First-order probabilistic inference

David Poole

Department of Computer Science, University of British Columbia

IJCAI 2011 Tutorial

Overview

- Simple representation: parametrized belief networks. Means grounding.
- Inference: combine variable elimination and unification
- One step of first-order variable elimination corresponds to many VE steps.
- Allows for new queries that depend on population size: probability that someone is guilty of a crime depends on how many other people could have done it.

Outline

(1) Background

- Probability
- Logic
- Relational Probabilistic Models
(2) First-order Probabilistic Inference
- Unification and Splitting
- Lifted VE Operations
(3) Conclusions

Bayesians

- Probability is a measure of belief.
- All individuals about which we have the same information should have the same probability.
- Idea: share probability tables both initially and during inference.

Background: Belief (Bayesian) networks

- Totally order the variables of interest: X_{1}, \ldots, X_{n}
- $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \pi_{i}\right)$
π_{i} are the parents of X_{i} : a set of predecessors such that

$$
P\left(X_{i} \mid \pi_{i}\right)=P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

Background: variable elimination

To compute the probability of a variable X given evidence $\bar{Z}=\bar{e}:$

$$
P(X \mid \bar{Z}=\bar{e})=\frac{P(X \wedge \bar{Z}=\bar{e})}{P(\bar{Z}=\bar{e})}
$$

Suppose the other variables are Y_{1}, \ldots, Y_{m} :

$$
\begin{aligned}
& P(X \wedge \bar{Z}) \\
& =\sum_{Y_{m}} \cdots \sum_{Y_{1}} P\left(X_{1}, \ldots, X_{n}\right) \\
& =\sum_{Y_{m}} \cdots \sum_{Y_{1}} \prod_{i=1}^{n} P\left(X_{i} \mid \pi_{i}\right)
\end{aligned}
$$

Eliminating a variable

- to compute $A B+A C$ efficiently, distribute out A : $A(B+C)$.
- to compute

$$
\sum_{Y_{j}} \prod_{i=1}^{n} P\left(X_{i} \mid \pi_{i}\right)
$$

distribute out those factors that don't involve Y_{j}.

- Can be used for directed and undirected models.
- Closely related to nonserial dynamic programming [Bertelè \& Brioschi, 1972]

Variable Elimination Example

$$
\begin{gathered}
P(G \mid f) \\
\propto \sum_{C} \sum_{B} \sum_{D} \sum_{E} \sum_{A} \\
P(A) P(B \mid A) P(C \mid B)(D \mid C) \\
P(E \mid D) P(f \mid E) P(G \mid C) \\
=\sum_{C}\left(\sum_{B}\left(\sum_{A} P(A) P(B \mid A)\right)\right. \\
P(\mid B)) \\
\left(\sum_{D} P(D \mid C)\right. \\
\left.\left(\sum_{E} P(E \mid D) P(f \mid E)\right)\right) \\
P(G \mid C)
\end{gathered}
$$

Variable Elimination: basic operations

- conditioning on observations (local to each factor)
- multiplying factors
- summing a variable from a factor

Outline

(1) Background

- Probability
- Logic
- Relational Probabilistic Models
(2) First-order Probabilistic Inference
- Unification and Splitting
- Lifted VE Operations
(3) Conclusions

First-order predicate calculus

in(alan,r123).
part_of(r123,cs_building). $\forall X \forall Y$ in $(X, Y) \leftarrow$ $\exists Z$ part_of $(Z, Y) \wedge$ in (X, Z).

\geq in(alan,cs_building)

Skolemization and Herbrand's Theorem

Skolemization: give a name for an object said to exist

$$
\forall X \exists Y q(X, Y) \text { becomes } q(X, f(X))
$$

Herbrand's theorem [1930]:

- If a logical theory has a model it has a model where the domain is made of ground terms, and each term denotes itself.
- If a logical theory T is unsatisfiable, there is a finite set of ground instances of formulas of T which is unsatisfiable.

Unique Names Assumption \& Negation as Failure

- Unique Names Assumption:
- different names denote different individuals
- different ground terms denote different individuals
- Herbrand's theorem holds even without the unique names assumption.

Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground steps with one step:

$$
\underbrace{f(X, Z) \vee p(X, a) \quad \neg p(b, Y) \vee g(Y, W)}_{f(b, Z) \vee g(a, W)}
$$

Substitution $\{X / b, Y / a\}$ is the most general unifier of $p(X, a)$ and $p(b, Y)$.

Outline

(1) Background

- Probability
- Logic
- Relational Probabilistic Models
(2) First-order Probabilistic Inference
- Unification and Splitting
- Lifted VE Operations
(3) Conclusions

Parametrized belief networks

- Allow random variables to be parametrized. height (X)
- Parameters correspond to logical variables.
- Each parameter is typed with a population. X : person
- Each population has a size. $\quad \mid$ person $\mid=1000000$
- Parametrized belief network means its grounding. Ground instances are random variables: height $\left(p_{1}\right)$. . height ($p_{1000000}$)
- Instances are independent (but can have common ancestors and descendents).

Parametrized Bayesian networks / Plates

Parametrized Bayes Net:

Bayes Net

Individuals:

$$
i_{l}, \ldots, i_{k}
$$

Parametrized Bayesian networks / Plates (2)

Individuals:

$$
i_{1}, \ldots, i_{k}
$$

Example parametrized belief network

X:person
$\forall X P($ car_colour $(X)=$ pink \mid hair_colour $(X)=$ pink $)=0.1$
$\forall X P($ hair_colour $(X)=$ pink \mid town_conservative $)=0.001$.

Outline

(1) Background

- Probability
- Logic
- Relational Probabilistic Models
(2) First-order Probabilistic Inference
- Unification and Splitting
- Lifted VE Operations
(3) Conclusions

Theorem Proving and Unification (reprise)

In 1965, Robinson showed how unification allows many ground steps with one step:

$$
\underbrace{f(X, Z) \vee p(X, a) \quad \neg p(b, Y) \vee g(Y, W)}_{f(b, Z) \vee g(a, W)}
$$

Substitution $\{X / b, Y / a\}$ is the most general unifier of $p(X, a)$ and $p(b, Y)$.

Variable Elimination and Unification

- Multiplying parametrized factors:

$$
\underbrace{[f(X, Z), p(X, a)] \quad \times \quad[p(b, Y), g(Y, W)]}_{[f(b, Z), p(b, a), g(a, W)]}
$$

Doesn't quite work because the first parametrized factor can't be used for $X=b$ but can be used for other instances of X.

- Intuitively, we want to add the constraint $X \neq b$ to $[f(X, Z), p(X, a)]$ after the above multiplication.

Parametric Factors

A parametric factor (parfactor) is a triple $\langle C, V, t\rangle$ where

- C is a set of inequality constraints on parameters,
- V is a set of parametrized random variables
- t is a table representing a factor from the random variables to the non-negative reals.

$$
\left\langle\{X \neq \text { sue }\},\{\text { hair_col }(X), \text { cons }\}, \begin{array}{|ll|l|}
\hline \text { hair_col } & \text { cons } & \text { Val } \\
\hline \text { purple } & \text { yes } & 0.001 \\
\text { purple } & \text { no } & 0.01 \\
& \cdots & \\
\hline
\end{array}\right\rangle
$$

Splitting

Instead of applying substitutions to parametric factors, we split the parametric factors on the substitution.
A split of $\langle C, V, t\rangle$ on $X=\gamma$, results in parametric factors:

$$
\begin{aligned}
& \langle C[X / \gamma], V[X / \gamma], t\rangle \\
& \langle\{X \neq \gamma\} \cup C, V, t\rangle
\end{aligned}
$$

\longleftarrow residual
where $V[X / \gamma]$ is V with γ substituted for X.

Splitting on a substitution

- Splitting on a substitution, means splitting on each equality in the substitution.
- Different orders of splitting give the same final result, but may give different residuals.
- Example: Split

$$
\begin{gathered}
\left\langle\left\},\{f \circ o(X, Y, Z)\}, t_{1}\right\rangle\right. \\
\text { on }\{X=Z, Y=b\} \text { results in } \\
\left\langle\left\},\{\text { foo }(X, b, X)\}, t_{1}\right\rangle\right. \\
\left\langle\{X \neq Z\},\{f \circ \circ(X, Y, Z)\}, t_{1}\right\rangle \\
\left\langle\{Y \neq b\},\{\text { foo }(X, Y, X)\}, t_{1}\right\rangle
\end{gathered}
$$

Outline

(1) Background

- Probability
- Logic
- Relational Probabilistic Models
(2) First-order Probabilistic Inference
- Unification and Splitting
- Lifted VE Operations
(3) Conclusions

First-order probabilistic inference

Multiplying Parametric Factors

Suppose we were to eliminate p and multiply the two parametric factors:

$$
\begin{aligned}
& \left\langle\left\},\{p(X, a), q(Y, c), s(X, Y)\}, t_{1}\right\rangle\right. \\
& \left\langle\{W \neq d\},\{p(b, Z), q(W, T), r(W, T)\}, t_{2}\right\rangle
\end{aligned}
$$

- If we grounded these, then did VE, some instances of these would be multiplied and some wouldn't.
- We unify $p(X, a)$ and $p(b, Z)$ resulting in the substitution $\theta=\{X / b, Z / a\}$.
- Unification finds the most general instances that need to be multiplied.

Splitting when Multiplying

We are multiplying the two parametric factors:

$$
\begin{align*}
& \left\langle\left\},\{p(X, a), q(Y, c), s(X, Y)\}, t_{1}\right\rangle\right. \tag{1}\\
& \left\langle\{W \neq d\},\{p(b, Z), q(W, T), r(W, T)\}, t_{2}\right\rangle \tag{2}
\end{align*}
$$

We split parametric factor (1) on $\theta=\{X / b, Z / a\}$:

$$
\begin{align*}
& \left\langle\left\},\{p(b, a), q(Y, c), s(b, Y)\}, t_{1}\right\rangle\right. \tag{3}\\
& \left\langle\{X \neq b\},\{p(X, a), q(Y, c), s(X, Y)\}, t_{1}\right\rangle \tag{4}
\end{align*}
$$

We can split (2) on θ resulting in:

$$
\begin{align*}
& \left\langle\{W \neq d\},\{p(b, a), q(W, T), r(W, T)\}, t_{2}\right\rangle \tag{5}\\
& \left\langle\{Z \neq a, W \neq d\},\{p(b, Z), q(W, T), r(W, T)\}, t_{2}\right\rangle \tag{6}
\end{align*}
$$

Splitting when Multiplying II

When we are multiplying:

$$
\begin{aligned}
& \left\langle\left\},\{p(b, a), q(Y, c), s(b, Y)\}, t_{1}\right\rangle\right. \\
& \left\langle\{W \neq d\},\{p(b, a), q(W, T), r(W, T)\}, t_{2}\right\rangle
\end{aligned}
$$

- All ground instances would need to be multiplied.
- Not all instances have the same number of variables: some will have two different q instances, and some have one.
- We need to split again on the most general unifier of $q(Y, c)$ and $q(W, T)$.

Summing out variables

- If we are not removing a parameter, we sum out as normal. E.g., summing out p :

$$
\langle\},\{p(X), q(X)\}, t[p, q]\rangle
$$

- If we are removing a parameter, we must take to the power of the effective population size. E.g., summing out p :

$$
\langle\{Y \neq a\},\{p(X, Y), q(X)\}, t[p, q]\rangle
$$

- Other functions such as noisy-or, you need to take into account the population size.

Removing a parameter when summing

Existential Observations

Suppose we observe:

- Joe has purple hair, a purple car, and has big feet.
- A person with purple hair, a purple car, and who is very tall was seen committing a crime.
What is the probability that Joe is guilty?

Background parametrized belief network

Observing information about Joe

Observing Joe and the crime

Last Steps

We end up with parametric Factors:
$\left\langle\left\},\{\right.\right.$ guilty (joe), descn(joe), conservativeness $\left.\}, t_{1}\right\rangle$
$\left\langle\{X \neq\right.$ joe $\},\{\operatorname{descn}(X)$, conservativeness $\left.\}, t_{2}\right\rangle$
$\left\langle\left\},\{\operatorname{descn}(X)\right.\right.$, witness $\left.\}, t_{3}\right\rangle$
$\left\langle\left\},\{\right.\right.$ conservativeness $\left.\}, t_{4}\right\rangle$
We eliminate $\operatorname{descn}(X)$:
$\left\langle\left\}\right.\right.$, \{guilty (joe), witness, conservativeness\}, $\left.t_{5}\right\rangle$
We sum out conservativeness and condition on witness:

$$
\left\langle\left\},\{\text { guilty }(j o e)\}, t_{6}\right\rangle\right.
$$

Guilty as a function of population

Outline

(1) Background

- Probability
- Logic
- Relational Probabilistic Models

2 First-order Probabilistic Inference

- Unification and Splitting
- Lifted VE Operations
(3) Conclusions

Conclusions

- We combine variable elimination + unification.
- One step of first-order variable elimination corresponds to many steps in ground representation.
- We can condition on existential and universal observations.
- Contributions of IJCAI-93 paper:
- parametrized random variables
- splitting to complement unification
- parfactor representation of intermediate results
- an algorithm for multiplying factors in a lifted manner (sometimes)

