conducted by Landon Boyd, exploring and extending key

ideas proposed by Robert Bridson: two velocity fields, particle bumping and level

set adjustment for escaped particles. The MultiFLIP implementation was written

by Landon Boyd as an extension to a single-phase fluid solver by RobertBrid-

son. The formula to estimate 3-D face fractions described in section 3.2.1 was

contributed by Robert Bridson.
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Chapter 1

Introduction

Computers have been used to simulate fluids for scientific and engineering appli-

cations since the advent of the electronic computer [9]. More recently, fluid simu-

lation has become a valuable tool for movie production, producing realistic bodies

of water [34], fire, smoke and more.

Traditionally, digital water effects have employed free-surface simulation in

which the surrounding air is infinitely compressible and exerts no pressureon the

liquid surface. Although plausible behaviour can be attained under this assumption,

it forgoes the visually interesting phenomena arising from the interplay between

water and air.

In reality, air trapped under water splashes form visible bubbles. This can be

reproduced easily by simply pouring water quickly into a glass. Not only arethese

bubbles visually noticeable, they also contribute significantly to the sound of pour-

ing water [26]. In a free surface simulation, these entrained bubbles collapse in-

stantaneously, while in two-phase simulation, air can be treated as incompressible

so the bubbles live on, contributing to visual (and potentially aural) realism.

Pouring water through a narrow spout is another everyday scenario where the

influence of air is important. As we’ve all experienced when overturning abeverage

container, water and air compete for space in the spout, resulting in the chaotic

“glugging” shown in figure 1.1. In a free-surface simulation, the behaviour in this

case would be as if the top of the container were open, allowing the water to flow

in a smooth and boring fashion through the spout.
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Figure 1.1: The “glugging” effect of water pouring through a spout cannot be
reproduced with free-surface liquid simulation.

The goal of this work is to develop a two-phase fluid simulation method with

the following properties:

Low numerical viscosity. For computer graphics, it is vital that energy be

conserved as much as possible. For the gas phase, this allows for small vor-

tices that can lend interesting behaviour to smoke, steam or mist. For the liq-

uid phase, it avoids behaviour that viewers may characterize as too “goopy”.

At the interface between liquid and gas, it avoids an artificial boundary layer

that would result in unwanted coupling between the two phases.

Plausible small-scale droplets and bubbles. In energetic fluid scenarios,

it is inevitable that small droplets will pinch off splashes and small bubbles

will be captured under the surface. Numerical simulations, particularly those
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that partition the simulation domain into a grid, often lose these details or fail

to reproduce their natural behaviour. We look for an elegant solution to this

problem.

A practical implementation. The method should be easy to implement as

an extension to an existing single phase fluid solver, and should not add

unreasonable computational cost or require excessive parameter tuning.

Although our solution should be applicable to any two fluids with different densi-

ties, we imagine the most common use case to be some liquid interacting with air.

Therefore, this paper will henceforth refer to the two fluids as “liquid” and “air”.

The outcome of this work we call the MultiFLIP method. It is an extension of

the Fluid Implicit Particle (FLIP) method [4] introduced to graphics and adapted

to incompressible flow by Zhu and Bridson [41], which has gained popularity due

to its excellent conservation of energy without the spurious oscillations associated

with similarly undissipative central difference schemes. To our knowledge, Multi-

FLIP is the first application of FLIP to incompressible two-phase flow.

To evolve the liquid surface over time, we develop a new particle-based surface

tracking scheme which identifies sub-scale bubbles and droplets. As opposed to

previous methods which treat sub-scale particles with a separate Lagrangian model,

MultiFLIP incorporates them into the grid-based fluid solve so they are subject to

the same physical parameters as the rest of the simulation.

Finally, to avoid numerical viscosity at the liquid-air interface, MultiFLIP for

the first time combines separate liquid and air velocity fields with a straightforward

finite-volume treatment of divergence.
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Chapter 2

Previous Work

Over the last decade, two-phase and multiphase fluid simulation has received at-

tention from both the computational physics and computer graphics communities.

The Ghost Fluid Method (GFM) [13, 18] paved the way for much of this work with

a convenient discretization of discontinuities in quantities such as pressureat the

fluid-fluid interface.

Hong and Kim [12] adapted GFM for computer graphics, employing semi-

Lagrangian advection and Particle Level Set (PLS) for surface tracking. Losasso et

al. [20] extended this scheme to multiphase flows by merging several overlapping

level set functions. Kang et al. [14] added the ability to simulate both miscible and

immiscible fluid interactions.

Song et al. [33] took a different approach, using a continuous model of the

fluid properties at the interface but with higher-order constrained interpolation pro-

file (CIP) advection. Zheng et al. [40] added Regional Level Set (RLS) surface

tracking to simulate bubbles with thin films. Volume control for individual regions

was added by Kim et al. [16]. Kim [15] improved the RLS formulation and added

a Lagrangian model for small bubbles and droplets.

Sussman et al. [36] introduced another model for two-phase flow using Cou-

pled Level Set and Volume of Fluid (CLSVOF) surface tracking. An interesting

feature of this work is its use of separate velocity fields for the two fluid phases.

Mihalef et al. [24] adapted this model to simulate boiling for computer graph-

ics. Mihalef et al. [25] then replaced CLSVOF with Marker Level Set to simulate
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two-phase flow with Lagrangian particles for small-scale droplets and bubbles.

Other works have focused specifically on reproducing lively behaviour of small

scale bubbles [11] and liquid sprays [21].

All of the above methods advect a level set function representing the surface,

perhaps correcting it using either particles or fluid volumes. MultiFLIP skipslevel

set advection, instead reconstructing the surface from advected particles. Blinn [3]

presented an influential early effort to constructing surfaces aroundparticles and

Zhu and Bridson [41] adapted the concept for single-phase fluid simulation.

Another difference of MultiFLIP from previous methods is its treatment of sub-

grid bubbles and droplets. Rather than simulating these with a separate Lagrangian

model, the liquid surface is slightly perturbed so that those features are visible on

the grid for the pressure projection. This is similar in spirit to the approach ofKim

et al. [17], wherein fine features were sampled onto a coarse grid by expanding the

level set.

In parallel to the developments described above, some authors have attempted

to implement multiphase fluids in a smoothed particle hydrodynamics (SPH) frame-

work. We refer the reader to Solenthaler and Pajarola [32].
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Chapter 3

The Method

The MultiFLIP method is based on the Euler equations for inviscid, incompressible

fluid flow,

∂~u
∂ t

+~u·∇~u = − 1
ρ

∇p+
1
ρ

~f (3.1)

∇ ·~u = 0 (3.2)

where~u is velocity — we will often refer to its horizontal and vertical components,

u andv, respectively;p is pressure;ρ is density and~f encapsulates body forces

such as gravity. For a complete introduction to these equations and their use in

computer graphics, see Bridson [5].

Using the time splitting technique introduced to graphics by Stam [35], the

Euler equations can be solved in a sequence of steps: anadvectionstep to advance

the velocity (and potentially other quantities such as smoke density) through the

velocity field,
∂~u
∂ t

+~u·∇~u = 0; (3.3)

a step to apply body forces such as gravity,

∂~u
∂ t

=
1
ρ

~f ; (3.4)
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and aprojectionstep to enforce the incompressibility condition,

∂~u
∂ t

= − 1
ρ

∇p (3.5)

∇ ·~u = 0. (3.6)

The MultiFLIP method, like FLIP [41], stores velocity samples on a staggered

Marker and Cell grid [10]. While the body forces and pressure projection are

applied to the grid velocities, randomly distributed particles carry velocity for the

advection step.

In reality, the viscosity of air and water imposes a boundary layer between the

two phases where their tangential velocities are coupled. However, this boundary

layer is typically too small to be represented at the coarse grid resolutions used for

computer graphics. Therefore, we treat the interface between water and air as a

free-slip condition. To this end, MultiFLIP uses two velocity fields,~uL for liquid

and~uA for air, so that there are two colocated velocity samples on each grid face.

The two velocity fields contribute to a combined divergence that can be corrected

using a single pressure projection.

Additionally, each particle is labeled as either liquid or air. During the ad-

vection step, liquid (air) particles only interpolate velocities to and from~uL (~uA).

The particle identities also allow the liquid-air surface to be reconstructed from the

particle positions.

A MultiFLIP time step consists of the following sub-tasks, described in subse-

quent sections.

1. Advect velocities (§3.3)

2. Reconstruct the liquid surface (§3.1)

3. Bump and seed particles (§3.1.1)

4. Compute the liquid volume adjustment (§3.5)

5. Adjust the liquid surface around escaped particles (§3.1.2)

6. Apply body forces to both velocity fields

7. Project out the combined liquid/air divergence (§3.2)
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3.1 Particle-Derived Level Set

An important aspect of simulating two-phase flow is tracking the interface between

the two fluids, as the discontinuities in density and pressure must be accounted for

along that interface. Many methods have been proposed to track fluid interfaces.

Level Set Methods [27] define the interface as the zero level set of a scalar field,φ ,

stored on the grid.φ can be advected through the velocity field to track its evolution

over time. A challenge of these methods is handling numerical dissipation which

tends to smooth out features, shrinking high curvature regions over time.

The Particle Level Set (PLS) method [6] adds a band of particles on eitherside

of the zero level set. By advancing both the particles andφ through the flow, more

surface details are preserved.

Since FLIP requires particles to be maintained over the fluid domain, and since

each MultiFLIP particle is identified as either liquid or air, it is natural to recon-

struct the liquid surface from the particles.

Similarly to Foster and Fedkiw [8], we construct a distance function,φ as the

union of spheres around particles. Whereas their method and its descendant PLS

also advanceφ over time to maintain a smooth interface, we avoid that added com-

plexity and cost. Insteadφ is reconstructed from particles at every time step, ad-

justing the positions and distribution of the particles near the interface to maintain

smoothness.

Our task is then, given a distribution of liquid and air particles, to generate a

scalar fieldφ which is less than zero in the region covered mostly by liquid particles

and greater than zero in the region covered mostly by air particles (figure 3.1). It

is important that this reconstruction be robust to intermingling of particles at the

interface and gaps in the particle distribution, as these are inevitable side-effects of

numerical integration over a time step.

The first step in our surface reconstruction algorithm is to construct two signed

distance fields,φA andφL based on the union of spheres of radiusrs around air and

liquid particles, respectively. A largerrs results in a smoother surface around the

particles but also smooths over finer features.1 Figure 3.2 shows a 1-D example

with rs = 0.4∆x.

1In all tests, we usedrs = 0.36∆x.
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Figure 3.1: The liquid surface is reconstructed from the locations of air and
water particles.

Figure 3.2: First, separate distance fields are constructed for liquid and air.
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φA andφL are constructed as the distance to the nearest particle at every grid

cell center minusrs. As seen in figure 3.2, inside the air regionφA hovers between 0

and−rs, depending on the distribution of particles. For example, atx2, the nearest

air particle is 0.3∆x away, soφA = 0.3∆x− rs = −0.1∆x. Importantly, the value of

φA here does not say anything about the extent of the air region.

For this reason, all negative values ofφL and φA are discarded and instead

extended from the positiveφ values using the fast sweeping method of Zhao [39].

These reinitialized distance functions are shown as dashed lines in figure 3.2. Note

that the reinitializedφA crosses zero in a new location which reflects a surface

around the air particles.

Given φL andφA signed distance fields, we construct a mergedφ (figure 3.3)

via

φ =
φL −φA

2
. (3.7)

This is equivalent to the level set projection method proposed by Losassoet al.

[20], which is robust to overlap and vacuum between surfaces.

A convenient side-effect of reconstructing the surface from both airand liquid

particles is robustness to undersampling. A bubble can be distinguished from an

undersampled liquid region by the presence of air particles.

3.1.1 Particle Bumping and Seeding

As previously mentioned, particles tend to mix at the liquid-air interface. Left

unchecked, this mixing can quickly grow out of control, resulting in a homoge-

neous soup of liquid and air particles. To tackle this problem while maintaining a

smooth surface, we strategically adjust the particle positions around the interface

at every time step, correcting for the errors in numerical integration.

After constructing the signed distance functionφ identifying the liquid-air in-

terface, any particles that are less thanrs inside their respective regions are moved

along the gradient ofφ to thesrs isocontour, wheres= +1 for air ors= −1 for

liquid particles.

Bumping to the zero isocontour is enough to prevent mixing between air and

liquid particles but we found that too much noise developed on the surface toac-

curately simulate surface tension effects. By bumping to the±rs isocontour, the

10



Figure 3.3: The liquid and air distance fields are merged. The new surface is
halfway between the zero crossings of the individual fields.

union of spheres around the particles more closely approximate a smooth surface

(figure 3.4). With additional particles seeded around around the interface, the ap-

proximation becomes even smoother.

The impact of bumping on accuracy should be minimal since the bump distance

is generally below the order of one grid cell and because the particle velocity update

in the advection step accounts for the change in position (§3.3).

In more detail, the bumping algorithm proceeds as follows.

1. Compute the curvature field,κ = ∇ ·
(

∇φ
|∇φ |

)

, at grid cell centers using the

second-order finite difference equation described by Osher and Fedkiw [27].

2. Identify candidate particles using the approximate signed distance to the in-

terface,d = φ(x)
|∇φ(x)| , using fourth-order WENO interpolation [22] forφ(x)

and∇φ(x). Candidates are those particles withsφ(x)∈ (−rs,+re). Particles

with sφ(x) ≥ re will be treated separately (§3.1.2).
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Figure 3.4: Particle bumping prevents mixing and results in a surface smooth
enough for accurate surface tension.

3. Interpolate the curvature at each candidate particle location,κ(x), using tri-

linear interpolation ofκ. In regions where surface curvature approaches the

maximum that can be represented on the grid, our bumping strategy changes

to allow particles to move freely. When−sκ(x) ∈
(

1
4∆x,

1
2∆x

]

, the target dis-

tance inside the interface,target, is set to zero. When−sκ(x) > 1
2∆x, the

particle is not bumped at all. Figure 3.5 shows both of these scenarios. Oth-

erwise, target is set tors. Without these extra cases, small splashes and

tendrils are prevented from leaving the main fluid body.

4. Move the particle to the target isocontour. Ifsd< 0, the particle is on the

wrong side of the interface. Find a vector~q to the nearest point on the surface

via Newton iterations with backtracking line search. Fourth-order WENO is

again used for interpolation. Update the particle via

x = x− (target+ |~q|) ~q
|~q| . (3.8)

12



Figure 3.5: Bumping is modified in high curvature regions to enable
splashing.

If sd∈ [0, target), the particle is between the interface and the target isocon-

tour. Likewise, find~q pointing to the nearest point on the surface. Update

the particle position via

x = x+(target−|~q|) ~q
|~q| . (3.9)

After the bumping step, liquid and air particles are seeded and culled as neces-

sary throughout the domain. In each cell, the number of liquid and air particles is

counted. If the total number of particles in a cell is below the target of 8, particles

are added to the cell at random locations, acquiring their identities and velocities

from values ofφ and~u interpolated from the grid. If a location is randomly chosen

within thers void around the liquid-air interface, no particle is created.

To improve evolution of the liquid-air interface, the target number of particles

is increased for cells close to the surface. We increase the target numberof particles

by a factor of 4 in cell(i, j,k) whenφi, j,k ≤ ∆x.

If the number of air or liquid particles in a cell exceeds twice the target number,

excess particles are deleted. Liquid and air particles are counted separately to

prevent volume loss from removing all particles of a particular type.

13



3.1.2 Escaped Particle Handling

If a particle is too far away from the reconstructed liquid surface, it probably rep-

resents a feature too fine to be represented on the grid. Other papers [21, 25] have

used this observation to identify sub-scale features in the context of the Marker

Level Set and Particle Level Set methods.

Whereas other schemes have treated these “escaped” particles in a Lagrangian

fashion, we propose to instead adjust the liquid surface around the particles so that

they are represented in the grid-based pressure solve. This way, large fluid bodies

and sub-grid features are subject to the same dynamics with no need to separately

tweak parameters for both cases. Implementation is also relatively straightforward.

In our surface reconstruction scheme, an isolated particle may show up asa

small “bump” in φ across the zero isosurface, depending on the density of sur-

rounding particles and alignment with the grid. In order to treat all isolated parti-

cles equally, we first apply a simple filter to remove these bumps. Anywhere that

the sign ofφ differs from all its neighbors, i.e.

sign(φi, j,k) 6= sign(φi′, j ′,k′) ∀ (i′, j ′,k′) 6= (i, j,k)

i′ ∈ [i−1, i +1], j ′ ∈ [ j −1, j +1],k′ ∈ [k−1,k+1],

the sign ofφi, j,k is flipped. The resultantφ field is then redistanced.

Escaped particles are identified as those on the wrong side of the interfaceby

more thanre (or re
2 whereκ(x) > 1

2∆x) after the bumping step.φ is adjusted around

these particles to create a spherical bubble or droplet of radiusre (figure 3.6).

For all grid centers withinre+2∆x, φ is updated with

φi, j,k = s·max(sφi, j,k, re−d) (3.10)

whered is the distance to the particle ands is the sign of the particle (−1 for liquid,

+1 for air). Note that since the surface is reconstructed from particles atevery time

step, this adjustment ofφ does not result in persistent volume change over time.

When an escaped particle comes withinre of the liquid surface, it is re-absorbed

into the fluid body.

Whenφ is adjusted around an escaped particle, particles of the opposite type

14



Figure 3.6: The liquid surface is adjusted around an escaped particle.

get covered by the expanded region. Consider an air particle coveredby the ex-

panded liquid region around an escaped liquid particle. We passively advect the

covered air particle through the air velocity field. Since the pressure projection

does not account for the existence of air at its location, we do not use it toex-

change velocity information with the grid after the projection step. The velocity

extrapolation strategy (§3.4) also helps reduce the influence of the surrounding ve-

locity field on escaped particles.

re is chosen large enough for particles to be represented on the grid, but not

so large as to introduce artifacts such as piles of particles that never merge. We

usedre = 1.5∆x for our 2-D tests andre = 1.1∆x for 3-D. Escaped particles can

be rendered as spheres of any radius, but it is best for the rendered spheres not to

differ too much in size fromre or they will appear to float against boundaries.
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3.2 Combined Divergence-Free Projection

3.2.1 Combined Divergence Measure

Given a divergent velocity field,~u∗, we obtain a new divergence-free field,~un as

follows. Assuming a pressure fieldp, advancing equation 3.5 over a time step gives

~un =~u∗−∆t
1
ρ

∇p. (3.11)

Taking the divergence of both sides with∇ ·~un = 0 gives

∆t∇ ·
(

1
ρ

∇p

)

= ∇ ·~u∗. (3.12)

Solving equation 3.12 forpand substituting it into equation 3.11 obtains the divergence-

free~un.

The right hand side of equation 3.12 corresponds to the net amount of fluid

flowing into or out of each cell. The pressure projection then counteractsthis flow

so that no cell is a source or sink for fluid.

For the purpose of divergence, liquid and air are treated equally since both are

incompressible. The total divergence for a cell is the sum of the fluxes of each fluid

across each face. For example, the liquid flux across a face is the area of the face

covered by liquid multiplied by the liquid velocity on that face.

Figure 3.7 shows the liquid and air velocity samples and face fractions on a

cell containing air and liquid, where the tangential velocities of the two fluids are

discontinuous.

In MultiFLIP, the net flux across each face is computed as a weighted sum of

the liquid and air velocities (figure 3.8), similarly to the scheme used by Roble et

al. [30] for solid boundaries. In 2-D, this can be expressed as

∇ ·~ui, j =−uL
i, jufraci, j −uA

i, j(1−ufraci, j)

+uL
i+1, jufraci+1, j +uA

i+1, j(1−ufraci+1, j)

−vL
i, jvfraci, j −vA

i, j(1−vfraci, j)

+vL
i, j+1vfraci, j+1 +vA

i, j+1(1−vfraci, j+1) (3.13)
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Figure 3.7: Separate liquid (blue) and air (red) velocities are colocated on the
faces of cell (i,j).

Figure 3.8: The combined divergence is a weighted combination of liquid
and air velocities.
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Figure 3.9: The face fraction is approximated using adjacentφ values. Here,
φ0 andφ1 have different signs.

whereufrac and vfrac are the fractions of the vertical and horizontal cell faces

covered in liquid.

There are several possible ways to approximateufrac andvfrac. For example,

in 2-D one can interpolateφ onto the corners of each cell. Then, each face has two

φ values at its endpoints. If these values are of opposite sign, the fraction issimply
φ−

φ−−φ+ . Otherwise, the fraction is 1 or 0, depending on the sign.

Unfortunately, this method does not extend trivially to 3-D, where each face

is a square rather than a line segment. Instead, we use a geometric approach that

considers only the twoφ values adjacent to the face. By assumingφ describes

the distance to a plane parallel to two of the face’s edges, the third dimension can

be ignored and we only need to compute the fraction of a 1-D face under a 1-D

surface, as shown in figures 3.9 and 3.10.

When two adjacentφ values have different signs, as forφ0 andφ1 in figure 3.9,

the identities

a+b = ∆x/2

c
b

=
φ1−φ0

d
a
φ0

=
∆x

φ1−φ0

give

c = ∆x

(

φ0 +φ1

2d

)

.
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Figure 3.10: Here, a face fraction is approximated fromφ0 andφ1 with the
same sign.

Then

vfrac=
1
2
− φ0 +φ1

2d
, (3.14)

where

d =
√

∆x2− (φ1−φ0)2.

We clampvfracwithin [0,1].

Whenφ0 andφ1 have the same sign and the interface crosses above or below

φ0 andφ1, as in figure 3.10, the face fraction can again be derived from similar

triangles. Conveniently, this also gives equation 3.14.

3.2.2 Pressure Projection

At the liquid-air interface, there is a sharp jump in density, pressure gradient and, in

the presence of surface tension, pressure. In order to capture these discontinuities

in the pressure projection, we use the Ghost Fluid Method [7].

Our goal is to solve a variable coefficient Poisson problem, equation 3.12.Liu

et al. [18] show how the Ghost Fluid Method can accommodate jumps inp, ∇p

andρ while still resulting in the usual Laplacian stencil for the matrix on the left

hand side. It is illustrative to repeat some of that discussion here in 1-D.

Figure 3.11 shows the pressure across the liquid-air interface with surface ten-

sion. The pressure samplepk at positionxk is in a liquid region while the pressure

samplepk+1 is in air. The exact interface between the two fluids is at position

xk +θ∆x. We say that the pressure at that position ispI while moving an infinitesi-
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Figure 3.11: Surface tension causes a jump in pressure at the liquid-air inter-
face.

mal amount to the right into the air region, the pressure jumps topI +σκ. σ is the

surface tension coefficient for the interface andκ is the curvature of the interface

at this position.2

To obtain second-order finite differences for∇ ·
(

1
ρ ∇p

)

at cell centerxk, we

will need the gradients across the cell’s two faces,xk+ 1
2

andxk− 1
2
.

The gradient atxk− 1
2

can be determined in the usual fashion since there is no

interface betweenxk−1 andxk.

(

1
ρ

∇p

)

k− 1
2

=
1

ρL

pk− pk−1

∆x
. (3.15)

At the interface betweenxk and xk+1, the pressure is discontinuous but the

variable density gradient,1ρ ∇p is continuous. Assuming that1
ρ ∇p is the same for

water and air within this cell allowspρ to be extended to ghost values,( p
ρ )G, as

shown in figure 3.12.

2κ is only meaningful in higher dimensions. The actual magnitude of the jump isunimportant for
this discussion.
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Figure 3.12: GFM uses a linear extension ofp/ρ across interface.

The ghost values themselves are not as interesting as the gradient across the

cell. To obtain this gradient, first observe that

1
ρL

pI − pk

θ∆x
=

1
ρA

pk+1− (pI +σκ)

(1−θ)∆x
. (3.16)

This can be rearranged to obtain

pI =
ρL(pk+1−σκ)θ +ρApk(1−θ)

ρLθ +ρA(1−θ)
. (3.17)

SubstitutingpI back into either side of equation 3.16 gives

(

1
ρ

∇p

)

k+ 1
2

=
1
ρ̂

pk+1− pk−σκ
∆x

(3.18)

where

ρ̂ = ρLθ +ρA(1−θ). (3.19)

Returning to the Poisson problem, the left side of equation 3.12 can be dis-
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cretized atxk using equations 3.15 and 3.18.

∆t
1
ρ̂

pk+1−pk−σκ
∆x − 1

ρL

pk−pk−1
∆x

∆x
= ∇ ·~u∗ (3.20)

Moving theσκ term to the right hand side reveals the usual Poisson sparsity struc-

ture, making it convenient to solve using a standard Preconditioned Conjugate Gra-

dient solver.
∆t
ρ̂

pk+1− pk

∆x2 − ∆t
ρL

pk− pk−1

∆x2 = ∇ ·~u∗ +
∆t
ρ̂

σκ
∆x2 (3.21)

This discussion extends naturally to higher dimensions [18]. Forming the vari-

able coefficient system is simply a matter of substitutingρ̂ on the left hand side

and adding a surface tension term to the right hand side, wherever the liquid-air

interface passes between two pressure samples.

Once pressure values have been obtained, both velocity fields are updated ac-

cording to equation 3.11 so that∇ ·~un = 0. Where a liquid-air interface exists be-

tween pressure samples, it’s also necessary to use the averaged densityand include

the pressure jump term

~un =~u∗− ∆t
ρ̂

∇p+
∆t
ρ̂

σκ
∆x

. (3.22)

The liquid (air) velocity samples are only updated from pressures where the

liquid (air) velocity has influenced the divergence term, i.e. on faces whose liquid

(air) fraction is nonzero. Elsewhere, the velocity is extrapolated as described in

section 3.4.

3.3 Two-Phase Velocity Advection

Velocity advection in MultiFLIP is similar to FLIP [41] with minor adjustments to

deal with two velocity fields and particle bumping. Particles only interact with the

velocity field corresponding to their identity. Liquid (air) particles only interpolate

to and from~uL (~uA) and are advected through~uL (~uA). This is important near the

liquid-air interface as in figure 3.13 to reduce smearing of the velocities across the

interface.

At the beginning of a time step, each FLIP particle is advected through the
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(a) (b) (c)

Figure 3.13: The MultiFLIP update: advection, interpolation onto the grid,
interpolation onto particles.

divergence-free velocity field,un−1 from the previous pressure projection (fig-

ure 3.13 (a)). We use a third-order Runge-Kutta scheme [28] for this step.

The particle velocities are then interpolated onto the grid at the new location

to get~u∗ (figure 3.13 (b)), which may have nonzero divergence. If more than one

particle updates a particular velocity sample, the particle velocities are weighted

by the distances of the particles to the sample.

If a velocity sample is not updated by any particles, it is marked for extrapola-

tion (§3.4).

The MultiFLIP time step proceeds, applying body forces and performing the

pressure projection, resulting in a new, divergence-free velocity field, ~un. Also

during the time step, particles close to the liquid-air interface are bumped. In the

case of figure 3.13, the particle atx∗p is bumped toxn
p.

The central idea of FLIP is toincrementthe particle velocity by thedifference

in the grid velocity interpolated at the particle position over the time step. The

FLIP update to the particle is therefore

~un
FLIP =~un−1

p +(~un
Interp−~u∗Interp). (3.23)

To alleviate noise inherent to FLIP, the FLIP update is combined with a PIC update

which considers only the current velocity field. The strength of this regularization
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term is controlled by the parameterα . 3

~un
PIC =~un

Interp (3.24)

~un
p = α~un

PIC +(1−α)~un
FLIP (3.25)

~u∗Interp is interpolated at positionx∗p, while~un
Interp uses positionxn

p so that~un
Interp−

~u∗Interp accounts for changes to the velocity field around the particle as well as the

bumping of the particle over the time step (figure 3.13 (c)).

3.4 Velocity Extrapolation

When updating particles near the liquid-air interface from the grid, the stencil may

include velocity samples outside the particle’s region. In free-surface simulation,

the velocities for these samples are typically populated via extrapolation to avoid

dissipation near the interface.

Because MultiFLIP has separate velocity fields for liquid and air, the same

procedure can be followed. Any velocity sample that was not influenced by the

pressure projection can obtain an extrapolated value. Likewise, when updating the

grid from particle values, samples not influenced by any particles can be extrapo-

lated.

Like the redistancing procedure forφ , velocity extrapolation is based on fast

sweeping [39]. The distance to the nearest known velocity sample is propagated

in eight sweeps over the grid (one for each combination of∆i = ±1, ∆ j = ±1 and

∆k = ±1). Each of the unknown velocities is then set to the value of the nearest

known sample.

Even with extrapolated values near the interface, the first-order accuracy of

time splitting and the Ghost Fluid Method allows some unwanted influence be-

tween liquid and air. This is most visible as unwanted drag on escaped water

particles. This is a form of numerical viscosity, since in truly inviscid flow there

would be no drag.

To test the coupling of escaped particles with the surrounding flow, we used the

following 2-D setup. An air velocity field was initialized throughout the domain to

3In all tests, we usedα = 0.03.
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Figure 3.14: Extrapolating only the air velocity reduces coupling of small
droplets to the surrounding air velocity.

0.1m/s in the positivex direction. As the flow carried air particles rightward, new

particles were seeded on the left edge of the domain with velocities interpolated

from the grid.

A single liquid particle was seeded in the middle of domain and treated as

escaped (§3.1.2). The velocity of this liquid particle was tracked over time. For

comparison, the actual drag force [25] on a water drop with radiusR= 3mmtrav-

eling at∆u= 0.1m/s relative to air with kinematic viscosityνg = 15.7×10−6m2/s

and densityρg = 1.2kg/m3 is Fdrag = 22.8ρgν0.72
g (R∆u)1.28 = 2.85×10−6N. This

corresponds to a maximum acceleration of 0.025m/s2.

Figure 3.14 shows the results of this experiment withre values of 1.1∆x, 1.5∆x

and 2.0∆x. In all cases, the initial acceleration of the droplet was much greater

than 0.025m/s. With largerre, this unwanted acceleration decreased. This is still

sometimes visible as water droplets getting carried around by air currents instead

of following mostly ballistic trajectories.

To combat this problem, instead of extrapolating the air velocity~uA into the

liquid region,~uA is set to~uL there. This way, the liquid velocity is smeared into the
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air velocity near the interface, thereby reducing the impact of numerical smearing

on the liquid velocity field. As shown in the dashed lines of figure 3.14, this results

in less coupling between the droplet and surrounding air.

For improved droplet behaviour, it would be sufficient to alter the extrapolation

strategy only in the expanded liquid regions around escaped liquid particles. How-

ever, we did not find the additional smearing of the air velocity near the interface

to have a visually noticeable effect elsewhere. This is consistent with the intuition

that the liquid should impart more influence on the much lower density air. Simi-

larly, Sussman et al. [37] extrapolated liquid velocity to obtain solutions for high

density ratios that converged to solutions of a single-phase liquid simulation.

Velocity extrapolation is oblivious to solid boundaries. By extrapolating this

way, a free-slip condition at solid boundaries is maintained. Although the pressure

solve enforces zero normal velocity at boundaries, noise from the particles can

result in non-zero normal velocities on the grid there. If a particle does stray into a

solid region, it is bumped to the surface in similar fashion to the bumping employed

at the liquid-air interface.

Our velocity extrapolation is not inherently divergence-free. Rasmussen et al.

[29] eliminated divergence in extrapolated velocities using an additional projection.

It is possible that this would make a difference for some scenarios, however we did

not find it to be worth the extra cost in our implementation.

3.5 Volume Control

When simulating splashy liquids, i.e. flows with high Weber number, MultiFLIP

reproduces the visual excitement of the flow through the creation of escaped par-

ticles. Unfortunately, since escaped particles carry no volume, this tends toerode

the overall volume of liquid.

To combat this, we use a simple global volume control mechanism. The current

liquid volume is estimated as the sum of the face fractions, in 2-D

Vn =
∆x2

2 ∑
i, j

ufraci, j +
∆x2

2 ∑
i, j

vfraci, j . (3.26)

This is compared to the target volume calculated on the first time step,V0, using
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the proportional controller of Kim et al. [16] to obtain a target divergence,∆Vn. We

found it best to use an aggressive controller gain,kP = 2.3/2∆t and a conservative

PI gain,kI = (kP/512)2 to avoid oscillations.

To avoid artifacts in the liquid-air interface, the divergence is applied only to

cells whose faces are either completely covered by air or completely covered by

liquid. ∆Vn is divided by the number of all-liquid cells to obtain a per-liquid-

cell divergence, which is subtracted from equation 3.13 for those all-liquid cells.

Likewise,∆Vn is divided evenly among all-air cells and added to the corresponding

entries in equation 3.13.
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Chapter 4

Results

Figures 4.1–4.3 show selected frames from a 2-D scenario to test liquid behaviour

in the presence of strong air currents. Using physical parameters for surface tension

and density, two spherical water drops of diameter 2cm and three 1cm drops are

dropped into a liquid pool, within a 10cm×10cmbox. At this scale, surface tension

is strong enough to keep the drops intact until they reach the liquid surface.

For comparison, the scenario was run with a single velocity field (left column)

and separate air and liquid velocity fields (right column). Att = 92ms, the un-

wanted influence of air can be seen in the deformed splash in the single velocity

field version. Att = 208ms, a splash on the right side of the frame gets stretched

out and pulled along by the air. This stretching action results in additional escaped

particles which are more influenced by the surrounding air. Even after 833ms, they

are still floating around in disturbingly non-physical fashion.

In the two velocity field version, a few escaped particles are generated but they

follow mostly ballistic trajectories. Throughout the simulation, small entrained

bubbles are generated and float to the surface. A larger bubble can beseen in the

lower-left att = 417ms.

Figure 4.4 shows a 3-D ellipsoidal blob of liquid in zero gravity, used to test

the accuracy of surface tension as per Torres and Brackbill [38]. The initial shape

of the ellipsoid is given by
x2

32 +
y2

22 +
z2

22 = 1,
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Figure 4.1: Comparison of a 2-D splashing drop simulation using a single ve-
locity field (left) and two velocity fields (right). The initial state, shown
here, is the same.

which has the volume of a sphere with radiusr0 = 3
√

12. The surface tension co-

efficient was set toσ = 1, and the densities for the ellipse and surrounding fluid

areρL = 1 andρA = 0.01. The expected oscillation frequency can be determined

analytically as

ω2
2 =

6σ
(ρL +ρA)r3

0

(4.1)

≈ 0.495, (4.2)

corresponding to a period of 8.93 seconds.

For our experiment, we used a coarse 203 grid and time steps dictated by a CFL

number of 5. One-sided differences were employed at the boundaries ofthe grid.

Figure 4.5 shows kinetic energy over time, with and without the volume control

code described in§3.5. Every second dip in the energy corresponds to a return to

the original configuration.

The observed oscillation period is within 10% of the expected result. Some

noise can be seen as the kinetic energy does not return to zero, but this additional

energy does not show signs of getting out of hand. Although volume control does

cause the elongation of the ellipsoid to decay more quickly, the overall behaviour
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t = 92ms

t = 208ms

Figure 4.2: Comparison of a 2-D splashing drop simulation using a single
velocity field (left) and two velocity fields (right). Without separate
velocity fields, the liquid gets pulled along and stretched by air currents.
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t = 417ms

t = 833ms

Figure 4.3: Comparison of a 2-D splashing drop simulation using a single
velocity field (left) and two velocity fields (right). Droplets float around
unconvincingly in the single velocity field version.
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t = 0s t = 5.0s

t = 9.9s t = 14.7s

Figure 4.4: A 3-D ellipsoid in zero gravity oscillates due to surface tension.

is still good, showing that volume control does not significantly compromise the

curvature calculation around the liquid surface.

Figure 4.6 shows the challenging scenario of a volume of liquid exiting an

enclosed space through a narrow spout. The water exiting the container must be

replaced by air, producing the visually interesting glugging effect. In a single-phase

simulation, glugging does not occur because the pressure difference between the

air inside and outside of the container is not considered. In our result, aircan be

seen rushing up through the spout, producing bubbles that rise to replace the lost

liquid in the top container.

For our test, we simulated two spherical containers of diameter 3cmconnected
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Figure 4.5: A 3-D oscillating ellipsoid shows the expected evolution of ki-
netic energy.

by a cylinder with diameter 0.8cm, the top container half-filled with water. Phys-

ical values were used for surface tension,σ = 0.073kg/s2, and density,ρL =

1000kg/m3, ρA = 1.2041kg/m3. The small scale of the simulation and resulting

high surface tension forces prevented the water from breaking up too much and

losing volume. However, there is still perhaps more break-up than one would ex-

pect at this scale, indicating that MultiFLIP may benefit from a more sophisticated

particle escape condition.

The test used a 40×40×80 simulation grid on a 2.4 GHz Intel Core2 Duo with

3 GB of RAM. The strong surface tension required small time steps, 0.23mson av-

erage, or about 18 steps per frame at 240 frames per second. On average, each time

step took 6.34s to execute, with contributions from sub-tasks shown in table 4.1.

Most sub-tasks were parallelized through the use of OpenMP but the Poisson solve

used only a single core. The next step towards improving performance would be to

employ a parallel Poisson solver.
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t = 0ms t = 433ms

t = 946ms t = 2000ms

Figure 4.6: Simulated water flows through a spout. By treating air as incom-
pressible, visually exciting glugging is reproduced.

Sub-task % execution time
Poisson solve 36
Particle velocities to grid 21
Pressure update to grid 15
Particle bumping 13
φ computation 7
Grid to particle velocities 2
Particle advection 2
Particle seeding 1

Table 4.1: sub-task execution time

34



Chapter 5

Conclusion

We have presented a practical method for two-phase fluid simulation. Key aspects

of our solution are:

• FLIP to integrate the Euler equations of fluid motion with minimal numerical

dissipation

• the Ghost Fluid Method to discretize the jump in density and pressure at the

liquid-air interface

• separate velocity fields with a combined divergence formulation to enforce

overall incompressibility while maintaining a free-slip condition at the inter-

face

• a new particle-based surface tracking method

• level set adjustment around escaped particles for sub-scale bubble and droplet

behaviour

Our results show that the method effectively reproduces splashy two-phase

flows with plausible behaviour of small-scale features and accurate surface tension

effects.
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t = 0ms t = 50ms

Figure 5.1: A small 2-D water droplet falls using two velocity fields (blue),
one velocity field (red) and two fields with volume control (green).

5.1 Future Work

Figure 5.1 shows a water drop of diameter 62
3mm falling in air as per Example 2

in Kang et al. [13]. With a grid resolution of 40×60 and CFL restriction of 0.5,

MultiFLIP does a good job predicting the acceleration of the droplet. Its speed

after 50msis 0.48m/s, giving 9.6m/s2.

However, without explicit volume control, the volume of the droplet decreases

by 13.4%, showing that there is room for improvement in tracking the liquid-air

interface. For comparison, the test was also performed with a single velocityfield,

giving slightly less volume loss (10.9%), but at significantly slower acceleration

(7.46m/s2). As expected, with volume control enabled volume loss was much less

(1.8%).

An interesting challenge for future research would be to reproduce the water

drop shapes seen in nature at terminal velocity [2, 23]. At present, decimation of
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the droplet volume makes it difficult to approach the terminal velocity of approxi-

mately 8m/s.

Thin features are another source of volume change inherent to grid-based fluid

simulation. While our global volume correction scheme helps compensate for this,

it would be better to address the problem at its source. In MultiFLIP, thin features

usually manifest themselves as escaped particles, so associating some volumewith

those particles could be a more localized solution to volume change. Regional level

sets [15] have also been shown to be useful for controlling volume change.

Other papers (e.g. [1, 19]) have used adaptive grids to concentrate computing

power where it is needed. This could also be employed with MultiFLIP. For exam-

ple, higher resolution in the area of escaped particles would allow the adjusted φ
to cover more grid cells, reducing unwanted coupling with the surrounding fluid.

Finally, the current MultiFLIP implementation extrapolates liquid velocities

throughout the entire domain twice: once when updating the grid velocities from

particles and again when updating the grid velocities from the pressure projection.

The extrapolated velocities are only really needed in a band around the liquid-air

interface, so some performance might be gained from using a fast marching method

[31] to populate only that band.
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