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Overview

➤ Knowledge representation, Belief Networks

➤ Uncertainty and Time

➤ Control

➤ Learning

➤ Challenges
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What do we want in a representation?
We want a representation to be

➤ rich enough to express the knowledge needed to solve the
problem.

➤ as close to the problem as possible: compact, natural and
maintainable.

➤ amenable to efficient computation;
able to express features of the problem we can exploit for
computational gain.

➤ learnable from data and past experiences.

➤ able to trade off accuracy and computation time.
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Bayesians

➤ Interested in action: what should an agent do?

➤ Role of belief is to make good decisions.

➤ Theorems (Von Neumann and Morgenstern):

(under reasonable assumptions) a rational agent will act

as though it has (point) probabilities and utilities and acts

to maximize expected utilities.

➤ Probability as a measure of belief:

study of how knowledge affects belief

lets us combine background knowledge and data
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Representations of uncertainty

We want a representation for

➤ probabilities

➤ utilities

➤ actions

that facilitates finding the action(s) that maximise expected

utility.
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Belief networks (Bayesian networks)

➤ Totally order the variables of interest: X1, . . . , Xn

➤ Theorem of probability theory (chain rule):

P(X1, . . . , Xn) = P(X1)P(X2|X1) · · ·P(Xn|X1, . . . , Xn−1)

= ∏n
i=1 P(Xi|X1, . . . , Xi−1)

➤ The parents of Xi πi ⊆ X1, . . . , Xi−1 such that

P(Xi|πi) = P(Xi|X1, . . . , Xi−1)

➤ So P(X1, . . . , Xn) =∏n
i=1 P(Xi|πi)

➥ Belief network nodes are variables, arcs from parents
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Belief Network for Overhead Projector
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Belief Network

➤ Graphical representation of dependence.

➤ DAG with nodes representing random variables.

➤ If B1, B2, · · · , Bk are the parents of A:

B1 B2 Bk...

A

we have an associated conditional probability:

P(A|B1, B2, · · · , Bk)
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Probabilistic Inference
To compute the probability of a variable X given evidence
Z1 = e1 ∧ . . . ∧ Zk = ek:

P(X|Z1 = e1 ∧ . . . ∧ Zk = ek)

= P(X ∧ Z1 = e1 ∧ . . . ∧ Zk = ek)

P(Z1 = e1 ∧ . . . ∧ Zk = ek)

Suppose the other variables are Y1, . . . , Ym:

P(X ∧ Z1 ∧ · · · ∧ Zk)

=
∑
Ym

· · ·
∑
Y1

P(X1, . . . , Xn)

=
∑
Ym

· · ·
∑
Y1

n∏
i=1

P(Xi|πi)
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Eliminating a variable

➤ to compute AB+ AC efficiently, distribute out A:

A(B+ C).

➤ to compute

∑
Yj

n∏
i=1

P(Xi|πi)

distribute out those factors that don’t involve Yj.

➤ Closely related to nonserial dynamic programming

[Bertelè & Brioschi, 1972]
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Variable Elimination Example

A

B
C

D

E

F

G

H I

P(A)

P(B|A)

⎫⎬
⎭

elim A−→ f1(B)

P(C)

P(D|BC)

P(E|C)

⎫⎪⎪⎬
⎪⎪⎭

elim C−→ f2(BDE)

P(F|D)

P(G|FE)

P(H|G)

} obs H−→ f3(G)

P(I|G)

} elim I−→ f4(G)
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Representing Factors

➤ Tables allow for fast indexing

➤ Decision trees or rules allow us to exploit contextual

independence

➤ Functional Forms allow us to exploit special forms

e.g., causal independence, mixtures of Gaussians

➤ Caching lets us save repeated computation

Clique tree propagation = variable elimination + caching
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Stochastic Simulation

➤ P(x) = 0.234↔ in 234 out of 1000 random samples, x

will be true.

➤ P(x|evidence) = 0.654↔ out of every 1000 cases where

evidence is true, x will also be true in 654 of them.

➤ Rejection sampling generate 1000 samples where

evidence is true, estimate the probability of x from these.

➤ To sample in a belief network: sample parents, sample

the variable from the distribution given the parents.

Reject a sample that is in conflict with the evidence.
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Mixing Exact & Stochastic Simulation

➤ If we can generate P(sample|evidence) we can weight

the sample by that amount.

➤ Importance sampling
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Particle Filtering

➤ Idea: if you have a number of samples “particles” each

with (posterior) probability, you can resample these

according to their probability.

➤ particle filtering = importance sampling + resampling
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Overview

➤ Knowledge representation, Belief Networks

➤ Uncertainty and Time

➣ Markov Chains

➣ Hidden Markov Models

➣ HMMS for Localization

➤ Control

➤ Learning

➤ Challenges
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Markov Process

S0 S1 S3S2

➤ P(St+1|St) specifies the dynamics.

➤ P(S0) specifies the initial conditions.
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Hidden Markov Model

S0 S1 S3S2

O0 O1 O2 O3

➤ P(St+1|St) specifies the dynamics

➤ P(S0) specifies the initial conditions

➤ P(Ot|St) specifies the sensor model.

➤ To find P(Si|observations) eliminate state variables
before Si and those after Si. filtering smoothing
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Example: localization
➤ Suppose a robot wants to determine its location based on

its actions and its sensor readings. Called Localization

➤ This can be represented by the augmented HMM:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

A0 A1 A2 A3

© David Poole 2001
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Example localization domain

➤ Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

➤ Doors at positions: 2, 4, 7, 11.

➤ Noisy Sensors

➤ Stochastic Dynamics

➤ Robot starts at an unknown location and must determine

where it is.
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Example Sensor Model

➤ P(Observe Door | At Door) = 0.8

➤ P(Observe Door | Not At Door) = 0.1
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Example Dynamics Model

➤ P(loct+1 = L|actiont = goRight ∧ loct = L) = 0.1

➤ P(loct+1 = L + 1|actiont = goRight ∧ loct = L) = 0.8

➤ P(loct+1 = L+2|actiont = goRight∧ loct = L) = 0.074

➤ P(loct+1 = L′|actiont = goRight ∧ loct = L) = 0.002

for any other location L′.
➣ All location arithmetic is modulo 16.

➣ The action goLeft works the same but to the left.
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Sensor Fusion
➤ We can have many (noisy) sensors for a property.

➤ Example:

S0 S1 S2 S3 S4

D0 D1 D2 D3 D4

A0 A1 A2 A3

L1L0 L2 L3 L4

Dt is value of door sensor, Lt value of light sensor at time t.

© David Poole 2001

☞

☞

http://www.cs.ubc.ca/spider/poole/


2003 IJCAI Workshop on Reasoning with Uncertainty in Robotics Page 25

Overview
➤ Knowledge representation, Belief Networks

➤ Uncertainty and Time

➤ Control

➣ Utilities and Actions

➣ Decision Networks

➣ MPDs

➣ POMDPs

➤ Learning

➤ Challenges
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Goals and Utilities

➤ With goals, there are some equally preferred goal states,

and all other states are equally bad.

➤ Not all failures are equal. For example: a robot

stopping, falling down stairs, or injuring people.

➤ With uncertainty, we have to consider how good and bad

all possible outcomes are.

➥ utility specifies a value for each state.

➤ With utilities, we can model goals by having goal states

having utility 1 and other states have utility 0.
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Decisions Networks
➤ A random variable is drawn as an

ellipse. Arcs into the node represent

probabilistic dependence.

➤ A decision variable is drawn as an

rectangle. Arcs into the node repre-

sent information available when the

decision is make.

➤ A value node is drawn as a dia-

mond. Arcs into the node represent

values that the value depends on.
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Example Decision Network

tampering

alarm

fire

leaving

report

see smoke

check
for

smoke
call
fire

department

U
smoke
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Finding an Optimal Decision

...

...

➤ If value node is only connected to a de-

cision node and (some of) its parents

➥ select a decision to maximize value

for each assignment to the parent.

➤ If it isn’t of this form, eliminate the non-

observed variables.

➤ If there are k binary parents, there are

2k optimizations.

➤ There are 22k
policies.

➤ Replace decision node with value node.
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Evaluating Decision Networks

Eliminate the non-observed variables for the final decision.

report

see smoke

check
for

smoke
call
fire

department

U
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(Finite stage) Markov Decision Process

S0 S1 S3S2

A0 A1 A2

R1 R2 R3

P(St+1|St, At) specified the dynamics

R(St, At−1) specifies the reward at time t

Value is R1 + R2 + R3.
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Policies

➤ What the agent does based on its perceptions is specified

by a policy.

➤ We assume that the agent can observe it’s state (and

remember its history).

➤ If we eliminate the final state, we have a form of the

trivial decision problem. value iteration

➤ Optimal action is a function from observed state into

action. A policy is a set of functions Si → Ai.
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Modelling Assumptions
➤ deterministic or stochastic dynamics

➤ goals or utilities

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Finite stage or infinite stage

➤ Finite stage there is a given number of sequential

decisions

➤ Infinite stage indefinite number (perhaps infinite)

number of sequential decisions.

➤ With infinite stages, we can model stopping by having an

absorbing state — a state si so that P(si|si) = 1, and

P(sj|si) = 0 for i �= j.

➤ Infinite stages let us model ongoing processes as well as

problems with unknown number of stages.
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Markov Decision Process

S0 S1 S3S2

A0 A1 A2

R1 R2 R3

P(St+1|St, At) specified the dynamics

R(St, At−1) specifies the reward at time t
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Markov Decision Process
➤ Infinite stage is the limit as horizon gets larger

➤ Total value of a policy:

➣ Sum of rewards (only with absorbing states)

➣ Discounted reward R1 + γ R2 + γ 2R3 + ....

➣ Average reward limn→∞(R1 + R2 + . . .+ Rn)/n.

➤ Usually have stationary dynamics: time-independent.

➤ Two main algorithms

➣ Policy iteration: evaluate then improve a given policy.

➣ Value iteration: determine the value of the optimal
policy working backwards from some point in time.
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Fully observable or partially observable

➤ Fully observable = can observe actual state before a

decision is made.

➤ Full observability is a convenient assumption that makes

computation much simpler.

➤ Full observability is applicable only for artificial

domains, such as games and factory floors.

➤ Most domains are partially observable, such as robotics,

diagnosis, user modelling …
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(Finite stage) Partially Observable MDP

S0 S1 S3S2

O0 O1 O2 O3A0 A1 A2

R1 R2 R3

P(St+1|St, At) specified the dynamics

P(Ot|St) specifies the sensor model.

R(St, At−1) specifies the reward at time i
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Policies for Finite Stage POMDPs

➤ The information available to the agent at any time is the

history of observations and previous actions. Assume the

agent is no forgetting.

➤ What the agent should do is specified by a policy a

function from history into actions. For each time t we

have:

O0, A0, O1, A1, . . . , Ot−1, At−1, Ot → At
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Example Decision Network

tampering

alarm

fire

leaving

report

see smoke

check
for

smoke
call
fire

department

U
smoke
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Policies for Infinite Stage POMDPs
➤ We can’t define a function over the infinite history

(unless we cut it off to a finite part somehow).

➤ A belief state is a probability distribution over states. A
belief state is an adequate statistic about the history.

policy : Bt → At

➣ If there are n states, this is a function on �n.

➣ If there are only finitely many stages to go, the
optimal value function is piecewise linear and convex
(the agent can adopt one of a finite number of
conditional plans; each of these represents a
hyperplane in belief space).
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Explicit state space or properties

➤ Traditional methods relied on explicit state spaces, and

techniques such as sparse matrix computation.

➤ The number of states is exponential in the number of

properties or variables. It may be easier to reason with 30

binary variables than 1,000,000,000 states.

➤ Bellman labelled this the Curse of Dimensionality.
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Dynamic Decision Networks

Idea: represent the state in terms of random variables /

propositions.

hc

w

wc

u

r

hc

w

wc

u

r

hc

w

wc

u

r

hc

w

wc

u

r
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Finding Optimal Policies

➤ Eliminate the non-observed variables that are not

d-separated from the value node by the parents of the last

decision.

➤ Nodes become joined (values function depends on many

variables).

➤ Same problem occurs with belief state monitoring.
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Zeroth-order or first-order

➤ The traditional methods are zero-order, there is no logical

quantification. All of the individuals must be part of the

explicit model.

➤ There is a lot of work on automatic construction of

probabilistic models — providing macros to construct

ground representations.

© David Poole 2001

☞

☞

http://www.cs.ubc.ca/spider/poole/


2003 IJCAI Workshop on Reasoning with Uncertainty in Robotics Page 52

First-order representations

➤ We want to be able to quantify over individuals, and have

relations amongst individuals.

➤ First-order languages allow recursion.

➤ We want to be able to exploit first-order representation

computationally—as unification does for theorem

proving. One step of first-order algorithm corresponds to

many ground steps.

➤ Lets us reason about populations. Someone is running

about, what is the probability that someone else is too?
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Independent Choice Logic

➤ We want a first-order language where all uncertainty is

handled by Bayesian decision theory (probabilities, agent

choices, utilities) rather than by disjunction.

➤ We start with a language with no uncertainty

➥ acyclic logic programs

➤ We have a choice space of independent choices + a logic

program that gives the consequences of the choices.

➤ Direct mapping from a belief/decision network to ICL.
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Independent Choice Logic Semantics
The user specifies a choice space + acyclic logic program

➤ An alternative is a set of first-order atoms exactly one of

which can be true.

➤ A choice space is a set of pairwise disjoint alternatives.

➤ A possible world is the selection of one element from

each alternative.

➤ What is true in the possible world is defined by which

elements are selected and the logic program.

➤ We have a probability distribution over alternatives.
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Dynamic Belief Networks in ICL

r(T + 1)← r(T) ∧ rain_continues(T).

r(T + 1)← r(T) ∧ rain_starts(T).

hc(T + 1)← hc(T) ∧ do(A, T) ∧ A �= pass_coffee

∧ keep_coffee(T).

hc(T + 1)← hc(T) ∧ do(pass_coffee, T)

∧ keep_coffee(T) ∧ passing_fails(T).

hc(T + 1)← do(get_coffee, T) ∧ get_succeeds(T).

∀T{rain_continues(T), rain_stops(T)} ∈ C

∀T{keep_coffee(T), spill_coffee(T)} ∈ C

∀T{passing_fails(T), passing_succeeds(T)} ∈ C
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Single agent or multiple agents

➤ Many domains are characterised by multiple agents

rather than a single agent.

➤ Game theory studies what agents should do in a

multi-agent setting.

➤ Agents can be cooperative, competitive or somewhere in

between.

➤ Agents that are strategic can’t be modelled as nature.

© David Poole 2001

☞

☞

http://www.cs.ubc.ca/spider/poole/


2003 IJCAI Workshop on Reasoning with Uncertainty in Robotics Page 58

Fully Observable + Multiple Agents

➤ Perfect Information Games.

➤ Can do dynamic programming or search:

Each agent maximises for itself.

➤ Two person, competitive (zero sum) �⇒ minimax.
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Multiple Agents, shared value

...

...
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Complexity of Multi-agent decision theory

➤ It can be exponentially harder to find optimal multi-agent

policy even with a shared values.

➤ Why? Because dynamic programming doesn’t work:

➣ If a decision node has n binary parents, DP lets us

solve 2n decision problems.

➣ This is much better than d2n
policies (where d is the

number of decision alternatives).

➤ Multiple agents with shared values is equivalent to

having a single forgetful agent.
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Partial Observability and Competition

goalie

left right

kicker left 0.9 0.1

right 0.2 0.9

Probability of a goal.
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Stochastic Policies

y*(0.9*x+0.1*(1-x))+(1-y)*(0.2*x+0.9*(1-x))

0
0.2

0.4
0.6

0.8
1

probability goalie jumps left 0

0.2

0.4

0.6

0.8

1

probability kicks left

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
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Stochastic Policies—another view
y*(0.9*x+0.1*(1-x))+(1-y)*(0.2*x+0.9*(1-x))

0 0.2 0.4 0.6 0.8 1
probability goalie jumps left

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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Dimensions of Representations

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents

➤ perfect rationality or bounded rationality
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Perfect or Bounded Rationality

➤ We cannot assume agents have unlimited computation

time and space.

➤ It may be better to find a reasonable decision fast than

take a long time to find what (was) the best decision.

➤ Value of computation. Value of space. How much is

thinking worth to the agent?

➤ Offline versus online computation.
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Overview
➤ Knowledge representation, Belief Networks

➤ Uncertainty and Time

➤ Control

➤ Learning

➣ Parameter Learning

➣ Hidden variables: EM

➣ SLAM

➣ Reinforcemment Learning

➤ Challenges
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Parameter Learning

➤ data↔ probabilities

➤ Still problematic to determine appropriate function of

parents.
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Learning a Belief Network

➤ If you

➣ know the structure

➣ have observed all of the variables

➣ have no missing data

➤ you can learn each conditional probability separately.
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Learning belief network example

Model Data → Probabilities

C

E

A B

D

A B C D E

t f t t f

f t t t t

t t f t f

· · ·

P(A)

P(B)

P(E|A, B)

P(C|E)

P(D|E)
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Learning conditional probabilities

➤ Each conditional probability distribution can be learned

separately:

➤ For example:

P(E = t|A = t ∧ B = f )

= (#examples: E = t ∧ A = t ∧ B = f )+ m1

(#examples: A = t ∧ B = f )+ m

where m1 and m reflect our prior knowledge.

➤ There is a problem when there are many parents to a node

as then there is little data for each probability estimate.

© David Poole 2001

☞

http://www.cs.ubc.ca/spider/poole/


2003 IJCAI Workshop on Reasoning with Uncertainty in Robotics Page 72

Unobserved Variables

B

H

A

C

➤ What if we had only observed

values for A, B, C?

A B C

t f t

f t t

t t f

· · ·
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EM Algorithm

Augmented Data Probabilities

A B C H

t f t t

f t t f

t t f t

· · ·

E-step

M-step

P(A)

P(H|A)

P(B|H)

P(C|H)

© David Poole 2001

☞

http://www.cs.ubc.ca/spider/poole/


2003 IJCAI Workshop on Reasoning with Uncertainty in Robotics Page 74

EM Algorithm

➤ Repeat the following two steps:

➣ E-step give the expected number of data points for

the unobserved variables based on the given

probability distribution.

➣ M-step infer the (maximum likelihood) probabilities

from the data. This is the same as the full observable

case.

➤ Start either with made-up data or made-up probabilities.

➤ EM will converge to a local maxima.
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Simultaneous localization and mapping

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

A0 A1 A2 A3

➤ Don’t know dynamics or sensor model.

➤ Want a coherent map.
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Reinforcement Learning
➤ Often we don’t know a priori the probabilities and

rewards, but only observe the system while controlling it
➥ reinforcement learning.

➤ Typically modelled as a Markov Decision Process

➤ Learn either:

➣ dynamics + rewards model-based - use value or
policy iteration

➣ Q(s, a) — value of doing a in state s then acting
optimally

➤ Exploration—exploitation tradeoff.
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Temporal Differences

To get the average of the first n data values:

An = a1 + . . .+ an−1 + an

n

= (a1 + . . .+ an−1)(n− 1)

(n− 1)n
+ an

n

= n− 1

n
An−1 + 1

n
an

Let α = 1
n , then

An = (1− α)An−1 + αan

= An−1 + α(an − An−1)
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Modelling Assumptions

➤ deterministic or stochastic dynamics

➤ goals or utilities

➤ finite stage or infinite stage

➤ fully observable or partially observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents
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Comparison of Some Representations

CP DTP IDs RL HMM GT

stochastic dynamics ✔ ✔ ✔ ✔ ✔

values ✔ ✔ ✔ ✔

infinite stage ✔ ✔ ✔ ✔

partially observable ✔ ✔ ✔

properties ✔ ✔ ✔ ✔ ✔

first-order ✔

dynamics not given ✔ ✔

multiple agents ✔
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Challenges

➤ Develop solutions to parts that fit together.

➤ Put them together.

➤ Some random subproblems:

➣ modelling multiple objects

➣ hierarchical decomposition

➣ spatial reasoning and uncertainty

➣ integrating with real sensors (e.g., vision)

➣ specification of what we want our robots to do

(values)
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Where to now?
➤ Keep the representation as simple as possible to solve

your problem, but no simpler.

➤ Approximate. Bounded rationality: costs and benefits of
approximation.

➤ Approximate the solution, not the problem (Sutton).

➤ Reasoning at multiple levels of abstraction.

➤ We want everything, but only as much as it is worth to us.

➤ Preference elicitation.

➤ Uncertainty is everywhere. Be certain you are using it
appropriately.
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