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Knowledge representation, logic, decision theory.
Belief networks

|ndependent Choice Logic

Stochastic Dynamic Systems

Bayesian Learning
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Knowledge Representation

| Find compact / natural representations

| Exploit features of representation for computational gain.

| Tradeoff representational adequacy, efficient
(approximate) inference and learnability
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What do we want in arepresentation?

We want a representation to be

[]

[]

rich enough to express the knowledge needed to solve the
problem.

as close to the problem as possible: natural and
maintainable.

amenabl e to efficient computation;
able to express features of the problem we can exploit for
computational gain.

learnable from data and past experiences.

trade off accuracy and computation time
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Normative Traditions

[] Logic
Semantics (symbols have meaning)

Sound and complete proof procedures

Quantification over variables (relations amongst
multiple individuals)
L] Decision Theory

L] Tradeoffs under uncertainty

1 Probabilities and utilities

L
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Interested in action: what should an agent do?

Role of belief isto make good decisions.

Theorems (Von Neumann and Morgenstern):

(under reasonabl e assumptions) arational agent will act
as though it has (point) probabilities and utilities and acts
to maximize expected utilities.

Probability as a measure of belief:
study of how knowledge affects belief
lets us combine background knowledge and data
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Representations of uncertainty

We want a representation for
|| probabilities

| utilities

| actions

that facilitates finding the action(s) that maximise expected
utility.
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L] Knowledge representation, logic, decision theory.

|| Béelief networks

| Independence
Inference

Causality

L] Independent Choice Logic
L] Stochastic Dynamic Systems

|1 Bayesian Learning
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Belief networks

(Bayesian networks)

L] Totally order the variables of interest: Xy, ..., X,

1 Theorem of probability theory (chain rule):

= 1k

PG| Xg, ..., Xi—1)

[l The parentsof Xi mj € Xy, ..., X{_1 such that

P(Xi|mi) = P(X|

X1, ooy Xic1)

|:| SOP(X]_,,Xn):l_

N PCXi|mi)

Belief network nodes are variables, arcs from parents

L


http://www.cs.ubc.ca/spider/poole/

Belief Network for Overnhead Projector

Power_in_building Projector_plugged in

Alan reading _boo

@s_"screen is dark"

Projector_lamp _on

Mirror_working
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Belief Network

Graphical representation of dependence.

DAG with nodes representing random variables.

If B1, By, - - -, Bk arethe parents of A:

we have an associated conditional probability:

L
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Causality

Belief networks are not necessarily causal. However:

L] If the direct causes of avariable areits parents, one
would expect that causation would follow the
Independence of belief networks.

|1 Conjecture: representing knowledge causally resultsin a
sparser network that is more stable to changing contexts.

L1 A causa belief network also lets us predict the effect of
an intervention: what happens of we change the value of

avariable.
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Knowledge representation, logic, decision theory.
Belief networks

Independent Choice Logic
L] Logic programming + arguments

] Bdief networks + first-order rule-structured
conditional probabilities

L1 Abduction
Stochastic Dynamic Systems

Bayesian Learning
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|ndependent Choice Logic

L1 C, the choice space isaset of alternatives.

An alternative 1saset of atomic choices.
An atomic choice isaground atomic formula

An atomic choice can only appear in one alternative.

L1 F, the facts isan acyclic logic program.
No atomic choice unifies with the head of arule.

1 Pg aprobability distribution over aternatives:
VAeC Y Po(@ =1

acA
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M eaningless Example

F={f<cAby, f<«c3Aby,

e« f, e« dl

Po(c1)) = 0.5 Pgp(cr) =0.3 Pg(c3) =0.2
Po(b1) = 0.9 Pg(by) =0.1

iy
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Semantics of ICL

L1 A total choice isa set containing exactly one element of
each alternativein C.

L] For each total choice t thereisa possible world w;.

L] Propositionf is true inw; (writtenw; = f) if f istrue
In the (unique) stable model of F U .

L1 The probability of apossible world w; is

| [Poca.

[l The probability of apropositionf isthe sum of the
probabilities of the worlds in which f istrue.
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Meaningless Example: Semantics

There are 6 possible worlds:

wi &= ¢ bp f d e P(wp) = 0.45
Wo &= C by f d e P(w») = 0.27
W3 &= c3 by f d ®© P(w3) = 0.18
Wqg = ¢ by f d ®© P(wy) = 0.05
Ws = C by f d e P(ws) = 0.03
Wg = c3 by f d e P(wg) = 0.02

P(e) =0.45+ 0.27 4+ 0.03+ 0.02 = 0.77
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Decision trees and ICL rules

Decision trees with probabilities on leaves — |ICL rules:

b/ \c
AWAY
/" \
09 05

Po(e)

e<—aAbAh.

e<anrbaho.

e<aAncAdA hs.

e<arcAadAhg.

e < aACA hs.

Po(
Po(
Po(
Po(
Po(

) = 0.7
o) = 0.2
n3) = 0.9
N4) = 0.5

N5) = 0.3
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Belief Network for Overnhead Projector

Power_in_building Projector_plugged in

Alan reading _boo

@s_"screen is dark"

Projector_lamp _on

Mirror_working
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Belief networks as logic programs

projector _lamp on <«

power _in_projector A

lamp_works A

projector _working ok. «— atomic choice
projector lamp on <«

power _In_projector A

lamp_works A

working_with_faulty lamp. «— atomic choice
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Probabilities of hypotheses

Po(projector _working ok)
= P(projector_lamp on |
power _in_projector A lamp works)

— provided as part of Belief network

(I
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Mapping belief networks into |CL

Thereisalocal mapping from belief networks into ICL.:

IS trandlated into the rules

a(V) <« bl(Vl) VANEEICIERVAN bk(Vk) AN h(V, V1, ..., V).

and the alternatives

Yvi---YW{h(v, v1, ..., V)|V € domain(a)} € C

(I
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Rule-based Inference

Suppose the only rulefor ais:
a<bAc

Can we compute the probability of a from the probabilities of
b and c?

L
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Rule-based Inference

Suppose the only rulefor ais:

a<bnac

Can we compute the probability of a from the probabilities of

b and c?
NO! Consder therules:

b« d Q
i, OO
Po(d) = 0.5

...but you can ssimply combine expla-
nations.

L
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Assumption-based reasoning

L1 Given background knowledge/ facts F and
assumables / possible hypotheses H

L1 An explanation of gisaset D of assumables such that

F U D Isconsistent

FUD

— 0

L1 abduction iswhen gis given and you want D

] default reasoning / prediction iswhen gisunknown

L
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Abductive Characterization of |CL

| | The atomic choices are assumable.

L] The elements of an aternative are mutually exclusive.

Suppose the rules are digoint

ad < b1
bi ADbjfori #] can’t betrue
a <— bk

P(g) = > P(E)

E isaminimal explanation of g

P(E) = | | Po(h)

(I
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Probabilistic Conditioning

P(gnre) <«—explangae

P(gle) =
99="P0 epine

Given evidence g, explain e then try to explain g from
these explanations.

The explanations of g A e are the explanations of e
extended to also explain g.

Probabilistic conditioning is abduction + prediction.

L
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Belief Network for Overnhead Projector

Power_in_building Projector_plugged in

Alan reading _boo

@s_"screen is dark"

Projector_lamp _on

Mirror_working
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Knowledge representation, logic, decision theory.
Belief networks
Independent Choice Logic

Stochastic Dynamic Systems
] Issuesin modelling dynamical systems

|| Representations based on Markov Decision Processes

Bayesian Learning

(I
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Modelling Assumptions

deterministic or stochastic dynamics
goals or utilities

finite stage or infinite stage

fully observable or partial observable
explicit state space or properties

zeroth-order or first-order

| dynamics and rewards given or learned

single agent or multiple agents

L
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Deterministic or stochastic dynamics

If you knew the initial state and the action, could you predict
the resulting state?

Stochastic dynamics are needed if:

L] youdon’'t model at the lowest level of detail

(e.g., modelling wheel slippage of robots or side effects
of drugs)

] exogenous actions can occur during state transitions

(I
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Goals or Utilities

With goals, there are some equally preferred goal states,
and all other states are equally bad.

Not all falluresare equal. For example: arobot
stopping, falling down stairs, or injuring people.

With uncertainty, we have to consider how good and bad
all possible outcomes are.
[ utility specifiesavaluefor each state.

With utilities, we can model goals by having goal states
having utility 1 and other states have utility O.

L
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Finite stage or infinite stage

L] Finite stage thereis agiven number of sequential

]

decisions
Infinite stage indefinite number (perhaps infinite)

number of sequential decisions.

With infinite stages, we can model stopping by having an
absorbing state — a state 5 so that P(s|s) = 1, and
P(s|s) =0fori #].

Infinite stages let us model ongoing processes as well as
problems with unknown number of stages.

(I
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[]

[]

Fully observable or partial observable

Fully observable = can observe actual state before a
decision is made

Full observability is aconvenient assumption that makes
computation much simpler.

Full observability is applicable only for artificial
domains, such as games and factory floors.

Most domains are partially observable, such as robotics,
diagnosis, user modelling ...

L
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Explicit state space or properties

L] Traditional methods relied on explicit state spaces, and
techniques such as sparse matrix computation.

L] The number of statesis exponential in the number of

properties or variables. It may be easier to reason with 30
binary variables than 1,000,000,000 states.

L1 Bellman labelled this the Curse of Dimensionality.

(I
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Zeroth-order or first-order

Ll Thetraditional methods are zero-order, thereisno logical

guantification. All of the individuals must be part of the
explicit model.

[ | Thereis some work on automatic construction of

probabilistic models — they provide macros to construct
ground representations.

[ ] Naive use of unification does not work, as we can’t treat
the rules separately.

(I
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Dynamics and rewards given or |earned

L] Often we don’t know apriori the probabilities and

rewards, but only observe the system while controlling it
[ reinforcement learning.

L] Credit and blame attribution.

1 Exploration—exploitation tradeoff.

L
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[]

[]

Single agent or multiple agents

Many domains are characterised by multiple agents
rather than a single agent.

Game theory studies what agents should doin a
multi-agent setting.

Even if al agents share acommon goal, it is
exponentially harder to find an optimal multi-agent plan
than a single agent plan.

L
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Knowledge representation, logic, decision theory.
Belief networks
Independent Choice Logic

Stochastic Dynamic Systems
] Issuesin modelling dynamical systems

|| Representations based on Markov Decision Processes

Bayesian Learning
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Markov Process

O——E—G

[l P(S41]S) specified the dynamics

L] InthelCL:
state(S, T +1) <
state(S0, T) A trans(S0, S).
Vs{trans(s, &), ..., trans(s, sy} € C

L
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Hidden Markov M odel

SO ): Sl : 32
P(S.1|S) specified the dynamics
P(O:|S) specifiesthe sensor moddl.

observe(O, T) « state(S, T) A obs(S, O).

For each state s, there is an adlternative;
{obs(s, 01), ..., obs(s, 0x)}.

L
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Markov Decision Process

P R 2
A A

Ag

P(S.1|S, At) specified the dynamics

R(S, Ai_1) specifiesthereward at timet
Discounted valueisR; + YRy + ¥Rz + ...

Iy
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Dynamics for MDP

P(S.1|S, At) represented inthe ICL as:

sate(S, T + 1) <
state(S0, T) A
do(A, T) A
trans(S0, A, S).
vsva{trans(s, a, &), ..., trans(s, a, sn)} € C

L
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L] What the agent does based on its perceptionsis specified
by a policy.

L1 For fully observable MDPs, apolicy is afunction from
observed state into actions:

policy : § — A
L1 A policy can be represented by rules of the form:
do(a, T) «
state(s, T).

L


http://www.cs.ubc.ca/spider/poole/

Partially Observable MDP (POMDP)

P(S.1|S, At) specified the dynamics
P(O:|S) specifiesthe sensor model.
R(S, Ai_1) specifiesthereward at time|

Iy
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L] What the agent does based on its perceptions is specified
by a policy afunction from history into actions:

Oo, Ag, O1, A1, ..., 0Ot—1, Aim1, O — A

L1 For POMDPs, a belief state is aprobability distribution
over states. A belief state is an adequate statistic about

the history.
policy : Bi — A

If there are n states, thisis afunction on R".

L
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Reinforcement Learning

Use (fully observable) MDP model, but the state transition
function and the reward function are not given, but must be
learned from acting in the environment.

] exploration versus exploitation

L1 model-based algorithms (Iearn the probabilities) or
model-free algorithms (don't learn the state transition or
reward functions).

[l The use of propertiesis common in reinforcement
learning. For example, using a neural network to model

the dynamics and reward functions or the value function.
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Influence Diagrams

An influence diagram is a belief network with decision nodes
(rectangles) and a value node (diamond).
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Dynamic Belief Networks

|dea: represent the state in terms of random variables/
propositions.

hc hc hc hc

WC \ WC WC WC

(I
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DBN in|CL

r(T+1) < r(T) Arain_continues(T).

r(T+1) < r(T) Arain_starts(T).

he(T +1) < he(T) A do(A, T) A A £ pass_coffee
A keep coffee(T).

hc(T 4+ 1) < he(T) A do(pass _coffee, T)
A keep coffee(T) A passing_fails(T).

hc(T + 1) < do(get_coffee, T) A get_succeeds(T).

VT{rain_continues(T), rain_stops(T)} € C
VT {keep coffee(T), spill _coffee(T)} € C
VT{passing fails(T), passing succeeds(T)} € C

[]
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Modelling Assumptions

deterministic or stochastic dynamics
goals or utilities

finite stage or infinite stage

fully observable or partial observable
explicit state space or properties

zeroth-order or first-order

| dynamics and rewards given or learned

single agent or multiple agents
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Comparison of Some Representations

CP|DTP|IDs|RL | HMM | GT
stochastic dynamics [] 0| O [] []
values [] 0 | O []
Infinite stage [] [] [] []
partially observable [] [] []
properties [] [] 0| O []
first-order []
dynamics not given [] []
multiple agents []

[
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L] Modelling and reasoning at multiple levels of abstraction
abstracting both states and times

[l Approximate reasoning and approximate modelling

1 Bounded rationality: how to balance acting and thinking.
Value of thinking.

L
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Knowledge representation, logic, decision theory.
Belief networks

Independent Choice Logic

Stochastic Dynamic Systems

Bayesian Learning
L1 Learning belief networks
L] Beélief networks for learning

L
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Decision trees and rules

Decision trees with probabilities on leaves — rules:

b/ \c
AWAY
/" \
09 05

Po(e)

e<—aAbAh.

e<anrbaho.

e<aAncAdA hs.

e<arcAadAhg.

e < aACA hs.

Po(
Po(
Po(
Po(
Po(

) = 0.7
o) = 0.2
n3) = 0.9
N4) = 0.5

N5) = 0.3
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A common way to learn belief networks

L] Totally order the variables.

] Build adecision tree for each for each variable based on
Its predecessors.

L] Search over different orderings.

(I
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|ssues in learning belief networks

There isagood understanding of:

[]

noisy data
combining background knowledge and data
observational and experimental data

hidden variables

missing data

L
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Belief networks for learning

Suppose we observe datadq, do, .. ., dk, I.1.d.

Domain of ® isthe set of all models (sometimes model
parameters).

Bayesian learning compute P(®|dq, do, ..., dy)

L
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Classic example

Estimate the probability a drawing pin lands “heads’

heads tails
~N 1 7 &

heads(E) < prob_heads(P) A lands _heads(P, E).

tails(E) < prob _heads(P) A lands tails(P, E).
VPYE{lands heads(P, E), lands tails(P, E)} € C
{prob heads(V):0<V <1} eC
Po(lands_heads(P, E) = P.

Po(lands tails(P,E) =1 — P.

(I
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Explaining the data

To explain data:

heads(e,), taills(ey), tails(ez), heads(ey), . ..

there Is an explanation:

{lands heads(p, e;), lands tails(p, &),

lands tails(p, e3), lands heads(p, &3), ...

prob _heads(p)}
for each p € [0, 1].
This explanation has probability:
p*1%%(1 — p)**1%Py(prob_heads(p))

L
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|| Keep the representation as simple as possible to solve
your problem, but no simpler.

L1 Approximate. Bounded rationality.
L1 Approximate the solution, not the problem (Sutton).
L1 Wewant everything, but only as much asit isworth to us.

L] Preference dlicitation.

(I
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[]

[]

Conclusions

If you are interested in acting in real domains you need to
treat uncertainty serioudly.

Thereis alarge community working on stochastic
dynamical systems for robotics, factory control,
diagnosis, user modelling, multimedia presentation,
collaborativefiltering ...

There is much the computational logic community can
contribute to this endeavour.
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