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Overview

@ Simple representation: parametrized belief networks.
Means grounding.

@ Inference: combine variable elimination and unification

e One step of first-order variable elimination corresponds
to many VE steps.

@ Allows for new queries that depend on population size:
probability that someone is guilty of a crime depends on
how many other people could have done it.
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Background Probability
Log
Relational Probabilistic Models

Bayesians

@ Probability is a measure of belief.

@ All individuals about which we have the same information
should have the same probability.

e ldea: share probability tables both initially and during
inference.

4 David Poole First-order probabilistic inference



Background Probability
Lo,

elational Probabilistic Models

Background: Belief (Bayesian) networks

@ Totally order the variables of interest: Xi,..., X,
o P(X1,....X,) =TI, P(Xi|m)
m; are the parents of X;: a set of predecessors such that

P(Xi|mi) = P(Xi| X4, ..., Xi—1)
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Background Probability
Lo,

elational Probabilistic Models

Background: variable elimination

To compute the probability of a variable X given evidence
Z=¢

P(X AN Z =)

PXIZ=2) = —5 5"

Suppose the other variables are Yi,..., Y,,:
P(X A 2)

Z~~~ZP(X1,...,X
Z ZHP Xi|m)

Y, i=1
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Background

obabilistic Models

Eliminating a variable

@ to compute AB + AC efficiently, distribute out A:
A(B + C).

@ to compute

ZHPMW,

jll

distribute out those factors that don't involve Y;.
@ Can be used for directed and undirected models.

@ Closely related to nonserial dynamic programming
[Bertele & Brioschi, 1972]
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Background Probability

onal Probabilistic Models

Variable Elimination: basic operations

@ conditioning on observations (local to each factor)
e multiplying factors

@ summing a variable from a factor
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Background Probability
Logic
Relational Probabilistic M
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Background
-
Relational Probabilistic Models

First-order predicate calculus

il’l(alal’l,r]23). alan\</\\
part_of(r123,cs_building). r123\m
VXYY in(X,Y) 1023

cs_building \D

3Z part_of(Z,Y) N

in(X 2). in(,e
part_of(s,»
personl)\\A

@ $ m(alan cs_building)

First-order probabilistic inference
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Background Probability
Logic
Relational Probabilistic Models

Skolemization and Herbrand's Theorem

Skolemization: give a name for an object said to exist
vX3Y q(X,Y) becomes q(X, (X))

Herbrand's theorem [1930]:

e If a logical theory has a model it has a model where the
domain is made of ground terms, and each term denotes

itself.

o If a logical theory T is unsatisfiable, there is a finite set of
ground instances of formulas of T which is unsatisfiable.
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Background Probability
Logic
Relational Probabilistic Models

Unique Names Assumption & Negation as Failure

@ Unique Names Assumption:
— different names denote different individuals
— different ground terms denote different individuals

@ Herbrand's theorem holds even without the unique names
assumption.
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Background

al Probabilistic Models

Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground
steps with one step:

f(X,2Z)V p(X,a) —p(b, Y)V g(Y, W)
f(b,Z)V g(a, W)

Substitution {X /b, Y /a} is the most general unifier of p(X, a)
and p(b, Y).
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Relational Probabilistic Models
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Background obability

Logi

C
Relational Probabilistic Models

Parametrized belief networks

Allow random variables to be parametrized. height(X)
Parameters correspond to logical variables. X
Each parameter is typed with a population. X : person
Each population has a size. |person| = 1000000

Parametrized belief network means its grounding.
Ground instances are random variables:
height(p1) . .. height(p1o00000)

Instances are independent (but can have common
ancestors and descendents).
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Background Probability

ogic
Relational Probabilistic Models

Parametrized Bayesian networks / Plates

Parametrized Bayes Net:

@ Bayes Net

X

T = () ()

Individuals:

el
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Background Probability

ogic
Relational Probabilistic Models

Parametrized Bayesian networks / Plates (2)

Individuals:

i]""’ik
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Background Probability

ogic
Relational Probabilistic Models

Example parametrized belief network

own_conservativeness

/
Chair_colour (XD

Y

X:person

VX P(car_colour(X)=pink|hair_colour(X)=pink) = 0.1
VX P(hair_colour(X)=pink|town_conservative) = 0.001.
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First-order Probabilistic Inference Lifeice) VIE ©Opamisens
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Unification and Splitting

First-order Probabilistic Inference Lifeice) VIE ©Opamisens

Theorem Proving and Unification (reprise)

In 1965, Robinson showed how unification allows many ground
steps with one step:

f(X,2Z)V p(X,a) —p(b, Y)V g(Y, W)
f(b,Z)V g(a, W)

Substitution {X /b, Y /a} is the most general unifier of p(X, a)
and p(b, Y).
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Unification and Splitting

First-order Probabilistic Inference Lifeice) VIE ©Opamisens

Variable Elimination and Unification

@ Multiplying parametrized factors:
[F(X.2),p(X.a)] x [p(b,Y),g(Y.W)]
[f(b, Z), p(b, a), g(a, W)]
Doesn't quite work because the first parametrized factor

can't be used for X = b but can be used for other
instances of X.

@ Intuitively, we want to add the constraint X # b to
[f(X,Z),p(X,a)] after the above multiplication.

N
N
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. - Unification and Splitting
First-order Probabilistic Inference Liffies] WIE ©@peraiiens

Parametric Factors

A parametric factor (parfactor) is a triple (C, V, t) where
e C is a set of inequality constraints on parameters,
@ V is a set of parametrized random variables
@ t is a table representing a factor from the random
variables to the non-negative reals.
hair_col cons | Val

purple  yes |0.001
purple  no | 0.01

{X # sue}, {hair_col(X), cons},
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Unification and Splitting

First-order Probabilistic Inference Lifeice) VIE ©Opamisens

Splitting

Instead of applying substitutions to parametric factors, we split
the parametric factors on the substitution.
A split of (C, V,t) on X = ~, results in parametric factors:

(CX/1, VIX/A 1)
{X#~tUC,V, 1) <— residual

where V[X/~] is V with ~ substituted for X.
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. - Unification and Splitting
First-order Probabilistic Inference Liffies] WIE ©@peraiiens

Splitting on a substitution

@ Splitting on a substitution, means splitting on each
equality in the substitution.

e Different orders of splitting give the same final result, but
may give different residuals.

e Example: Split
{},{foo(X,Y,2)} tr)
on {X =Z,Y = b} results in
{}, {foo(X, b, X)}, ta)
{X # Z},{foo(X,Y,Z)}, tr)
({Y # b}, {foo(X, Y, X)}, 1)
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Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations
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Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations

First-order probabilistic inference

Parametrized FOVE Parametrized
Belief Network Posterior
ground ground
VE
Belief Network » Posterior

27 David Poole First-order probabilistic inference



Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations

Multiplying Parametric Factors

Suppose we were to eliminate p and multiply the two
parametric factors:

<{}7 {p(X, a)a q(Y> C)? 5(X> Y)}a t1>
<{W 3& d}7 {P(bv Z)> q(W7 T)’ F(W, T)}7 t2>

o If we grounded these, then did VE, some instances of
these would be multiplied and some wouldn't.

e We unify p(X, a) and p(b, Z) resulting in the substitution
6 ={X/b,Z/a}.

@ Unification finds the most general instances that need to
be multiplied.
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Unificati 0 litting

. s on and Sp
First-order Probabilistic Inference Lifted VE Operations

Splitting when Multiplying |

We are multiplying the two parametric factors:

<{},{p(X,a),q(Y, C)75(X7 Y)}7t1> (1)

<{VV7'é d},{p(b, Z),q(W, T),r(W, T)}?t2> (2)
We split parametric factor (1) on 8 = {X/b, Z/a}:

<{},{p(b, a),q(Y, C),S(b, Y)}7 t1> (3)

<{X # b},{p(X,a),q(Y,C),S(X, Y)}7t1> (4)
We can split (2) on 6 resulting in:

<{W7£ d},{p(b, a)aq(W7 T)’r(Wv T)}7t2> (5)

({Z #a, W #d} {p(b,2),q(W,T),r(W, T)}, t2) (6)
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. A Unification and Splitting
First-order Probabilistic Inference Lifted VE Operations

Splitting when Multiplying I

When we are multiplying:

{}:{p(b,a),q(Y,c),s(b,Y)}, tr)
<{W 7£ d}7 {p(b, 8)7 q(W7 T)? r(W7 T)}7 t2>

@ All ground instances would need to be multiplied.

@ Not all instances have the same number of variables:
some will have two different g instances, and some have
one.

@ We need to split again on the most general unifier of
q(Y,c)and q(W, T).
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Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations

Summing out variables

@ If we are not removing a parameter, we sum out as
normal. E.g., summing out p:

({3 {p(X), a(X)}, tlp, q)

@ If we are removing a parameter, we must take to the
power of the effective population size. E.g., summing out

p:
(Y # ab, {p(X,Y),q(X)}, tp, ql)

@ Other functions such as noisy-or, you need to take into
account the population size.
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Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations

Removing a parameter when summing

@edﬂ) Eliminate interested:

({}, {boring, interested(X)}, t;)
({}, {interested(X)}, to)

Y
: +
eI | foring} (6 x 6)1%)
X:person
|people| = 100

observe no questions
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Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations

Existential Observations

Suppose we observe:
@ Joe has purple hair, a purple car, and has big feet.

@ A person with purple hair, a purple car, and who is very
tall was seen committing a crime.

What is the probability that Joe is guilty?
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First-order Probabilistic Inference

Unification and Splitting
Lifted VE Operations

Background parametrized belief network

own_conservativeness

halr colour(X / !

Teight0)>

\

i

X:person

David Poole
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First-order Probabilistic Inference

Unification and Splitting
Lifted VE Operations

Observing information about Joe

town_conser vativeness

Tair_colow (o>
height(joe

halr _col our(X

sex(joe

r

Y .

hoe 29>

X:person, X#joe

“olow(ed> | Cguiltyod>
hoe_sizefjoe>
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First-order probabilistic inference




Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations

Observing Joe and the crime

own_conservativeness

X:person, X#joe
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Unification and Splitting

First-order Probabilistic Inference Lifted VE Operations

Last Steps

We end up with parametric Factors:

({}, {guilty(joe), descn(joe), conservativeness}, t;)
({X # joe}, {descn(X), conservativeness}, t,)
({}, {descn(X), witness}, t3)

({}, { conservativeness}, ty)
We eliminate descn(X):

({}, {guilty(joe), witness, conservativeness}, ts)
We sum out conservativeness and condition on witness:

({}, {guilty(joe)}, te)
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Unification and Splitting
Lifted VE Operations

First-order Probabilistic Inference

Guilty as a function of population

09 |
08 |
207 |
=06 |
305
04 |
03 |
02 |
01 |

1 10 100 1000 10000 100000
population
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Conclusions

Conclusions

@ We combine variable elimination + unification.
o One step of first-order variable elimination corresponds
to many steps in ground representation.
e We can condition on existential and universal
observations.

@ Contributions of [JCAI-93 paper:

e parametrized random variables

e splitting to complement unification

e parfactor representation of intermediate results

e an algorithm for multiplying factors in a lifted manner
(sometimes)
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