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Overview

Simple representation: parametrized belief networks.
Means grounding.

Inference: combine variable elimination and unification

One step of first-order variable elimination corresponds
to many VE steps.

Allows for new queries that depend on population size:
probability that someone is guilty of a crime depends on
how many other people could have done it.
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Bayesians

Probability is a measure of belief.

All individuals about which we have the same information
should have the same probability.

Idea: share probability tables both initially and during
inference.
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Background: Belief (Bayesian) networks

Totally order the variables of interest: X1, . . . ,Xn

P(X1, . . . ,Xn) =
∏n

i=1 P(Xi |πi)
πi are the parents of Xi : a set of predecessors such that

P(Xi |πi) = P(Xi |X1, . . . ,Xi−1)
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Background: variable elimination

To compute the probability of a variable X given evidence
Z = e:

P(X |Z = e) =
P(X ∧ Z = e)

P(Z = e)

Suppose the other variables are Y1, . . . ,Ym:

P(X ∧ Z )

=
∑
Ym

· · ·
∑
Y1

P(X1, . . . ,Xn)

=
∑
Ym

· · ·
∑
Y1

n∏
i=1

P(Xi |πi)
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Eliminating a variable

to compute AB + AC efficiently, distribute out A:
A(B + C ).

to compute

∑
Yj

n∏
i=1

P(Xi |πi)

distribute out those factors that don’t involve Yj .

Can be used for directed and undirected models.

Closely related to nonserial dynamic programming
[Bertelè & Brioschi, 1972]
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Variable Elimination Example

A

B

C

D

E

F

G

P(G |f )
∝

∑
C

∑
B

∑
D

∑
E

∑
A

P(A)P(B |A)P(C |B)(D|C )
P(E |D)P(f |E )P(G |C )

=
∑

C (
∑

B (
∑

A P(A)P(B |A))
P(C |B))

(
∑

D P(D|C )
(
∑

E P(E |D)P(f |E )))
P(G |C )
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Variable Elimination: basic operations

conditioning on observations (local to each factor)

multiplying factors

summing a variable from a factor
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First-order predicate calculus

in(alan,cs_building)

in(alan,r123).
part_of(r123,cs_building).
∀X∀Y  in(X,Y) ← 
    ∃Z part_of(Z,Y) ^
    in(X,Z).

alan
r123
r023

cs_building
in( , )

part_of( , )
person( )
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Skolemization and Herbrand’s Theorem

Skolemization: give a name for an object said to exist

∀X∃Y q(X ,Y ) becomes q(X , f (X ))

Herbrand’s theorem [1930]:

If a logical theory has a model it has a model where the
domain is made of ground terms, and each term denotes
itself.

If a logical theory T is unsatisfiable, there is a finite set of
ground instances of formulas of T which is unsatisfiable.
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Unique Names Assumption & Negation as Failure

Unique Names Assumption:
— different names denote different individuals
— different ground terms denote different individuals

Herbrand’s theorem holds even without the unique names
assumption.
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Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground
steps with one step:

f (X ,Z ) ∨ p(X , a) ¬p(b,Y ) ∨ g(Y ,W )︸ ︷︷ ︸
f (b,Z ) ∨ g(a,W )

Substitution {X/b,Y /a} is the most general unifier of p(X , a)
and p(b,Y ).
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Parametrized belief networks

Allow random variables to be parametrized. height(X )

Parameters correspond to logical variables. X

Each parameter is typed with a population. X : person

Each population has a size. |person| = 1000000

Parametrized belief network means its grounding.
Ground instances are random variables:
height(p1) . . . height(p1000000)

Instances are independent (but can have common
ancestors and descendents).
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Parametrized Bayesian networks / Plates

X

r(X)

Individuals:
i1,...,ik

r(i1) r(ik)...+

Parametrized Bayes Net:

Bayes Net
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Parametrized Bayesian networks / Plates (2)

X

r(X)

Individuals:
i1,...,ik

s(i1) s(ik)...s(X)

t

q

r(i1) r(ik)...
q

t
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Example parametrized belief network

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person

∀X P(car colour(X )=pink |hair colour(X )=pink) = 0.1
∀X P(hair colour(X )=pink |town conservative) = 0.001.
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Theorem Proving and Unification (reprise)

In 1965, Robinson showed how unification allows many ground
steps with one step:

f (X ,Z ) ∨ p(X , a) ¬p(b,Y ) ∨ g(Y ,W )︸ ︷︷ ︸
f (b,Z ) ∨ g(a,W )

Substitution {X/b,Y /a} is the most general unifier of p(X , a)
and p(b,Y ).
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Variable Elimination and Unification

Multiplying parametrized factors:

[f (X ,Z ), p(X , a)] × [p(b,Y ), g(Y ,W )]︸ ︷︷ ︸
[f (b,Z ), p(b, a), g(a,W )]

Doesn’t quite work because the first parametrized factor
can’t be used for X = b but can be used for other
instances of X .

Intuitively, we want to add the constraint X 6= b to
[f (X ,Z ), p(X , a)] after the above multiplication.
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Parametric Factors

A parametric factor (parfactor) is a triple 〈C ,V , t〉 where

C is a set of inequality constraints on parameters,

V is a set of parametrized random variables

t is a table representing a factor from the random
variables to the non-negative reals.〈

{X 6= sue}, {hair col(X ), cons},

hair col cons Val
purple yes 0.001
purple no 0.01

· · ·

〉
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Splitting

Instead of applying substitutions to parametric factors, we split
the parametric factors on the substitution.
A split of 〈C ,V , t〉 on X = γ, results in parametric factors:

〈C [X/γ],V [X/γ], t〉
〈{X 6= γ} ∪ C ,V , t〉 ←− residual

where V [X/γ] is V with γ substituted for X .
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Splitting on a substitution

Splitting on a substitution, means splitting on each
equality in the substitution.

Different orders of splitting give the same final result, but
may give different residuals.

Example: Split

〈{}, {foo(X ,Y ,Z )}, t1〉
on {X = Z ,Y = b} results in

〈{}, {foo(X , b,X )}, t1〉
〈{X 6= Z}, {foo(X ,Y ,Z )}, t1〉
〈{Y 6= b}, {foo(X ,Y ,X )}, t1〉
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First-order probabilistic inference

Parametrized

Belief Network

Belief Network

Parametrized

Posterior

Posterior

FOVE

VE

ground ground
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Multiplying Parametric Factors

Suppose we were to eliminate p and multiply the two
parametric factors:

〈{}, {p(X , a), q(Y , c), s(X ,Y )}, t1〉
〈{W 6= d}, {p(b,Z ), q(W ,T ), r(W ,T )}, t2〉

If we grounded these, then did VE, some instances of
these would be multiplied and some wouldn’t.

We unify p(X , a) and p(b,Z ) resulting in the substitution
θ = {X/b,Z/a}.
Unification finds the most general instances that need to
be multiplied.
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Splitting when Multiplying I

We are multiplying the two parametric factors:

〈{}, {p(X , a), q(Y , c), s(X ,Y )}, t1〉 (1)

〈{W 6= d}, {p(b,Z ), q(W ,T ), r(W ,T )}, t2〉 (2)

We split parametric factor (1) on θ = {X/b,Z/a}:

〈{}, {p(b, a), q(Y , c), s(b,Y )}, t1〉 (3)

〈{X 6= b}, {p(X , a), q(Y , c), s(X ,Y )}, t1〉 (4)

We can split (2) on θ resulting in:

〈{W 6= d}, {p(b, a), q(W ,T ), r(W ,T )}, t2〉 (5)

〈{Z 6= a,W 6= d}, {p(b,Z ), q(W ,T ), r(W ,T )}, t2〉 (6)
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Splitting when Multiplying II

When we are multiplying:

〈{}, {p(b, a), q(Y , c), s(b,Y )}, t1〉
〈{W 6= d}, {p(b, a), q(W ,T ), r(W ,T )}, t2〉

All ground instances would need to be multiplied.

Not all instances have the same number of variables:
some will have two different q instances, and some have
one.

We need to split again on the most general unifier of
q(Y , c) and q(W ,T ).
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Summing out variables

If we are not removing a parameter, we sum out as
normal. E.g., summing out p:

〈{}, {p(X ), q(X )}, t[p, q]〉

If we are removing a parameter, we must take to the
power of the effective population size. E.g., summing out
p:

〈{Y 6= a}, {p(X ,Y ), q(X )}, t[p, q]〉

Other functions such as noisy-or, you need to take into
account the population size.
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Removing a parameter when summing

interested(X)

ask_question(X)

boring

X:person

|people| = 100
observe no questions

Eliminate interested :
〈{}, {boring , interested(X )}, t1〉
〈{}, {interested(X )}, t2〉

↓
〈{}, {boring}, (t1 × t2)100〉
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Existential Observations

Suppose we observe:

Joe has purple hair, a purple car, and has big feet.

A person with purple hair, a purple car, and who is very
tall was seen committing a crime.

What is the probability that Joe is guilty?
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Background parametrized belief network

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person
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Observing information about Joe

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)
guilty(X)

town_conservativeness

X:person, X=joe

sex(joe)

height(joe)

shoe_size(joe)

hair_colour(joe)

car_colour(joe) guilty(joe)
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Observing Joe and the crime

sex(X)

height(X)

shoe_size(X)

hair_colour(X)

car_colour(X)

guilty(X)

town_conservativeness

X:person, X=joe

sex(joe)

height(joe)

shoe_size(joe)

hair_colour(joe)

car_colour(joe)

guilty(joe)

descn(X)

descn(joe)

witness
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Last Steps

We end up with parametric Factors:

〈{}, {guilty(joe), descn(joe), conservativeness}, t1〉
〈{X 6= joe}, {descn(X ), conservativeness}, t2〉
〈{}, {descn(X ),witness}, t3〉
〈{}, {conservativeness}, t4〉

We eliminate descn(X ):

〈{}, {guilty(joe),witness, conservativeness}, t5〉

We sum out conservativeness and condition on witness:

〈{}, {guilty(joe)}, t6〉
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Guilty as a function of population
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Conclusions

We combine variable elimination + unification.

One step of first-order variable elimination corresponds
to many steps in ground representation.
We can condition on existential and universal
observations.

Contributions of IJCAI-93 paper:

parametrized random variables
splitting to complement unification
parfactor representation of intermediate results
an algorithm for multiplying factors in a lifted manner
(sometimes)
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