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Overview

➤ Knowledge representation, logic, decision theory.

➤ Belief networks

➤ Independent Choice Logic

➤ Stochastic Dynamic Systems

➤ Bayesian Learning
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Knowledge Representation

problem

representation

solution

output

solve

compute

informal

formal
represent interpret

➤ Find compact / natural representations

➤ Exploit features of representation for computational gain.

➤ Tradeoff representational adequacy, efficient

(approximate) inference and learnability
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What do we want in a representation?
We want a representation to be

➤ rich enough to express the knowledge needed to solve the
problem.

➤ as close to the problem as possible: natural and
maintainable.

➤ amenable to efficient computation;
able to express features of the problem we can exploit for
computational gain.

➤ learnable from data and past experiences.

➤ trade off accuracy and computation time
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Normative Traditions

➤ Logic

➣ Semantics (symbols have meaning)

➣ Sound and complete proof procedures

➣ Quantification over variables (relations amongst

multiple individuals)

➤ Decision Theory

➣ Tradeoffs under uncertainty

➣ Probabilities and utilities
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Bayesians

➤ Interested in action: what should an agent do?

➤ Role of belief is to make good decisions.

➤ Theorems (Von Neumann and Morgenstern):

(under reasonable assumptions) a rational agent will act

as though it has (point) probabilities and utilities and acts

to maximize expected utilities.

➤ Probability as a measure of belief:

study of how knowledge affects belief

lets us combine background knowledge and data
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Representations of uncertainty

We want a representation for

➤ probabilities

➤ utilities

➤ actions

that facilitates finding the action(s) that maximise expected

utility.
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Overview

➤ Knowledge representation, logic, decision theory.

➤ Belief networks

➣ Independence

➣ Inference

➣ Causality

➤ Independent Choice Logic

➤ Stochastic Dynamic Systems

➤ Bayesian Learning
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Belief networks (Bayesian networks)

➤ Totally order the variables of interest: X1, . . . , Xn

➤ Theorem of probability theory (chain rule):

P(X1, . . . , Xn) = P(X1)P(X2|X1) · · · P(Xn|X1, . . . , Xn−1)

= ∏n
i=1 P(Xi|X1, . . . , Xi−1)

➤ The parents of Xi πi ⊆ X1, . . . , Xi−1 such that

P(Xi|πi) = P(Xi|X1, . . . , Xi−1)

➤ So P(X1, . . . , Xn) = ∏n
i=1 P(Xi|πi)

➥ Belief network nodes are variables, arcs from parents

© David Poole 2000

☞

☞

http://www.cs.ubc.ca/spider/poole/


CL-2000 Page 10

Belief Network for Overhead Projector
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Belief Network

➤ Graphical representation of dependence.

➤ DAG with nodes representing random variables.

➤ If B1, B2, · · · , Bk are the parents of A:

B1 B2 Bk...

A

we have an associated conditional probability:

P(A|B1, B2, · · · , Bk)
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Causality

Belief networks are not necessarily causal. However:

➤ If the direct causes of a variable are its parents, one

would expect that causation would follow the

independence of belief networks.

➤ Conjecture: representing knowledge causally results in a

sparser network that is more stable to changing contexts.

➤ A causal belief network also lets us predict the effect of

an intervention: what happens of we change the value of

a variable.
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Overview
➤ Knowledge representation, logic, decision theory.

➤ Belief networks

➤ Independent Choice Logic

➣ Logic programming + arguments

➣ Belief networks + first-order rule-structured

conditional probabilities

➣ Abduction

➤ Stochastic Dynamic Systems

➤ Bayesian Learning
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Independent Choice Logic

➤ C, the choice space is a set of alternatives.

An alternative is a set of atomic choices.

An atomic choice is a ground atomic formula.

An atomic choice can only appear in one alternative.

➤ F, the facts is an acyclic logic program.

No atomic choice unifies with the head of a rule.

➤ P0 a probability distribution over alternatives:

∀A ∈ C
∑
a∈A

P0(a) = 1.
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Meaningless Example

C = {{c1, c2, c3}, {b1, b2}}
F = { f ← c1 ∧ b1, f ← c3 ∧ b2,

d ← c1, d ← c2 ∧ b1,

e ← f , e ← d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2

P0(b1) = 0.9 P0(b2) = 0.1
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Semantics of ICL
➤ A total choice is a set containing exactly one element of

each alternative in C.

➤ For each total choice τ there is a possible world wτ .

➤ Proposition f is true in wτ (written wτ |= f ) if f is true

in the (unique) stable model of F ∪ τ .

➤ The probability of a possible world wτ is∏
a∈τ

P0(a).

➤ The probability of a proposition f is the sum of the

probabilities of the worlds in which f is true.
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Meaningless Example: Semantics

There are 6 possible worlds:

w1 |= c1 b1 f d e P(w1) = 0.45

w2 |= c2 b1 f d e P(w2) = 0.27

w3 |= c3 b1 f d e P(w3) = 0.18

w4 |= c1 b2 f d e P(w4) = 0.05

w5 |= c2 b2 f d e P(w5) = 0.03

w6 |= c3 b2 f d e P(w6) = 0.02

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77
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Decision trees and ICL rules

Decision trees with probabilities on leaves → ICL rules:
a

b

0.7 0.2

c

d

0.9 0.5

0.3

P0(e)

e ← a ∧ b ∧ h1. P0(h1) = 0.7

e ← a ∧ b ∧ h2. P0(h2) = 0.2

e ← a ∧ c ∧ d ∧ h3. P0(h3) = 0.9

e ← a ∧ c ∧ d ∧ h4. P0(h4) = 0.5

e ← a ∧ c ∧ h5. P0(h5) = 0.3
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Belief Network for Overhead Projector
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Belief networks as logic programs

projector_lamp_on ←
power_in_projector ∧
lamp_works ∧
projector_working_ok. ←− atomic choice

projector_lamp_on ←
power_in_projector ∧
lamp_works ∧
working_with_faulty_lamp. ←− atomic choice
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Probabilities of hypotheses

P0(projector_working_ok)

= P(projector_lamp_on |
power_in_projector ∧ lamp_works)

— provided as part of Belief network
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Mapping belief networks into ICL

There is a local mapping from belief networks into ICL:

B1 B2 Bk...

A

is translated into the rules

a(V) ← b1(V1) ∧ · · · ∧ bk(Vk) ∧ h(V , V1, . . . , Vk).

and the alternatives

∀v1 · · · ∀vk{h(v, v1, . . . , vk)|v ∈ domain(a)} ∈ C

© David Poole 2000

☞

☞

http://www.cs.ubc.ca/spider/poole/


CL-2000 Page 23

Rule-based Inference
Suppose the only rule for a is:

a ← b ∧ c

Can we compute the probability of a from the probabilities of
b and c?

NO! Consider the rules:

b ← d

c ← d

P0(d) = 0.5

...but you can simply combine expla-

nations.
A

B C

© David Poole 2000

☞

☞

http://www.cs.ubc.ca/spider/poole/


CL-2000 Page 24

Rule-based Inference
Suppose the only rule for a is:

a ← b ∧ c

Can we compute the probability of a from the probabilities of
b and c?

NO! Consider the rules:

b ← d

c ← d

P0(d) = 0.5

...but you can simply combine expla-

nations.

D

A

B C
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Assumption-based reasoning

➤ Given background knowledge / facts F and

assumables / possible hypotheses H ,

➤ An explanation of g is a set D of assumables such that

F ∪ D is consistent

F ∪ D |= g

➤ abduction is when g is given and you want D

➤ default reasoning / prediction is when g is unknown
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Abductive Characterization of ICL
➤ The atomic choices are assumable.

➤ The elements of an alternative are mutually exclusive.

Suppose the rules are disjoint

a ← b1
. . .

a ← bk


 bi ∧ bj for i �= j can’t be true

P(g) =
∑

E is a minimal explanation of g

P(E)

P(E) =
∏
h∈E

P0(h)
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Probabilistic Conditioning

P(g|e) = P(g ∧ e)

P(e)

←− explain g ∧ e

←− explain e

➤ Given evidence e, explain e then try to explain g from

these explanations.

➤ The explanations of g ∧ e are the explanations of e

extended to also explain g.

➤ Probabilistic conditioning is abduction + prediction.
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Belief Network for Overhead Projector
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Overview

➤ Knowledge representation, logic, decision theory.

➤ Belief networks

➤ Independent Choice Logic

➤ Stochastic Dynamic Systems

➣ Issues in modelling dynamical systems

➣ Representations based on Markov Decision Processes

➤ Bayesian Learning
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Modelling Assumptions

➤ deterministic or stochastic dynamics

➤ goals or utilities

➤ finite stage or infinite stage

➤ fully observable or partial observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents
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Deterministic or stochastic dynamics

If you knew the initial state and the action, could you predict

the resulting state?

Stochastic dynamics are needed if:

➤ you don’t model at the lowest level of detail

(e.g., modelling wheel slippage of robots or side effects

of drugs)

➤ exogenous actions can occur during state transitions
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Goals or Utilities

➤ With goals, there are some equally preferred goal states,

and all other states are equally bad.

➤ Not all failures are equal. For example: a robot

stopping, falling down stairs, or injuring people.

➤ With uncertainty, we have to consider how good and bad

all possible outcomes are.

➥ utility specifies a value for each state.

➤ With utilities, we can model goals by having goal states

having utility 1 and other states have utility 0.
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Finite stage or infinite stage

➤ Finite stage there is a given number of sequential

decisions

➤ Infinite stage indefinite number (perhaps infinite)

number of sequential decisions.

➤ With infinite stages, we can model stopping by having an

absorbing state — a state si so that P(si|si) = 1, and

P(sj|si) = 0 for i �= j.

➤ Infinite stages let us model ongoing processes as well as

problems with unknown number of stages.
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Fully observable or partial observable

➤ Fully observable = can observe actual state before a

decision is made

➤ Full observability is a convenient assumption that makes

computation much simpler.

➤ Full observability is applicable only for artificial

domains, such as games and factory floors.

➤ Most domains are partially observable, such as robotics,

diagnosis, user modelling …
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Explicit state space or properties

➤ Traditional methods relied on explicit state spaces, and

techniques such as sparse matrix computation.

➤ The number of states is exponential in the number of

properties or variables. It may be easier to reason with 30

binary variables than 1,000,000,000 states.

➤ Bellman labelled this the Curse of Dimensionality.
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Zeroth-order or first-order

➤ The traditional methods are zero-order, there is no logical

quantification. All of the individuals must be part of the

explicit model.

➤ There is some work on automatic construction of

probabilistic models — they provide macros to construct

ground representations.

➤ Naive use of unification does not work, as we can’t treat

the rules separately.
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Dynamics and rewards given or learned

➤ Often we don’t know a priori the probabilities and

rewards, but only observe the system while controlling it

➥ reinforcement learning.

➤ Credit and blame attribution.

➤ Exploration—exploitation tradeoff.
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Single agent or multiple agents

➤ Many domains are characterised by multiple agents

rather than a single agent.

➤ Game theory studies what agents should do in a

multi-agent setting.

➤ Even if all agents share a common goal, it is

exponentially harder to find an optimal multi-agent plan

than a single agent plan.

© David Poole 2000

☞

☞

http://www.cs.ubc.ca/spider/poole/


CL-2000 Page 39

Overview

➤ Knowledge representation, logic, decision theory.

➤ Belief networks

➤ Independent Choice Logic

➤ Stochastic Dynamic Systems

➣ Issues in modelling dynamical systems

➣ Representations based on Markov Decision Processes

➤ Bayesian Learning
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Markov Process

S0 S1 S3S2

➤ P(St+1|St) specified the dynamics

➤ In the ICL:

state(S, T + 1) ←
state(S0, T) ∧ trans(S0, S).

∀s{trans(s, s0), . . . , trans(s, sn)} ∈ C
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Hidden Markov Model

S0 S1 S3S2

O0 O1 O2 O3

P(St+1|St) specified the dynamics

P(Ot|St) specifies the sensor model.

observe(O, T) ← state(S, T) ∧ obs(S, O).

For each state s, there is an alternative:

{obs(s, o1), . . . , obs(s, ok)}.
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Markov Decision Process

S0 S1 S3S2

A0 A1 A2

R1 R2 R3

P(St+1|St, At) specified the dynamics

R(St, At−1) specifies the reward at time t

Discounted value is R1 + γ R2 + γ 2R3 + ....
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Dynamics for MDP

P(St+1|St, At) represented in the ICL as:

state(S, T + 1) ←
state(S0, T) ∧
do(A, T) ∧
trans(S0, A, S).

∀s∀a{trans(s, a, s0), . . . , trans(s, a, sn)} ∈ C
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Policies

➤ What the agent does based on its perceptions is specified

by a policy.

➤ For fully observable MDPs, a policy is a function from

observed state into actions:

policy : St → At

➤ A policy can be represented by rules of the form:

do(a, T) ←
state(s, T).
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Partially Observable MDP (POMDP)

S0 S1 S3S2

O0 O1 O2 O3A0 A1 A2

R1 R2 R3

P(St+1|St, At) specified the dynamics

P(Ot|St) specifies the sensor model.

R(St, At−1) specifies the reward at time i
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Policies

➤ What the agent does based on its perceptions is specified

by a policy a function from history into actions:

O0, A0, O1, A1, . . . , Ot−1, At−1, Ot → At

➤ For POMDPs, a belief state is a probability distribution

over states. A belief state is an adequate statistic about

the history.

policy : Bt → At

If there are n states, this is a function on �n.
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Reinforcement Learning
Use (fully observable) MDP model, but the state transition

function and the reward function are not given, but must be

learned from acting in the environment.

➤ exploration versus exploitation

➤ model-based algorithms (learn the probabilities) or

model-free algorithms (don’t learn the state transition or

reward functions).

➤ The use of properties is common in reinforcement

learning. For example, using a neural network to model

the dynamics and reward functions or the value function.
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Influence Diagrams

An influence diagram is a belief network with decision nodes

(rectangles) and a value node (diamond).

test treat

results

disease

utility
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Dynamic Belief Networks

Idea: represent the state in terms of random variables /
propositions.

hc

w
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u

r
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DBN in ICL

r(T + 1) ← r(T) ∧ rain_continues(T).

r(T + 1) ← r(T) ∧ rain_starts(T).

hc(T + 1) ← hc(T) ∧ do(A, T) ∧ A �= pass_coffee

∧ keep_coffee(T).

hc(T + 1) ← hc(T) ∧ do(pass_coffee, T)

∧ keep_coffee(T) ∧ passing_fails(T).

hc(T + 1) ← do(get_coffee, T) ∧ get_succeeds(T).

∀T{rain_continues(T), rain_stops(T)} ∈ C

∀T{keep_coffee(T), spill_coffee(T)} ∈ C

∀T{passing_fails(T), passing_succeeds(T)} ∈ C
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Modelling Assumptions

➤ deterministic or stochastic dynamics

➤ goals or utilities

➤ finite stage or infinite stage

➤ fully observable or partial observable

➤ explicit state space or properties

➤ zeroth-order or first-order

➤ dynamics and rewards given or learned

➤ single agent or multiple agents
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Comparison of Some Representations

CP DTP IDs RL HMM GT

stochastic dynamics ✔ ✔ ✔ ✔ ✔

values ✔ ✔ ✔ ✔

infinite stage ✔ ✔ ✔ ✔

partially observable ✔ ✔ ✔

properties ✔ ✔ ✔ ✔ ✔

first-order ✔

dynamics not given ✔ ✔

multiple agents ✔
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Other Issues

➤ Modelling and reasoning at multiple levels of abstraction

abstracting both states and times

➤ Approximate reasoning and approximate modelling

➤ Bounded rationality: how to balance acting and thinking.

Value of thinking.

© David Poole 2000

☞

☞

http://www.cs.ubc.ca/spider/poole/


CL-2000 Page 54

Overview

➤ Knowledge representation, logic, decision theory.

➤ Belief networks

➤ Independent Choice Logic

➤ Stochastic Dynamic Systems

➤ Bayesian Learning

➣ Learning belief networks

➣ Belief networks for learning
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Decision trees and rules

Decision trees with probabilities on leaves → rules:
a

b

0.7 0.2

c

d

0.9 0.5

0.3

P0(e)

e ← a ∧ b ∧ h1. P0(h1) = 0.7

e ← a ∧ b ∧ h2. P0(h2) = 0.2

e ← a ∧ c ∧ d ∧ h3. P0(h3) = 0.9

e ← a ∧ c ∧ d ∧ h4. P0(h4) = 0.5

e ← a ∧ c ∧ h5. P0(h5) = 0.3
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A common way to learn belief networks

➤ Totally order the variables.

➤ Build a decision tree for each for each variable based on

its predecessors.

➤ Search over different orderings.
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Issues in learning belief networks

There is a good understanding of:

➤ noisy data

➤ combining background knowledge and data

➤ observational and experimental data

➤ hidden variables

➤ missing data
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Belief networks for learning

Suppose we observe data d1, d2, . . . , dk , i.i.d.

d1 d2 dk

Θ

...

Domain of � is the set of all models (sometimes model

parameters).

Bayesian learning compute P(�|d1, d2, . . . , dk)
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Classic example
Estimate the probability a drawing pin lands “heads”

heads tails

heads(E) ← prob_heads(P) ∧ lands_heads(P, E).

tails(E) ← prob_heads(P) ∧ lands_tails(P, E).

∀P∀E{lands_heads(P, E), lands_tails(P, E)} ∈ C

{prob_heads(V) : 0 ≤ V ≤ 1} ∈ C

P0(lands_heads(P, E) = P.

P0(lands_tails(P, E) = 1 − P.
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Explaining the data
To explain data:

heads(e1), tails(e2), tails(e3), heads(e4), . . .

there is an explanation:

{lands_heads(p, e1), lands_tails(p, e2),

lands_tails(p, e3), lands_heads(p, e4), . . . ,

prob_heads(p)}
for each p ∈ [0, 1].
This explanation has probability:

p#heads(1 − p)#tailsP0(prob_heads(p))
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Where to now?

➤ Keep the representation as simple as possible to solve

your problem, but no simpler.

➤ Approximate. Bounded rationality.

➤ Approximate the solution, not the problem (Sutton).

➤ We want everything, but only as much as it is worth to us.

➤ Preference elicitation.
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Conclusions

➤ If you are interested in acting in real domains you need to

treat uncertainty seriously.

➤ There is a large community working on stochastic

dynamical systems for robotics, factory control,

diagnosis, user modelling, multimedia presentation,

collaborative filtering …

➤ There is much the computational logic community can

contribute to this endeavour.
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