First-order probabilistic inference

David Poole

Department of Computer Science, University of British Columbia

IJCAI 2011 Tutorial

Overview

- Simple representation: parametrized belief networks. Means grounding.
- Inference: combine variable elimination and unification
 - One step of first-order variable elimination corresponds to many VE steps.
- Allows for new queries that depend on population size: probability that someone is guilty of a crime depends on how many other people could have done it.

Outline

- Probability
- Logic
- Relational Probabilistic Models
- 2 First-order Probabilistic Inference
 - Unification and Splitting
 - Lifted VE Operations

3 Conclusions

Probability Logic Relational Probabilistic Models

Bayesians

- Probability is a measure of belief.
- All individuals about which we have the same information should have the same probability.
 - Idea: share probability tables both initially and during inference.

Background: Belief (Bayesian) networks

- Totally order the variables of interest: X_1, \ldots, X_n
- $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | \pi_i)$ π_i are the parents of X_i : a set of predecessors such that

$$P(X_i|\pi_i) = P(X_i|X_1,\ldots,X_{i-1})$$

Background Probabil First-order Probabilistic Inference Conclusions Relation

Probability Logic Relational Probabilistic Models

Background: variable elimination

To compute the probability of a variable X given evidence $\overline{Z} = \overline{e}$:

$$P(X|\overline{Z}=\overline{e}) = \frac{P(X \wedge \overline{Z}=\overline{e})}{P(\overline{Z}=\overline{e})}$$

Suppose the other variables are Y_1, \ldots, Y_m :

$$P(X \land \overline{Z})$$

$$= \sum_{Y_m} \cdots \sum_{Y_1} P(X_1, \dots, X_n)$$

$$= \sum_{Y_m} \cdots \sum_{Y_1} \prod_{i=1}^n P(X_i | \pi_i)$$

Probability Logic Relational Probabilistic Models

Eliminating a variable

- to compute AB + AC efficiently, distribute out A: A(B + C).
- to compute

 $\sum_{\mathbf{Y}_j}\prod_{i=1}^n P(X_i|\pi_i)$

distribute out those factors that don't involve Y_j .

- Can be used for directed and undirected models.
- Closely related to nonserial dynamic programming [Bertelè & Brioschi, 1972]

Probability Logic Relational Probabilistic Models

Variable Elimination Example

Probability Logic Relational Probabilistic Models

Variable Elimination: basic operations

- conditioning on observations (local to each factor)
- multiplying factors
- summing a variable from a factor

Probability Logic Relational Probabilistic Models

Outline

- Probability
- Logic
- Relational Probabilistic Models

2 First-order Probabilistic Inference

- Unification and SplittingLifted VE Operations
- 3 Conclusions

Probability Logic Relational Probabilistic Models

First-order predicate calculus

Skolemization and Herbrand's Theorem

Skolemization: give a name for an object said to exist

 $\forall X \exists Y \ q(X, Y)$ becomes q(X, f(X))

Herbrand's theorem [1930]:

- If a logical theory has a model it has a model where the domain is made of ground terms, and each term denotes itself.
- If a logical theory T is unsatisfiable, there is a finite set of ground instances of formulas of T which is unsatisfiable.

 Background
 Probability

 First-order Probabilistic Inference
 Logic

 Conclusions
 Relational Probabilistic Models

Unique Names Assumption & Negation as Failure

• Unique Names Assumption:

- different names denote different individuals
- different ground terms denote different individuals
- Herbrand's theorem holds even without the unique names assumption.

Background Probability First-order Probabilistic Inference Conclusions Relational P

Probability **Logic** Relational Probabilistic Models

Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground steps with one step:

$$\underbrace{f(X,Z) \lor p(X,a) \quad \neg p(b,Y) \lor g(Y,W)}_{f(b,Z) \lor g(a,W)}$$

Substitution $\{X/b, Y/a\}$ is the most general unifier of p(X, a) and p(b, Y).

Probability Logic Relational Probabilistic Models

Outline

- Probability
- Logic
- Relational Probabilistic Models
- 2 First-order Probabilistic Inference
 - Unification and Splitting
 - Lifted VE Operations

Parametrized belief networks

- Allow random variables to be parametrized.
- Parameters correspond to logical variables.
- Each parameter is typed with a population. X : person
- Each population has a size. |person| = 1000000
- Parametrized belief network means its grounding. Ground instances are random variables: height(p₁)...height(p₁₀₀₀₀₀₀)
- Instances are independent (but can have common ancestors and descendents).

height(X)

X

Parametrized Bayesian networks / Plates

Parametrized Bayes Net:

Parametrized Bayesian networks / Plates (2)

Example parametrized belief network

 $\forall X \ P(car_colour(X)=pink|hair_colour(X)=pink) = 0.1$ $\forall X \ P(hair_colour(X)=pink|town_conservative) = 0.001.$

Unification and Splitting Lifted VE Operations

Outline

- Probability
- Logic
- Relational Probabilistic Models
- 2 First-order Probabilistic Inference
 Unification and Splitting
 Lifted VE Operations

3 Conclusions

Theorem Proving and Unification (reprise)

In 1965, Robinson showed how unification allows many ground steps with one step:

$$\underbrace{f(X,Z) \lor p(X,a) \quad \neg p(b,Y) \lor g(Y,W)}_{f(b,Z) \lor g(a,W)}$$

Substitution $\{X/b, Y/a\}$ is the most general unifier of p(X, a) and p(b, Y).

Variable Elimination and Unification

• Multiplying parametrized factors:

$$\underbrace{[f(X,Z),p(X,a)] \times [p(b,Y),g(Y,W)]}_{[f(b,Z),p(b,a),g(a,W)]}$$

Doesn't quite work because the first parametrized factor can't be used for X = b but can be used for other instances of X.

• Intuitively, we want to add the constraint $X \neq b$ to [f(X, Z), p(X, a)] after the above multiplication.

Unification and Splitting Lifted VE Operations

Parametric Factors

A parametric factor (parfactor) is a triple $\langle C, V, t \rangle$ where

- C is a set of inequality constraints on parameters,
- V is a set of parametrized random variables
- *t* is a table representing a factor from the random variables to the non-negative reals.

$$\left\langle \{X \neq sue\}, \{hair_col(X), cons\}, \begin{array}{c} hair_col\\ purple\\ purple \end{array} \right\rangle$$

hair_col	cons	Val	ļ
purple	yes	0.001	$\left \right\rangle$
purple	no	0.01	/
	•••		ľ

Unification and Splitting Lifted VE Operations

Splitting

Instead of applying substitutions to parametric factors, we split the parametric factors on the substitution. A split of $\langle C, V, t \rangle$ on $X = \gamma$, results in parametric factors:

$$\begin{array}{ll} \langle C[X/\gamma], V[X/\gamma], t \rangle \\ \langle \{X \neq \gamma\} \cup C, V, t \rangle & \longleftarrow \text{residual} \end{array}$$

where $V[X/\gamma]$ is V with γ substituted for X.

Splitting on a substitution

- Splitting on a substitution, means splitting on each equality in the substitution.
- Different orders of splitting give the same final result, but may give different residuals.
- Example: Split

 $\begin{array}{l} \langle \{\}, \{foo(X, Y, Z)\}, t_1 \rangle \\ \text{on } \{X = Z, Y = b\} \text{ results in} \\ \langle \{\}, \{foo(X, b, X)\}, t_1 \rangle \\ \langle \{X \neq Z\}, \{foo(X, Y, Z)\}, t_1 \rangle \\ \langle \{Y \neq b\}, \{foo(X, Y, X)\}, t_1 \rangle \end{array}$

Unification and Splitting Lifted VE Operations

Outline

- Probability
- Logic
- Relational Probabilistic Models
- First-order Probabilistic Inference
 Unification and Splitting
 - Lifted VE Operations

3 Conclusions

Unification and Splitting Lifted VE Operations

First-order probabilistic inference

Multiplying Parametric Factors

Suppose we were to eliminate p and multiply the two parametric factors:

$$\langle \{\}, \{p(X, a), q(Y, c), s(X, Y)\}, t_1 \rangle \\ \langle \{W \neq d\}, \{p(b, Z), q(W, T), r(W, T)\}, t_2 \rangle$$

- If we grounded these, then did VE, some instances of these would be multiplied and some wouldn't.
- We unify p(X, a) and p(b, Z) resulting in the substitution $\theta = \{X/b, Z/a\}.$
- Unification finds the most general instances that need to be multiplied.

Splitting when Multiplying I

We are multiplying the two parametric factors:

$$\langle \{\}, \{p(X, a), q(Y, c), s(X, Y)\}, t_1 \rangle$$

$$(1)$$

$$\langle \{W \neq d\}, \{p(b, Z), q(W, T), r(W, T)\}, t_2 \rangle$$
(2)

We split parametric factor (1) on $\theta = \{X/b, Z/a\}$:

$$\langle \{\}, \{p(b,a), q(Y,c), s(b,Y)\}, t_1 \rangle$$

$$\langle \{X \neq b\}, \{p(X,a), q(Y,c), s(X,Y)\}, t_1 \rangle$$

$$(3)$$

We can split (2) on θ resulting in:

$$\langle \{W \neq d\}, \{p(b,a), q(W,T), r(W,T)\}, t_2 \rangle$$

$$\langle \{Z \neq a, W \neq d\}, \{p(b,Z), q(W,T), r(W,T)\}, t_2 \rangle$$

$$(5)$$

Splitting when Multiplying II

When we are multiplying:

$$\langle \{\}, \{p(b,a), q(Y,c), s(b,Y)\}, t_1 \rangle \\ \langle \{W \neq d\}, \{p(b,a), q(W,T), r(W,T)\}, t_2 \rangle$$

- All ground instances would need to be multiplied.
- Not all instances have the same number of variables: some will have two different *q* instances, and some have one.
- We need to split again on the most general unifier of q(Y, c) and q(W, T).

Unification and Splitting Lifted VE Operations

Summing out variables

 If we are not removing a parameter, we sum out as normal. E.g., summing out p:

 $\langle \{\}, \{p(X), q(X)\}, t[p, q] \rangle$

 If we are removing a parameter, we must take to the power of the effective population size. E.g., summing out p:

$$\langle \{Y \neq a\}, \{p(X, Y), q(X)\}, t[p, q] \rangle$$

• Other functions such as noisy-or, you need to take into account the population size.

Unification and Splitting Lifted VE Operations

Removing a parameter when summing

|people| = 100 observe no questions

Eliminate interested: $\langle \{\}, \{boring, interested(X)\}, t_1 \rangle$ $\langle \{\}, \{interested(X)\}, t_2 \rangle$ \downarrow $\langle \{\}, \{boring\}, (t_1 \times t_2)^{100} \rangle$

Unification and Splitting Lifted VE Operations

Existential Observations

Suppose we observe:

- Joe has purple hair, a purple car, and has big feet.
- A person with purple hair, a purple car, and who is very tall was seen committing a crime.

What is the probability that Joe is guilty?

Unification and Splitting Lifted VE Operations

Background parametrized belief network

Unification and Splitting Lifted VE Operations

Observing information about Joe

Unification and Splitting Lifted VE Operations

Observing Joe and the crime

Last Steps

We end up with parametric Factors:

 $\begin{array}{l} \langle \{\}, \{guilty(joe), descn(joe), conservativeness \}, t_1 \rangle \\ \langle \{X \neq joe\}, \{descn(X), conservativeness \}, t_2 \rangle \\ \langle \{\}, \{descn(X), witness\}, t_3 \rangle \\ \langle \{\}, \{conservativeness\}, t_4 \rangle \end{array}$

We eliminate descn(X):

 $\langle \{\}, \{guilty(joe), witness, conservativeness\}, t_5 \rangle$

We sum out *conservativeness* and condition on *witness*:

 $\langle \{\}, \{guilty(joe)\}, t_6 \rangle$

Unification and Splitting Lifted VE Operations

Guilty as a function of population

Outline

1 Background

- Probability
- Logic
- Relational Probabilistic Models
- First-order Probabilistic Inference
 Unification and Splitting
 Lifted VE Operations

3 Conclusions

Conclusions

- We combine variable elimination + unification.
 - One step of first-order variable elimination corresponds to many steps in ground representation.
 - We can condition on existential and universal observations.
- Contributions of IJCAI-93 paper:
 - parametrized random variables
 - splitting to complement unification
 - parfactor representation of intermediate results
 - an algorithm for multiplying factors in a lifted manner (sometimes)