
Realistic Smoke Simulation Using A Frustum Aligned

Grid

by

Alan Wai Lun Woo

B.Sc., University of British Columbia, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia

April 2006

c© Alan Wai Lun Woo, 2006

Abstract

Realistic simulation of smoke is used in the special effects industry to pro-

duce smoke in both feature films and video games. Traditional simulations utilize

uniformly spaced rectangular computational grids to perform the smoke simulation.

Various changes had been proposed to improve different aspects of the simulation,

including level of details, memory usage and simulation speed. In this thesis, I pro-

pose a novel computational grid that improves upon the level of details as well as

memory usage. I propose a frustum aligned grid that takes advantage of the view-

ing camera because details are most important in the area close to the camera. A

frustum aligned grid reduces the amount of grid points necessary to cover the whole

domain by placing a high concentration of grid points near the camera while having

sparse grid points away from the camera. By using a larger number of grid lines

in the direction parallel to the camera and fewer grid lines in the direction perpen-

dicular to the camera, high level of details using a smaller amount of memory can

be achieved. The grid is logically rectangular and a perspective transformation can

map the grid into a spatially rectangular one. These properties enable the use of ex-

isting simulation tools with some modifications, thus maintaining the level of speed.

Experimental results and comparison with a standard uniform grid demonstrate the

practicality and effectiveness of the proposed method.

ii

Contents

Abstract ii

Contents iii

List of Tables v

List of Figures vi

Acknowledgements vii

1 Introduction 1

2 Traditional Smoke Simulation 4

2.1 Governing Equations . 4

2.2 The Grid . 5

2.3 Simulation Loop . 5

2.4 Advection . 8

2.5 Vorticity Confinement . 9

3 Frustum Aligned Grid Method 11

3.1 Frustum Aligned Grid . 11

3.2 Simulation Loop . 14

iii

3.3 Divergence . 14

3.4 Advection . 18

3.5 Pressure solve . 20

3.6 Vorticity . 21

4 Experimental results 24

4.1 Source location . 25

4.2 Grid size . 27

4.3 Vorticity . 29

4.4 Comparison with traditional simulation 30

5 Conclusion 36

Bibliography 37

Appendix A Laplacian Coefficients 38

iv

List of Tables

4.1 Parameters for simulation. 25

4.2 Run time of sample simulations with different grid sizes in seconds

per frame and file size of one frame of smoke data in kilobytes. . . . 28

4.3 ǫ and MINCURL used in figure 4.4 30

4.4 Run time and memory usage comparison of frustum aligned grid

method and traditional method. 32

4.5 Comparison of simulation time used in subroutines between frustum

aligned grid method and traditional method using a 64 by 64 by 64

grid. 32

4.6 Grid spacing of varies grid sizes. 32

4.7 Statistics for figure 4.6. 33

v

List of Figures

2.1 Computational domain and staggered grid alignment. 5

3.1 Frustum parameters . 12

3.2 Frustum aligned grid . 13

4.1 Images obtained from different smoke simulations. Top: a pulse,

Second: two sources, Third: moving source, Bottom: approaching

source. 26

4.2 Simulations with different source locations. Top: back half of frus-

tum, Middle: middle of frustum, Bottom: front half of frustum. . . . 27

4.3 Comparison between frustum aligned grid and rectangular grid. Top:

grid spacing match back of frustum, Bottom: grid spacing match

front of frustum. 29

4.4 Simulations with different ǫ and MINCURL. 31

4.5 Comparison of simulations with different number of grid lines in the

ζ direction. 33

4.6 Comparison of traditional method and frustum aligned grid method. 34

vi

Acknowledgements

I’d like to acknowledge my very understanding supervisor Robert Bridson, for all

his help and advice.

Alan Wai Lun Woo

The University of British Columbia

April 2006

vii

Chapter 1

Introduction

Smoke simulation techniques have made various advancements in recent years to a

point where high-quality realistic smoke can be simulated in reasonable time. The

major breakthroughs come from the introduction of the semi-lagrangian method by

Stam [8] and vorticity confinement by Fedkiw et al[1]. Together, they form the basic

backbone of simulation methods that are utilized today.

The memory requirement is high traditionally and various techniques have

been developed to address this problem. Rasmussen [6] developed a technique to

reduce the memory usage by using interpolated two dimensional flow fields instead

of a full three dimensional one. The two dimensional flow fields are combined with

a tiled Kolmogorov velocity field to produce large-scale phenomena such as nuclear

explosions. This method is inherently limited by its interpolative nature, thus miss-

ing small scale details that reside in the physical space between the two dimensional

flow fields. The octree data structure introduced by Losasso [5] uses large grid cells

in area of low activities and smaller grid cells in areas with interesting flow, reduc-

ing the overall number of cells used to divide the computational domain. However,

the definition of interesting flow and criteria for refinement are difficult to define

1

accurately to capture the required details.

Recently, Selle [7] combined the vortex particle method with an Eulerian

grid to produce highly turbulent effects. The vorticity form of the Navier-Stokes

equations is solved to obtain velocity for advection and vorticity particles are used

to conserve the vorticity of the flow. A vorticity conserving force is used to drive the

grid vorticity to match the particles. Feldman [2] introduces fluid simulation using

unstructured tetrahedral grid and in combination with regular hexahedral grid. This

method allows for simulation in irregular domains that are difficult with traditional

grids.

We introduce a novel computational grid that addresses the memory issue

as well as level of details. A frustum aligned grid is used to take advantage of the

viewing camera. Unlike octree, our grid has a defined area of interest, the front of

the frustum, where we place high concentration of small grid cells to capture the

details. Progressively larger grid cells are placed towards the back of the frustum to

reduce the number of cells necessary to divide the computational domain. However,

the structure of the grid does impose additional overheads in the computation, but

they can be compromised by cutting back the grid dimension perpendicular to the

camera. Since the grid is aligned with the camera, the dimensions parallel to the

camera play a more vital role in maintaining the level of details and cutting back

the grid dimension perpendicular to the camera has minimal impact on the quality

of the images. Divergence and gradient operators on the frustum aligned grid are

developed based on the orthogonal decomposition theorems by Hyman and Shashkov

[4].

Chapter 2 will define the traditional simulation method, chapter 3 will out-

line the details of the frustum aligned grid method, chapter 4 will present some

2

experimental results and chapter 5 will conclude and discuss some future work.

3

Chapter 2

Traditional Smoke Simulation

Smoke simulations have been used to produce realistic looking smoke for many years

and they all generally follow the framework discussed in this chapter.

2.1 Governing Equations

Smoke is composed of tiny soot particles suspended in air, which behaves according

to a set of governing equations known as the Navier-Stokes equations.

Vt + (V · ∇)V +
∇P

ρ
=

(∇ · τ)

ρ
+ f

where ρ denotes density and τ denotes viscous stress tensors.

Viscosity and compressibility are negligible in smoke and density can be

assumed to be constant; therefore the equation can be simplified into the incom-

pressible Euler equations that conserve both mass and momentum.

Vt + (V · ∇)V + ∇P = f

∇ · V = 0

where V = (u, v, w) denotes the velocity, P denotes rescaled pressure and f denotes

any external forces such as buoyancy.

4

Figure 2.1: Computational domain and staggered grid alignment.

2.2 The Grid

Traditional simulations divide the computational domain into equal volume cells.

Velocity and pressure are arranged in a staggered grid alignment or MAC grid [3]

where velocities lie perpendicular to the faces of a cell and pressures lie at cell

centers. See figure 2.1. This arrangement ensures the correct quantity will be at

the correct location during the computation. Average velocity and divergence of

velocity will be collocated with pressure, and gradient of pressure will be collocated

with components of velocity.

2.3 Simulation Loop

Simulating smoke requires solving the incompressible Euler equations for each frame

of the simulation. The typical frame rate of an animation is 24 frames per second.

To solve the Euler equations, a projection method is used. The equations are broken

5

up into parts and solved in a few steps.

V 1 = V n − (V · ∇)V ∆t

V ∗ = V 1 + f∆t

∇2P ∗ = ∇ · V ∗

V n+1 = V ∗ −∇P ∗

The first step is to advect the velocity using the semi-lagrangian method discussed in

the next section. By ignoring the pressure term, we can reduce the Euler equations

into

V ∗ − V n

∆t
+ (V · ∇)V = f

and rearrange to get

V ∗ = V n − (V · ∇)V ∆t + f∆t

which can be broken up into

V 1 = V n − (V · ∇)V ∆t

V ∗ = V 1 + f∆t

An intermediate velocity field V 1 is found through advection and external forces are

added to it. External forces usually include buoyancy and vorticity confinement,

which will be discussed in section 2.5.

Boundary conditions are then applied to the velocity and pressure. Types

of boundary conditions include Dirichlet, where values are specified, and Neumann,

where the normal derivative is specified. In a smoke simulation, typical boundary

condition used for pressure is ∂P
∂N

= 0 for all boundaries and typical boundary

conditions used for velocities are ∂V
∂N

= 0 for open boundaries and velocity = 0 for

the ground.

6

After boundary conditions are applied, the correct pressure to force a diver-

gence free velocity is computed.

V n+1−V ∗

∆t
+ ∇P = 0

V n+1 − V ∗ + ∇P∆t = 0

V n+1 + ∇P∆t = V ∗

By taking the divergence of the equation

∇ · V n+1 + ∇2P∆t = ∇ · V ∗

and using the fact that V n+1 should be divergence free,

∇ · V n+1 = 0

we can derive the Poisson equation required to solve for the pressure.

∇2P∆t = ∇ · V ∗

A time scaled pressure P ∗ = P∆t is usually used to simplify the computation.

The divergence of a cell can be computed as

∇ · V ∗
ijk

=















∂
∂x

∂
∂y

∂
∂z















·















u

v

w















= ui+1jk − uijk + vij+1k − vijk + wijk+1 − wijk

and the Laplacian of pressure can be computed as

∇2P ∗ = 6Pijk − Pi−1jk − Pi+1jk − Pij−1k − Pij+1k − Pijk−1 − Pijk+1

The pressure is then defined by

Pijk =
∇ · V ∗

ijk + Pi−1jk + Pi+1jk + Pij−1k + Pij+1k + Pijk−1 + Pijk+1

6

7

The Poisson equation can be solved using methods such as Gauss-Seidel relaxation,

multigrid or conjugate gradient.

The final step in the simulation is to update the velocity by subtracting the

pressure gradient.

V n+1 = V ∗ −∇P∆t

2.4 Advection

Advection of quantities such as velocity and smoke density are carried out using the

semi-lagrangian method introduced by Stam. Semi-lagrangian method is a blend

between Eulerian methods, which keep track of quantities at fixed grid points, and

Lagrangian methods, which keep track of the location of the quantities over time.

This method aims to eliminate the instability and time step restriction in the com-

putation. In explicit Eulerian methods, the time step is restricted by the spacing of

the grid nodes. Lagrangian methods have no time step restriction but the lack of a

regularly sampled grid poses other challenges. By using fixed grid nodes as in Eule-

rian methods and tracing the quantity backward similar to Lagrangian methods, the

semi-lagrangian method is able to combine the best of both classes of methods into

a stable and efficient package. Some disadvantages of the method include numerical

dissipation from interpolation and failure to conserve mass and energy.

To advect a quantity, the velocity field at the specific location has to be

computed. Since smoke densities are located at the cell centers, averaged cell center

velocities need to be derived.

Vijk =















ui+ 1

2
jk

vij+ 1

2
k

wijk+ 1

2















=















uijk+ui+1jk

2

vijk+vij+1k

2

wijk+wijk+1

2















8

This velocity is used to trace back to where the quantity is coming from.

X∗ = Xijk − Vijk∆t

Interpolation of the eight neighboring values is used to update the current value

of the quantity. Trilinear or cubic spline interpolations are normally used but any

higher degree interpolation can be used to increase the accuracy of the simulation.

Advection of velocities is performed in a similar fashion with averaged veloc-

ity field defined at the appropriate cell faces. For example, the velocity field at the

location of Ui+1jk is defined as

Vi+ 1

2
j+ 1

2
k+ 1

2

=















ui+1jk

vi+ 1

2
j+ 1

2
k

wi+ 1

2
jk+ 1

2















=















ui+1jk

vijk+vij+1k+vi+1jk+vi+1j+1k

4

wijk+wijk+1+wi+1jk+wi+1jk+1

4















2.5 Vorticity Confinement

Vorticity confinement is introduced by Fedkiw et al. in 2000 to attack the problem

of small scale details. Since the computation involves a fair amount of averaging

or interpolating of quantities, small scale details are lost in the numerical dissipa-

tion. Vorticity confinement is an effort to reintroduce the lost details by applying

a confinement force to areas of high vorticity. The force is proportional to the grid

spacing and disappears as the spacing decreases due to increased grid size. This

property is consistent with the Euler equations.

The first step is to compute the vorticity of each cell using cell center velocity

averaged from the faces.

V c
ijk =















Uijk

Vijk

Wijk















9

ω = ∇× V =















Wij+1k−Wij−1k−Vijk+1+Vijk−1

2

Uijk+1−Uijk−1−Wi+1jk+Wi−1jk

2

Vi+1jk−Vi−1jk−Uij+1k+Uij−1k

2















Then vorticity location vectors that point toward higher vorticity concentration are

computed.

Ω =
∇|ω|

|∇|ω||

Finally, a confinement force is computed as

f = ǫh (Ω × ω)

where h is the grid spacing. The force is then applied to the velocities.















uijk

vijk

wijk















+ = ∆t















fx
ijk

+fx
i−1jk

2

f
y

ijk
+f

y

ij−1k

2

fz
ijk

+fz
ijk−1

2















The parameter ǫ controls the amount of confinement force and it can have significant

influence on the resulting smoke appearance. As ǫ increases the amount of activity in

the smoke increases and the smoke appears to be more alive. But if ǫ is set too high,

it will dominate the other quantities and causes the smoke to appear unrealistic or

even uncharacteristic.

10

Chapter 3

Frustum Aligned Grid Method

Like vorticity confinement discussed in the last chapter, many other methods exist

that try to improve the realism or efficiency of a smoke simulation. Examples of such

methods include the vortex particle method, octree data structure and unstructured

grids, among others. The Frustum Aligned Grid method is a method that takes

advantage of the viewing camera and tries to improve on both realism and efficiency.

3.1 Frustum Aligned Grid

Since the viewing camera can only see so much at a particular instance, we can

concentrate our simulation within the area of interest: the frustum. The frustum

can be described using four parameters: field of view, aspect ratio, near clipping

plane and far clipping plane. Field of view defines the angle to the left and right

of vertical that the camera is capable of capturing. Typical cameras have a field

of view of 30 degrees or less. Aspect ratio defines the ratio of width to height.

Common aspect ratios are 4:3 for television and 16:9 for widescreen display. Near

and far clipping planes defines the closest and farthest distance the camera could

11

Figure 3.1: Frustum parameters

see. See figure 3.1.

In computer graphics, a perspective transformation is used to transform a

frustum into a rectangular domain. Generally, the rectangular domain will have

dimension of -1 to 1 in all directions. The perspective transformation can be defined

as

Mperspective =























−1
tan fov

0 0 0

0 −aspect
tan fov

0 0

0 0 −(farplane+nearplane)
farplane−nearplane

2(farplane)(nearplane)
farplane−nearplane

0 0 −1 0























and its inverse can be defined as

M−1
perspective =























− tan fov 0 0 0

0 − tan fov
aspect

0 0

0 0 0 −1

0 0 farplane−nearplane
2(farplane)(nearplane)

−(farplane+nearplane)
2(farplane)(nearplane)























These two matrices are used to convert position between grid space and real space.

As in traditional simulations, the computational domain is divided into cells.

12

Figure 3.2: Frustum aligned grid

We divide the domain using grid lines that will transform to equally spaced grid

lines in the rectangular grid space. The grid spacing in all directions will increase

gradually from the front to the back of the domain. This produces cells with smaller

volume near the camera and cells with larger volume away from the camera. This

also produces denser grid nodes near the camera and sparser grid nodes away from

the camera.

Velocities and pressure are still arranged in a staggered grid alignment but

velocities lay along the grid lines and pressure resides at the grid nodes. See figure

3.2. This can be view as a shifted version of the standard MAC grid. If a cell

is placed around the node, the pressure will lay in the center and velocities at the

faces. In traditional method, this shift would not cause any change in the simulation

process.

Since the grid lines are not orthogonal, velocities values are the projection

of the real world values onto the directions of the grid lines. The axes for any

grid nodes are ξ = (1, 0, 0), η = (0, 1, 0) and ζ = (x, y, z), where x, y and z varies

depending on the location of the grid node. The relationship between velocities and

13

real world values can be described as















u

v

w















=















1 0 0

0 1 0

x y z





























Vx

Vy

Vz















and more usefully














Vx

Vy

Vz















=















1 0 0

0 1 0

−x
z

−y
z

1
z





























u

v

w















since we will need these conversions when performing later computations.

3.2 Simulation Loop

The structure of the simulation loop of the frustum aligned grid method is identi-

cal to traditional methods. Essentially, it is still solving the incompressible Euler

equations using the projection method. But since the physical domain and the com-

putational grid is different, computations such as advection, vorticity, divergence

and pressure solve need to be redefined. The following sections describe each in

detail.

3.3 Divergence

Divergence is the rate of change of a control volume. In a frustum aligned grid,

the control volume is the volume around a grid node and the flux is related to the

velocities on the grid lines. The divergence operator using the frustum align grid is

14

defined as

∇ · V = −N−1∇T LV = −N−1
(

∂

∂x

∂

∂y

∂

∂z

)















L11 L12 L13

L21 L22 L23

L31 L32 L33





























u

v

w















where N is the volume of the node, T is the transpose and L is a 3 by 3 matrix that

relates the formal and natural inner product of velocities.

To compute L, we must first define the natural and formal inner product of

the domain. The first step in deriving the natural inner product of two velocities

X and Y is to convert them into real world values X r and Y r using the matrix

defined in the section 3.1.














Xr
u

Xr
v

Xr
w















=















Xu

Xv

−Xu(x)−Xv(y)+Xw

z















and















Y r
u

Y r
v

Y r
w















=















Yu

Yv

−Yu(x)−Yv(y)+Yw

z















where ζ = (x, y, z) is the unit vector of the direction of the grid line. We can then

take the inner product of the two values to get

(Xr · Y r) =

(

Xu Xv
−Xu(x)−Xv(y)+Xw

z

)















Yu

Yv

−Yu(x)−Yv(y)+Yw

z















=
(

1 + x2

z2

)

XuYu +
(

1 + y2

z2

)

XvYv + 1
z2 XwYw+

xy
z2 (XuYv + XvYu) + −x

z2 (XuYw + XwYu) + −y
z2 (XvYw + XwYv)

This defines the natural inner product at a specific grid node and axis alignment.

To compute the natural inner product of a cell, the natural inner product of the

eight corners of the cell are weighted by the volume it occupies and then summed.

The natural inner product of the domain is obtained by summing the natural inner

product of all the cells in the domain.

15

The formal inner product of the domain is defined as

[Xr · Y r] = ΣuΣvΣw(XuYu + XvYv + XwYw)

which sums the inner product over the domain. The formal and natural inner

product of the domain is related by

(Xr · Y r) = [LXr · Y r]

Applying the matrix L and expanding the equation, we get

[LXr · Y r] =













































L11 L12 L13

L21 L22 L23

L31 L32 L33





























Xu

Xv

Xw





























T 













Yu

Yv

Yw































= ΣuΣvΣw(L11XuYu + L12XvYu + L13XwYu + L21XuYv + L22XvYv+

L23XwYv + L31XuYw + L32XvYw + L33XwYw)

The explicit formulas for L can be derived by comparing the natural and for-

mal inner products. To derive L11, we need to calculate the equivalent of ΣuΣvΣwL11XuYu

in terms of the natural inner products. We need to look at the eight axis configura-

tions of natural inner products that contain the same XuYu term and weight them

according to their volume within the cell. For Xu
ijkY

u
ijk, the eight axis configurations

are

16

ξ ζ η
V olx

k

V olk
(1 + x2

z2)

(1, 0, 0) (0, 1, 0) (xij, yij , zij)
V ol0

k

V olk
(1 +

x2
ij

z2
ij

)

(1, 0, 0) (0, 1, 0) (−xij,−yij,−zij)
V ol1

k−1

V olk−1
(1 +

x2
ij

z2
ij

)

(1, 0, 0) (0,−1, 0) (xij, yij , zij)
V ol0

k

V olk
(1 +

x2
ij

z2
ij

)

(1, 0, 0) (0,−1, 0) (−xij,−yij,−zij)
V ol1

k−1

V olk−1
(1 +

x2
ij

z2
ij

)

(−1, 0, 0) (0, 1, 0) (xi+1j , yi+1j , zi+1j)
V ol0

k

V olk
(1 +

x2
i+1j

z2
i+1j

)

(−1, 0, 0) (0, 1, 0) (−xi+1j ,−yi+1j,−zi+1j)
V ol1

k−1

V olk−1
(1 +

x2
i+1j

z2
i+1j

)

(−1, 0, 0) (0,−1, 0) (xi+1j , yi+1j , zi+1j)
V ol0

k

V olk
(1 +

x2
i+1j

z2
i+1j

)

(−1, 0, 0) (0,−1, 0) (−xi+1j ,−yi+1j,−zi+1j)
V ol1

k−1

V olk−1
(1 +

x2
i+1j

z2
i+1j

)

where V ol0k and V ol1k are the volumes of the front and back half of cells with index

k, respectively, and V olk is the volume of cells with index k. The rightmost col-

umn represents the volume weighted coefficient of the corresponding natural inner

product. By combining the eight terms, we get the explicit formula for L11.

L11X
u
ijk = 2

(

V ol1k−1

V olk−1
+

V ol0k
V olk

)(

2 +
x2

ij

z2
ij

+
x2

i+1j

z2
i+1j

)

Xu
ijk

We can derive the other terms in the matrix L in similar fashion.

L12X
v
ijk =

(

V ol1
k−1

V olk−1
+

V ol0
k

V olk

)(

xijyij

z2
ij

(

Xv
ijk + Xv

ij−1k

)

+
xi+1jyi+1j

z2
i+1j

(

Xv
i+1jk + Xv

i+1j−1k

)

)

L13X
w
ijk = 2

(

−xij

z2
ij

(

V ol1
k−1

V olk−1
Xw

ijk−1 +
V ol0

k

V olk
Xw

ijk

)

+
−xi+1j

z2
i+1j

(

V ol1
k−1

V olk−1
Xw

i+1jk−1 +
V ol0

k

V olk
Xw

i+1jk

))

L21X
u
ijk =

(

V ol1
k−1

V olk−1
+

V ol0
k

V olk

)(

xijyij

z2
ij

(

Xu
ijk + Xu

i−1jk

)

+
xij+1yij+1

z2
ij+1

(

Xu
ij+1k + Xu

i+1j+1k

)

)

17

L22X
v
ijk = 2

(

V ol1
k−1

V olk−1
+

V ol0
k

V olk

)(

2 +
y2

ij

z2
ij

+
y2

ij+1

z2
ij+1

)

Xv
ijk

L23X
w
ijk = 2

(

−yij

z2
ij

(

V ol1
k−1

V olk−1
Xw

ijk−1 +
V ol0

k

V olk
Xw

ijk

)

+
−yij+1

z2
ij+1

(

V ol1
k−1

V olk−1
Xw

ij+1k−1 +
V ol0

k

V olk
Xw

ij+1k

))

L31X
u
ijk = 2

(

−xij

z2
ij

)(

V ol0
k

V olk

(

Xu
ijk + Xu

i−1jk

)

+
V ol1

k

V olk

(

Xu
ijk+1 + Xu

i−1jk+1

)

)

L32X
v
ijk = 2

(

−yij

z2
ij

)(

V ol0
k

V olk

(

Xv
ijk + Xv

ij−1k

)

+
V ol1

k

V olk

(

Xv
ijk+1 + Xv

ij−1k+1

)

)

L33X
w
ijk = 1

z2
ij

Xw
ijk

To compute the divergence, the first step is to compute the temporary values

of LV.














utemp

vtemp

wtemp















=















L11u + L12v + L13w

L21u + L22v + L23w

L31u + L32v + L33w















Then the transpose of gradient is applied and finally multiplied by the inverse of

the nodes volume.

∇ · V =
−1

V Nodek

(

utemp
i−1jk − utemp

ijk

∆Xk

+
vtemp
ij−1k − vtemp

ijk

∆Yk

+
wtemp

ijk−1

∆Zijk−1
−

wtemp
ijk

∆Zijk

)

∆X, ∆Y and ∆Z are the grid spacing in X, Y and Z respectively. The grid spacing

in the X and Y directions are constant within the same k index while the grid spacing

in the Z direction varies.

3.4 Advection

Advection is performed using the semi-lagrangian method as before, but a few

changes need to be made in order to accommodate the frustum aligned grid.

To advect the smoke density at the grid nodes, the first step is to convert

the grid location into a physical location using the inverse of the perspective matrix.

The next step is to define a velocity field at the grid nodes by averaging the velocities

along the grid lines. Since the velocities are located in the midpoint between grid

18

nodes and the grid nodes are not equally spaced in the ζ direction, we need to do a

weighted average instead.















Uijk

Vijk

Wijk















=















uijk+ui−1jk

2

vijk+vij−1k

2

wijk∆Zijk−1+wijk−1∆Zijk

∆Zijk+∆Zijk−1















The node velocity is then converted to real world values and used to trace the smoke

density backward. The calculated physical location is converted back into a grid lo-

cation using the perspective matrix. Trilinear interpolation is then carried out using

the grid location in grid space. Special treatment is needed for the interpolation in

the ζ direction because the perspective transformation is not affine in that direc-

tion. The grid location is used to locate which cell the smoke is from. The physical

location of the cell’s corners and the calculated physical location of the smoke in

the ζ direction are used to compute a weighting factor for the interpolation. The

grid location is sufficient to compute the weighting factor for interpolation in the ξ

and η directions. Higher degree interpolation schemes can be used to obtain more

accurate results.

Unlike traditional methods where the velocities are advected individually, the

averaged node velocity is advected instead. The process is identical to advecting

smoke described above. The advected node velocity is then averaged back to the

grid lines using the usual method.















uijk

vijk

wijk















=















Uijk+Ui+1jk

2

Vijk+Vij+1k

2

Wijk+Wijk+1

2















19

3.5 Pressure solve

To solve for the pressure, we need to solve the Poisson equation defined as

∇2P = ∇ · V

The divergence is defined in section 3.3 and we still need to define the Laplacian

of the pressure. We can rewrite the Laplacian as the divergence of the gradient

and apply the definition of divergence from above. Since the divergence operator is

not as compact as on a regular grid, the Laplacian operator involves 18 of the 26

neighboring grid nodes.

∇2P = ∇ · ∇P = −N−1∇TL∇P

Expanding the equation we get

−N−1∇T















L11 L12 L13

L21 L22 L23

L31 L32 L33





























∇Px

∇Py

∇Pz















=

−N−1(
(L11∇Px+L12∇Py+L13∇Pz)i−1jk

∆Xk
−

(L11∇Px+L12∇Py+L13∇Pz)ijk

∆Xk
+

(L21∇Px+L22∇Py+L23∇Pz)ij−1k

∆Yk
−

(L21∇Px+L22∇Py+L23∇Pz)ijk

∆Yk
+

(L31∇Px+L32∇Py+L33∇Pz)ijk−1

∆Zijk−1
−

(L31∇Px+L32∇Py+L33∇Pz)ijk

∆Zijk
)

=

−N−1(
(L11∇Px)i−1jk−(L11∇Px)ijk

∆Xk
+

(L12∇Py)i−1jk−(L12∇Py)ijk

∆Xk
+

(L13∇Pz)i−1jk−(L13∇Pz)ijk

∆Xk
+

(L21∇Px)ij−1k−(L21∇Px)ijk

∆Yk
+

(L22∇Py)ij−1k−(L22∇Py)ijk

∆Yk
+

(L23∇Pz)ij−1k−(L23∇Pz)ijk

∆Yk
+

(L31∇Px)ijk−1

∆Zijk−1
−

(L31∇Px)ijk

∆Zijk
+

(L32∇Py)ijk−1

∆Zijk−1
−

(L32∇Py)ijk

∆Zijk
+

(L33∇Pz)ijk−1

∆Zijk−1
−

(L33∇Pz)ijk

∆Zijk
)

20

Further expanding the above equation by replacing the pressure gradient with

∇Pijk =















∇P x
ijk

∇P y
ijk

∇P z
ijk















=















Pi+1jk−Pijk

∆Xk

Pij+1k−Pijk

∆Yk

Pijk+1−Pijk

∆Zijk















which defines the gradient of velocities along the grid lines at the node, we can

derive the coefficient of the grid node and its 18 neighbors. The derivation of the

coefficients is included in the appendix.

The pressure can then be solved using the standard Gauss-Seidel relaxation

or conjugate gradient.

3.6 Vorticity

To increase the realism of the simulation, a force similar to voriticity confinement is

used. The idea is to maintain the level of curl within the system, thus maintaining

the small scale details that would have otherwise be damped out. The first step is

to calculate the curl for each face of the cells.

∇× Vijk =















curluijk

curlvijk

curlwijk















=















vijk+1∆Yk+1−wij+1k∆Zij+1k−vijk∆Yk+wijk∆Zijk

Areax
ik

wi+1jk∆Zi+1jk−uijk+1∆Xk+1−wijk∆Zijk+uijk∆Xk

Area
y

jk

vi+1jk∆Yk−uij+1k∆Xk−vijk∆Yk+uijk∆XK

Areaz
k















Then if the magnitude of the curl of any face is less then a predefined minimum,

a force is applied to increase the curl of the face. The curl is always perpendicular

to the face and the faces along the same grid lines lay on the same plane. The two

dimensional confinement force can be calculated for each plane using the normalized

21

gradient of curl as a weighting term.

∇× V u
ijk :

weightijk =







weightyijk

weightzijk






=







curlu
ij+1k

−curlu
ij−1k

∆Yk+∆Yk+1

curlu
ijk+1

−curlu
ijk−1

∆Zijk+∆Zij+1k







weightijk =
weightijk

|weightijk|

f v
ijk+1 = −ǫ(curluijk)(weightzijk)∆Yk+1/2

fw
ij+1k = ǫ(curluijk)(weightyijk)∆Zij+1k/2

f vijk = −ǫ(curluijk)(weightzijk)∆Yk/2

fw
ijk = ǫ(curluijk)(weightyijk)∆Zijk/2

∇× V v
ijk :

weightijk =







weightxijk

weightzijk






=







curlv
i+1jk

−curlv
i−1jk

∆Xk+∆Xk+1

curlv
ijk+1

−curlv
ijk−1

∆Zijk+∆Zi+1jk







weightijk =
weightijk

|weightijk|

fw
i+1jk = −ǫ(curlvijk)(weightxijk)∆Zi+1jk/2

fu
ijk+1 = ǫ(curlvijk)(weightzijk)∆Xk+1/2

fwijk = −ǫ(curlvijk)(weightxijk)∆Zijk/2

fu
ijk = ǫ(curlvijk)(weightzijk)∆Xk/2

22

∇× V u
ijk :

weightijk =







weightxijk

weightyijk






=







curlw
i+1jk

−curlw
i−1jk

∆Xk

curlw
ij+1k

−curlw
ij−1k

∆Yk







weightijk =
weightijk

|weightijk|

f v
i+1jk = ǫ(curlwijk)(weightxijk)∆Yk/2

fu
ij+1k = −ǫ(curlwijk)(weightyijk)∆Xk/2

f vijk = ǫ(curlwijk)(weightxijk)∆Yk/2

fu
ijk = −ǫ(curlwijk)(weightyijk)∆Xk/2

Both ǫ and the minimum curl can be used to control the amount of force

applied and the activities within the smoke. They have similar effect as the ǫ used

in vorticity confinement where values too large can have negative overall effects.

23

Chapter 4

Experimental results

The experimental simulations are implemented using Visual C++ and OpenGL.

They are run on a laptop with 1.5Ghz Pentium M processor and 512MB of memory.

The simulation requires a few parameters including field of view, aspect

ratio, near plane, far plane, number of grid lines in the x, y, and z direction, number

of iterations for the Gauss-Seidel pressure solver, number of seconds to simulate,

buoyancy, ǫ for vorticity, τ for opacity and minimum curl. Typical values used in

experimental simulations are summarized in table 4.1. Pressure at boundaries are

set to zero and Neumann conditions are used for velocities.

Experiments are conducted to investigate the effects of various parameters

have on the simulation, and a comparison with traditional simulation is also carried

out. A hypothetical mushroom cloud where the smoke originate from a small open-

ing in the ground in the center of the domain is used to perform the testing, but

in practice, there can be more than one source and they can be located anywhere

within the domain.

The images are rendered using a ray marching technique which simply accu-

mulates the luminance along the ζ direction. Two light sources are used to illuminate

24

Parameter Value

fov 15o

aspect 1.0
near plane 5.0
far plane 10.0
XMAX 128
YMAX 128
ZMAX 64
iterations 10
seconds 20
buoyancy 5.0
ǫ 2.0
τ 0.1
MINCURL 5.0

Table 4.1: Parameters for simulation.

the smoke, one from overhead and one from the left hand side. More advanced tech-

niques such as photon mapping can be used to create higher quality images. Figure

4.1 shows several sample images obtained from different styles of smoke. Some

artifacts are visible due to aliasing from the grid.

4.1 Source location

Since the configuration of the frustum aligned grid places emphasis more on the

space at the front of the frustum than the back, the location of the source should be

an important factor in the appearance of the resultant smoke. Figure 4.2 compares

the simulations of three different source locations. These simulations use the typical

values found in the beginning of the chapter except the value of ǫ is set to zero.

This effectively turns vorticity confinement off and allows the smoke to rise under

buoyancy alone. The sizes of the source in all simulation are the same and they

are in the shape of a square. The first sequence is generated with a source located

25

Figure 4.1: Images obtained from different smoke simulations. Top: a pulse, Second:
two sources, Third: moving source, Bottom: approaching source.

26

Figure 4.2: Simulations with different source locations. Top: back half of frustum,
Middle: middle of frustum, Bottom: front half of frustum.

at the back half of the frustum, the second sequence is generated with a source

located at the middle of the frustum and the last is generated with a source located

at the front half of the frustum. Since the size of the source is identical, as it moves

further away from the camera, it will appear smaller. The level of details will also be

lowered as less grid nodes are located at the back of the frustum, but coupled with

the reduction in the apparent size, the resulting image still maintains a comparable

level of details.

4.2 Grid size

The grid size is a crucial factor in the smoke simulation. To increase the realism of

a simulation, the trivial solution is to increase the resolution of the grid since the

smaller the grid spacing, the better the ability to capture the details. The drawback

27

Grid Size Run Time(s/frame) File Size(kb)

32 by 32 by 32 0.461 517
64 by 64 by 32 1.342 2057
64 by 64 by 64 2.874 4113
128 by 128 by 32 5.448 8209
128 by 128 by 128 20.920 32833
256 by 256 by 32 41.309 32801

Table 4.2: Run time of sample simulations with different grid sizes in seconds per
frame and file size of one frame of smoke data in kilobytes.

of such approach includes the increase in simulation time and memory requirement.

Typically, the simulation time varies directly with the grid size; doubling the grid

dimension in all directions transforms to eight times the original simulation time.

Table 4.2 lists the simulation time for several sample grid sizes as well as the file

size for one frame of smoke data.

The frustum aligned grid method is aimed to increase the realism while

addressing the time and memory issue. Each grid lines in the direction perpendicular

to the camera is projected into a single point at the front of the camera. The

dimension parallel to the camera can be viewed as the resolution of the image where

each pixel is a projected grid line. Using this arrangement, all grid nodes are located

at a relevant position with respect to the camera and no grid nodes are wasted or

overlapping. In traditional rectangular computational grids, when rendering the

resulting image, usually many different grid nodes will be mapped to the same

pixel, thus wasting the computational time and memory space for these redundant

values. The grid spacing in a frustum aligned grid is not uniform. The spacing at

the back of the frustum can be couple times larger than the ones at the front. Yet,

the details are not lost from the sparse spacing because the frustum aligned grid

accounted for what could and couldn’t be seen by the camera. To cover the same

28

Figure 4.3: Comparison between frustum aligned grid and rectangular grid. Top:
grid spacing match back of frustum, Bottom: grid spacing match front of frustum.

volume occupied by the frustum using a traditional grid, considerably more grid

nodes are needed since in order to obtain the same level of details, the grid spacing

of the whole domain should match the grid spacing at the front and extra grid nodes

are needed outside the frustum to get a rectangular grid. See figure 4.3. To cover

the 64 by 64 by 64 grid of the frustum described by the parameters at the beginning

of the chapter, a 128 by 128 by 128 uniform grid will be needed. The amount of

extra grid nodes required is mainly depended upon the near and far clipping planes

of the frustum.

4.3 Vorticity

The realism of the smoke simulation is enhanced by the introduction of vorticity

force. The force is controlled using two parameters: ǫ and MINCURL. The MIN-

CURL controls the minimum curl desirable. Any face with a curl smaller than

29

ǫ MINCURL

1 5
2 5
3 5
4 5
1 10
2 10

Table 4.3: ǫ and MINCURL used in figure 4.4

MINCURL will have a force applied to it and that force is proportional to the curl

itself. ǫ controls the amount of force that will be applied. Figure 4.4 shows several

simulations with different setting of ǫ and MINCURL and table 4.3 lists the values

used in the simulations. The typical values at the beginning of the chapter are used

for the other parameters.

The ideal value of ǫ and MINCURL depends upon the scene and varies

greatly. Trial and error may be required to determine the ideal value but in most

case, the ideal value is not required to produce a realistic and interesting simulation.

4.4 Comparison with traditional simulation

A similar implementation to the frustum aligned grid method of the traditional grid

method is used for the comparison. Table 4.4 compares the run time and memory

usage of the two methods for several different grid sizes and table 4.5 compares the

simulation time used in the subroutines of the two methods.

As seen from the data that the frustum aligned grid method is on average

half as fast as the traditional method. The extra computation time is used mainly

in the divergence and pressure solver as expected. To bring the frustum aligned

method on par with the traditional method in term of computation time, we can

30

Figure 4.4: Simulations with different ǫ and MINCURL.

31

Frustum Traditional
Grid Size Run Time Memory Run Time Memory

32 by 32 by 32 0.461 4124 0.260 3972
64 by 64 by 32 1.342 13812 0.982 12132
64 by 64 by 64 2.874 26500 1.903 23456
128 by 128 by 32 5.448 52104 3.876 46120

Table 4.4: Run time and memory usage comparison of frustum aligned grid method
and traditional method.

Subroutine Frustum Traditional

Initalization 0.160 0.010
Advection 0.280 1.472
Vorticity 0.170 0.160
Divergence 0.160 0.010
Pressure Solve 1.502 0.100
Gradient 0.010 0.010

Table 4.5: Comparison of simulation time used in subroutines between frustum
aligned grid method and traditional method using a 64 by 64 by 64 grid.

reduce the number of grid lines in the direction perpendicular to the camera by a

factor of two. Since the grid lines are concentrated at the front of the frustum and

they are not equally spaced, decreasing the number of grid lines will have a smaller

effect on the sampling at the front of the frustum where details are most important.

Table 4.6 shows the grid spacing of the first few grid lines of varies grid sizes and

figure 4.5 compares the resulting images from the different simulations.

The result indicates that the reduction of grid lines produces comparable

Grid Size δz1 δz2 δz3 δz4 δz5 δzlast

128 by 128 by 32 0.0820 0.0847 0.0875 0.0906 0.0938 0.3125
128 by 128 by 64 0.0400 0.0406 0.0414 0.0419 0.0427 0.1563
128 by 128 by 128 0.0198 0.0199 0.0201 0.0202 0.0204 0.0781

Table 4.6: Grid spacing of varies grid sizes.

32

Figure 4.5: Comparison of simulations with different number of grid lines in the ζ
direction.

Figure Method Grid Spacing Grid Size Simulation Time

a Traditional 0.0419 128 by 128 by 128 14.221
b Frustum 0.0425 64 by 64 by 64 2.874
c Frustum 0.0211 128 by 128 by 64 9.684
d Frustum 0.0211 128 by 128 by 128 20.920

Table 4.7: Statistics for figure 4.6.

images that suffer slight detail lost and it also leads to lower memory requirement.

Figure 4.6 compares the images obtained from traditional methods and frus-

tum aligned grid method. Three different criteria are used for comparison including

equal grid spacing, equal grid size and equal computation time. Table 4.7 lists the

statistics for the simulations.

With equal grid spacing at the front of the frustum, the traditional simulation

produces better result than frustum aligned method but the simulation time and

33

Figure 4.6: Comparison of traditional method and frustum aligned grid method.

34

memory usage are both five times more. Increasing the grid size by a factor of two

in the x and y direction produces comparable result. The memory usage is half of

the traditional’s and the simulation time is about 30% less. With equal grid size,

the frustum aligned method produces superior simulation than traditional method

at a cost of increased simulation time. These results confirm the performance of the

frustum aligned grid method in terms of memory usage and level of details.

35

Chapter 5

Conclusion

We presented a frustum aligned grid for realistic smoke simulation that benefits

from knowledge of the viewing camera. The novel computation grid addressed the

problem of memory usage and level of details by utilizing non uniform frustum

aligned grid cells. Significantly less grid nodes are required to cover the compu-

tation domain, thus reducing the memory usage and computation time. The grid

lines in the direction perpendicular to the camera can be reduced without suffering

detail lost. The reduction further reduces the memory usage and they can trans-

late to increased grid lines in other directions, thus increasing the level of details.

Comparison with traditional simulation proved the validity and effectiveness of the

method. The currently fixed frustum is a limitation and a topic for future work.

The current configuration can realistically simulate a large scale phenomenon at a

fixed viewpoint but a fly-by scenario with a moving camera will require additional

modification, possibly in the form of particles.

36

Bibliography

[1] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In Proc. of

SIGGRAPH 2001, pages 15–22, 2001.

[2] B. E. Feldman, J. F. OBrien, and B. M. Klingner. Animating gases with hybrid

meshes. In Proc. of SIGGRAPH 2005, 2005.

[3] F. Harlow and J. Welch. Numerical calculation of time-dependent viscous in-

compressible flow of fluid with a free surface. In The Physics of Fluids 8, pages

2182–2189, 1965.

[4] J. M. Hyman and M. Shashkov. The orthogonal decomposition theorems for

mimetic finite difference methods. SIAM Journal on Numberical Analysis,

36(3):788–818, 1999.

[5] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an

octree data structure. In Proc. of SIGGRAPH 2004, pages ??–??, 2004.

[6] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw. Smoke simulation for

large scale phenomena. In Proc. of SIGGRAPH 2003, pages 703–707, 2003.

[7] A. Selle, N. Rasmussen, and R. Fedkiw. A vortex particle method for smoke,

water and explosions. In Proc. of SIGGRAPH 2005, pages 910–914, 2005.

[8] J. Stam. Stable fluid. In Proc. of SIGGRAPH 1999, pages 121–128, 1999.

37

Appendix A

Laplacian Coefficients

L11∇P x
i−1jk

−L11∇P x
ijk

∆Xk

= (2(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(2 +

x2
ij

z2
ij

+
x2

i−1j

z2
i−1j

)(
Pijk−Pi−1jk

∆XK
)−

2(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(2 +

x2
ij

z2
ij

+
x2

i+1j

z2
i+1j

)(
Pi+1jk−Pijk

∆XK
))/∆Xk

= − 2
∆X2

k

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(2 +

x2
ij

z2
ij

+
x2

i−1j

z2
i−1j

)Pi−1jk

− 2
∆X2

k

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(2 +

x2
ij

z2
ij

+
x2

i+1j

z2
i+1j

)Pi+1jk

+ 2
∆X2

k

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(4 +

2x2
ij

z2
ij

+
x2

i−1j

z2
i−1j

+
x2

i+1j

z2
i+1j

)Pijk

L12∇P
y

i−1jk
−L12∇P

y

ijk

∆Xk

= 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xi−1jyi−1j

z2
i−1j

)Pi−1j+1k

− 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xi−1jyi−1j

z2
i−1j

)Pi−1j−1k

− 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xi+1jyi+1j

z2
i+1j

)Pi+1j+1k

+ 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xi+1jyi+1j

z2
i+1j

)Pi+1j−1k

38

L13∇P z
i−1jk

−L13∇P z
ijk

∆Xk

= 2
∆Xk

(
−xi−1j

z2
i−1j

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pi−1jk

− 2
∆Xk∆Zijk−1

(
−xi−1j

z2
i−1j

)(
V ol1

k−1

V olk−1
)Pi−1jk−1

+ 2
∆Xk∆Zijk

(
−xi−1j

z2
i−1j

)(
V ol0

k

V olk
)Pi−1jk+1

− 2
∆Xk

(
−xi+1j

z2
i+1j

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pi+1jk

+ 2
∆Xk∆Zijk−1

(
−xi+1j

z2
i+1j

)(
V ol1

k−1

V olk−1
)Pi+1jk−1

− 2
∆Xk∆Zijk

(
−xi+1j

z2
i+1j

)(
V ol0

k

V olk
)Pi+1jk+1

L21∇P x
ij−1k

−L21∇P x
ijk

∆Yk

= 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xij−1yij−1

z2
ij−1

)Pi+1j−1k

− 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xij−1yij−1

z2
ij−1

)Pi−1j−1k

− 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xij+1yij+1

z2
ij+1

)Pi+1j+1k

+ 1
∆Xk∆Yk

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(

xij+1yij+1

z2
ij+1

)Pi−1j+1k

L22∇P
y

ij−1k
−L22∇P

y

ijk

∆Yk

= − 2
∆Y 2

k

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(2 +

y2
ij

z2
ij

+
y2

ij−1

z2
ij−1

)Pij−1k

− 2
∆Y 2

k

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(2 +

y2
ij

z2
ij

+
x2

ij+1

z2
ij+1

)Pij+1k

+ 2
∆Y 2

k

(
V ol1

k−1

V olk−1
+

V ol0
k

V olk
)(4 +

2y2
ij

z2
ij

+
y2

ij−1

z2
ij−1

+
y2

ij+1

z2
ij+1

)Pijk

L23∇P z
ij−1k

−L23∇P z
ijk

∆Yk

= 2
∆Yk

(
−yij−1

z2
ij−1

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pij−1k

− 2
∆Yk∆Zijk−1

(
−yij−1

z2
ij−1

)(
V ol1

k−1

V olk−1
)Pij−1k−1

+ 2
∆Yk∆Zijk

(
−yij−1

z2
ij−1

)(
V ol0

k

V olk
)Pij−1k+1

− 2
∆Yk

(
−yij+1

z2
ij+1

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pij+1k

+ 2
∆Yk∆Zijk−1

(
−yij+1

z2
ij+1

)(
V ol1

k−1

V olk−1
)Pij+1k−1

− 2
∆Yk∆Zijk

(
−yij+1

z2
ij+1

)(
V ol0

k

V olk
)Pij+1k+1

39

L31∇P x
ijk−1

∆Zijk−1
−

L31∇P x
ijk

∆Zijk

= − 2
∆Xk

(
−xij

z2
ij

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pi−1jk

− 2
∆Xk−1∆Zijk−1

(
−xij

z2
ij

)(
V ol0

k−1

V olk−1
)Pi−1jk−1

+ 2
∆Xk+1∆Zijk

(
−xij

z2
ij

)(
V ol1

k

V olk
)Pi−1jk+1

+ 2
∆Xk

(
−xij

z2
ij

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pi+1jk

+ 2
∆Xk−1∆Zijk−1

(
−xij

z2
ij

)(
V ol0

k−1

V olk−1
)Pi+1jk−1

− 2
∆Xk+1∆Zijk

(
−xij

z2
ij

)(
V ol1

k

V olk
)Pi+1jk+1

L32∇P
y

ijk−1

∆Zijk−1
−

L32∇P
y

ijk

∆Zijk

= − 2
∆Yk

(
−yij

z2
ij

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pij−1k

− 2
∆Yk−1∆Zijk−1

(
−yij

z2
ij

)(
V ol0

k−1

V olk−1
)Pij−1k−1

+ 2
∆Yk+1∆Zijk

(
−yij

z2
ij

)(
V ol1

k

V olk
)Pij−1k+1

+ 2
∆Yk

(
−yij

z2
ij

)(
V ol1

k−1

V olk−1∆Zijk−1
−

V ol0
k

V olk∆Zijk
)Pij+1k

+ 2
∆Yk−1∆Zijk−1

(
−yij

z2
ij

)(
V ol0

k−1

V olk−1
)Pij+1k−1

− 2
∆Yk+1∆Zijk

(
−yij

z2
ij

)(
V ol1

k

V olk
)Pij+1k+1

L33∇P z
ijk−1

∆Zijk−1
−

L33∇P z
ijk

∆Zijk

= − 1
∆Z2

ijk−1
z2
ij

Pijk−1

− 1
∆Z2

ijk
z2
ij

Pijk+1

+ 1
z2
ij

(1
∆Z2

ijk−1

+ 1
∆Z2

ijk

)Pijk

40

