Logic, Knowledge Representation

 and Bayesian Decision TheoryDavid Poole

University of British Columbia

Overview

K Knowledge representation, logic, decision theory.
$>$ Belief networks
> Independent Choice Logic
$>$ Stochastic Dynamic Systems
$>$ Bayesian Learning

Knowledge Representation

representation
 output

> Find compact / natural representations
$>$ Exploit features of representation for computational gain.
$>$ Tradeoff representational adequacy, efficient (approximate) inference and learnability

What do we want in a representation?

We want a representation to be
> rich enough to express the knowledge needed to solve the problem.
$>$ as close to the problem as possible: natural and maintainable.
$>$ amenable to efficient computation; able to express features of the problem we can exploit for computational gain.
$>$ learnable from data and past experiences.
$>$ trade off accuracy and computation time

Normative Traditions

$>$ Logic
$>$ Semantics (symbols have meaning)
$>$ Sound and complete proof procedures
$>$ Quantification over variables (relations amongst multiple individuals)

Decision Theory

$>$ Tradeoffs under uncertainty
$>$ Probabilities and utilities

Bayesians

> Interested in action: what should an agent do?
$>$ Role of belief is to make good decisions.
> Theorems (Von Neumann and Morgenstern):
(under reasonable assumptions) a rational agent will act as though it has (point) probabilities and utilities and acts to maximize expected utilities.
$>$ Probability as a measure of belief: study of how knowledge affects belief lets us combine background knowledge and data

Representations of uncertainty

We want a representation for
probabilities
utilities
$>$ actions
that facilitates finding the action(s) that maximise expected utility.
> Knowledge representation, logic, decision theory.
> Belief networks
$>$ Independence
$>$ Inference
$>$ Causality
$>$ Independent Choice Logic
$>$ Stochastic Dynamic Systems
$>$ Bayesian Learning

Belief networks (Bayesian networks)

$>$ Totally order the variables of interest: X_{1}, \ldots, X_{n}
$>$ Theorem of probability theory (chain rule):

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) \cdots P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

$>$ The parents of $X_{i} \pi_{i} \subseteq X_{1}, \ldots, X_{i-1}$ such that

$$
P\left(X_{i} \mid \pi_{i}\right)=P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

$>\operatorname{So} P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \pi_{i}\right)$
Belief network nodes are variables, arcs from parents

Belief Network for Overhead Projector

Belief Network

$>$ Graphical representation of dependence.
DAG with nodes representing random variables.
$>$ If $B_{1}, B_{2}, \cdots, B_{k}$ are the parents of A :

we have an associated conditional probability:

$$
P\left(A \mid B_{1}, B_{2}, \cdots, B_{k}\right)
$$

Causality

Belief networks are not necessarily causal. However:
> If the direct causes of a variable are its parents, one would expect that causation would follow the independence of belief networks.

- Conjecture: representing knowledge causally results in a sparser network that is more stable to changing contexts.
$>$ A causal belief network also lets us predict the effect of an intervention: what happens of we change the value of a variable.

Overview

- Knowledge representation, logic, decision theory.
$>$ Belief networks
> Independent Choice Logic
$>$ Logic programming + arguments
\geqslant Belief networks + first-order rule-structured conditional probabilities
\geqslant Abduction
Stochastic Dynamic Systems
$>$ Bayesian Learning

Independent Choice Logic

$>\mathbf{C}$, the choice space is a set of alternatives.
An alternative is a set of atomic choices.
An atomic choice is a ground atomic formula.
An atomic choice can only appear in one alternative.
$>\mathbf{F}$, the facts is an acyclic logic program.
No atomic choice unifies with the head of a rule.
$>P_{0}$ a probability distribution over alternatives:

$$
\forall A \in \mathbf{C} \sum_{a \in A} P_{0}(a)=1
$$

Meaningless Example

$$
\begin{aligned}
& \mathbf{C}=\left\{\left\{c_{1}, c_{2}, c_{3}\right\},\left\{b_{1}, b_{2}\right\}\right\} \\
& \mathbf{F}=\left\{f \leftarrow c_{1} \wedge b_{1}, f \leftarrow c_{3} \wedge b_{2},\right. \\
& d \leftarrow c_{1}, \quad d \leftarrow \bar{c}_{2} \wedge b_{1}, \\
& e \leftarrow f, \quad e \leftarrow \bar{d}\} \\
& P_{0}\left(c_{1}\right)=0.5 \quad P_{0}\left(c_{2}\right)=0.3 \quad P_{0}\left(c_{3}\right)=0.2 \\
& P_{0}\left(b_{1}\right)=0.9 \quad P_{0}\left(b_{2}\right)=0.1
\end{aligned}
$$

Semantics of ICL

$>$ A total choice is a set containing exactly one element of each alternative in \mathbf{C}.
$>$ For each total choice τ there is a possible world w_{τ}.
$>$ Proposition f is true in $w_{\tau}\left(\right.$ written $w_{\tau} \models f$) if f is true in the (unique) stable model of $\mathbf{F} \cup \tau$.
$>$ The probability of a possible world w_{τ} is

$$
\prod_{a \in \tau} P_{0}(a) .
$$

The probability of a proposition f is the sum of the probabilities of the worlds in which f is true.

Meaningless Example: Semantics

There are 6 possible worlds:
$w_{1} \models c_{1} \quad b_{1} \quad f \quad d \quad e \quad P\left(w_{1}\right)=0.45$ $w_{2} \vDash c_{2} \quad b_{1} \quad \bar{f} \quad \bar{d} e \quad P\left(w_{2}\right)=0.27$ $w_{3} \vDash c_{3} \quad b_{1} \quad \bar{f} \quad d \quad \bar{e} \quad P\left(w_{3}\right)=0.18$ $w_{4} \vDash c_{1} \quad b_{2} \quad \bar{f} \quad d \quad \bar{e} \quad P\left(w_{4}\right)=0.05$ $w_{5} \quad=c_{2} \quad b_{2} \quad \bar{f} \quad \bar{d} e \quad P\left(w_{5}\right)=0.03$
$w_{6} \vDash c_{3} \quad b_{2} \quad f \quad \bar{d} e \quad P\left(w_{6}\right)=0.02$ $P(e)=0.45+0.27+0.03+0.02=0.77$

Decision trees and ICL rules

Decision trees with probabilities on leaves \rightarrow ICL rules:

$$
\begin{array}{ll}
e \leftarrow a \wedge b \wedge h_{1} . & P_{0}\left(h_{1}\right)=0.7 \\
e \leftarrow a \wedge \bar{b} \wedge h_{2} . & P_{0}\left(h_{2}\right)=0.2 \\
e \leftarrow \bar{a} \wedge c \wedge d \wedge h_{3} . & P_{0}\left(h_{3}\right)=0.9 \\
e \leftarrow \bar{a} \wedge c \wedge \bar{d} \wedge h_{4} . & P_{0}\left(h_{4}\right)=0.5 \\
e \leftarrow \bar{a} \wedge \bar{c} \wedge h_{5} . & P_{0}\left(h_{5}\right)=0.3
\end{array}
$$

Belief Network for Overhead Projector

Belief networks as logic programs

projector_lamp_on \leftarrow
power_in_projector \wedge
lamp_works \wedge
projector_working_ok. \longleftarrow atomic choice projector_lamp_on \leftarrow
power_in_projector \wedge
$\overline{\text { lamp_works }} \wedge$
working_with_faulty_lamp. \longleftarrow atomic choice

Probabilities of hypotheses

$$
\begin{aligned}
& P_{0}(\text { projector_working_ok }) \\
& \quad=P(\text { projector_lamp_on } \mid \\
& \quad \text { power_in_projector } \wedge \text { lamp_works }) \\
& \quad \text { - provided as part of Belief network }
\end{aligned}
$$

Mapping belief networks into ICL

There is a local mapping from belief networks into ICL:

is translated into the rules

$$
a(V) \leftarrow b_{1}\left(V_{1}\right) \wedge \cdots \wedge b_{k}\left(V_{k}\right) \wedge h\left(V, V_{1}, \ldots, V_{k}\right)
$$

and the alternatives

$$
\forall v_{1} \cdots \forall v_{k}\left\{h\left(v, v_{1}, \ldots, v_{k}\right) \mid v \in \operatorname{domain}(a)\right\} \in \mathbf{C}
$$

Rule-based Inference

Suppose the only rule for a is:

$$
a \leftarrow b \wedge c
$$

Can we compute the probability of a from the probabilities of b and c ?

Rule-based Inference

Suppose the only rule for a is:

$$
a \leftarrow b \wedge c
$$

Can we compute the probability of a from the probabilities of b and c ?

NO! Consider the rules:

$$
\begin{aligned}
& b \leftarrow d \\
& c \leftarrow d \\
& P_{0}(d)=0.5
\end{aligned}
$$

...but you can simply combine explanations.

Assumption-based reasoning

$>$ Given background knowledge / facts F and assumables / possible hypotheses H,
> An explanation of g is a set D of assumables such that $F \cup D$ is consistent

$$
F \cup D \models g
$$

$>$ abduction is when g is given and you want D
default reasoning / prediction is when g is unknown

Abductive Characterization of ICL

The atomic choices are assumable.
$>$ The elements of an alternative are mutually exclusive.
Suppose the rules are disjoint

$$
\begin{aligned}
& \left.\begin{array}{l}
a \leftarrow b_{1} \\
\cdots \\
a \leftarrow b_{k}
\end{array}\right\} \quad b_{i} \wedge b_{j} \text { for } i \neq j \text { can't be true } \\
& P(g)=\sum_{E \text { is a minimal explanation of } g} P(E) \\
& P(E)=\prod_{h \in E} P_{0}(h)
\end{aligned}
$$

Probabilistic Conditioning

$$
P(g \mid e)=\frac{P(g \wedge e)}{P(e)} \longleftarrow \text { explain } g \wedge e
$$

$>$ Given evidence e, explain e then try to explain g from these explanations.
$>$ The explanations of $g \wedge e$ are the explanations of e extended to also explain g.
$>$ Probabilistic conditioning is abduction + prediction.

Belief Network for Overhead Projector

Overview

K Knowledge representation, logic, decision theory.
$>$ Belief networks
> Independent Choice Logic
$>$ Stochastic Dynamic Systems

- Issues in modelling dynamical systems
$>$ Representations based on Markov Decision Processes
> Bayesian Learning

Modelling Assumptions

$>$ deterministic or stochastic dynamics
$>$ goals or utilities
$>$ finite stage or infinite stage
> fully observable or partial observable
$>$ explicit state space or properties
zeroth-order or first-order
$>$ dynamics and rewards given or learned
> single agent or multiple agents

Deterministic or stochastic dynamics

If you knew the initial state and the action, could you predict the resulting state?

Stochastic dynamics are needed if:
$>$ you don't model at the lowest level of detail (e.g., modelling wheel slippage of robots or side effects of drugs)

- exogenous actions can occur during state transitions

Goals or Utilities

With goals, there are some equally preferred goal states, and all other states are equally bad.
$>$ Not all failures are equal. For example: a robot stopping, falling down stairs, or injuring people.
> With uncertainty, we have to consider how good and bad all possible outcomes are.
\Leftrightarrow utility specifies a value for each state.
$>$ With utilities, we can model goals by having goal states having utility 1 and other states have utility 0 .

Finite stage or infinite stage

Finite stage there is a given number of sequential decisions

Infinite stage indefinite number (perhaps infinite) number of sequential decisions.
> With infinite stages, we can model stopping by having an absorbing state - a state s_{i} so that $P\left(s_{i} \mid s_{i}\right)=1$, and $P\left(s_{j} \mid s_{i}\right)=0$ for $i \neq j$.
> Infinite stages let us model ongoing processes as well as problems with unknown number of stages.

Fully observable or partial observable

Fully observable = can observe actual state before a decision is made
$>$ Full observability is a convenient assumption that makes computation much simpler.

Full observability is applicable only for artificial domains, such as games and factory floors.
> Most domains are partially observable, such as robotics, diagnosis, user modelling ...

Explicit state space or properties

> Traditional methods relied on explicit state spaces, and techniques such as sparse matrix computation.

- The number of states is exponential in the number of properties or variables. It may be easier to reason with 30 binary variables than $1,000,000,000$ states.
- Bellman labelled this the Curse of Dimensionality.

Zeroth-order or first-order

$>$ The traditional methods are zero-order, there is no logical quantification. All of the individuals must be part of the explicit model.

There is some work on automatic construction of probabilistic models - they provide macros to construct ground representations.
> Naive use of unification does not work, as we can't treat the rules separately.

Dynamics and rewards given or learned

$>$ Often we don't know a priori the probabilities and rewards, but only observe the system while controlling it \Rightarrow reinforcement learning.
$>$ Credit and blame attribution.

- Exploration-exploitation tradeoff.

Single agent or multiple agents

> Many domains are characterised by multiple agents rather than a single agent.
,
Game theory studies what agents should do in a multi-agent setting.
> Even if all agents share a common goal, it is exponentially harder to find an optimal multi-agent plan than a single agent plan.

Overview

K Knowledge representation, logic, decision theory.
$>$ Belief networks
> Independent Choice Logic
$>$ Stochastic Dynamic Systems

- Issues in modelling dynamical systems
$>$ Representations based on Markov Decision Processes
> Bayesian Learning

Markov Process

$P\left(S_{t+1} \mid S_{t}\right)$ specified the dynamics
$>$ In the ICL:

$$
\begin{aligned}
& \operatorname{state}(S, T+1) \leftarrow \\
& \quad \operatorname{state}(S 0, T) \wedge \operatorname{trans}(S 0, S) . \\
& \forall s\left\{\operatorname{trans}\left(s, s_{0}\right), \ldots, \operatorname{trans}\left(s, s_{n}\right)\right\} \in \mathbf{C}
\end{aligned}
$$

Hidden Markov Model

$P\left(S_{t+1} \mid S_{t}\right)$ specified the dynamics
$P\left(O_{t} \mid S_{t}\right)$ specifies the sensor model.
$\operatorname{observe}(O, T) \leftarrow \operatorname{state}(S, T) \wedge o b s(S, O)$.
For each state s, there is an alternative:
$\left\{o b s\left(s, o_{1}\right), \ldots, o b s\left(s, o_{k}\right)\right\}$.

Markov Decision Process

$P\left(S_{t+1} \mid S_{t}, A_{t}\right)$ specified the dynamics $R\left(S_{t}, A_{t-1}\right)$ specifies the reward at time t
Discounted value is $R_{1}+\gamma R_{2}+\gamma^{2} R_{3}+\ldots$

Dynamics for MDP

$P\left(S_{t+1} \mid S_{t}, A_{t}\right)$ represented in the ICL as:

$$
\begin{aligned}
& \operatorname{state}(S, T+1) \leftarrow \\
& \quad \operatorname{state}(S 0, T) \wedge \\
& \quad \operatorname{do}(A, T) \wedge \\
& \quad \operatorname{trans}(S 0, A, S) . \\
& \forall s \forall a\left\{\operatorname{trans}\left(s, a, s_{0}\right), \ldots, \operatorname{trans}\left(s, a, s_{n}\right)\right\} \in \mathbf{C}
\end{aligned}
$$

Policies

$>$ What the agent does based on its perceptions is specified by a policy.
> For fully observable MDPs, a policy is a function from observed state into actions:

$$
\text { policy }: S_{t} \rightarrow A_{t}
$$

$>$ A policy can be represented by rules of the form:

$$
\begin{aligned}
& d o(a, T) \leftarrow \\
& \quad \text { state }(s, T)
\end{aligned}
$$

Partially Observable MDP (POMDP)

$P\left(S_{t+1} \mid S_{t}, A_{t}\right)$ specified the dynamics $P\left(O_{t} \mid S_{t}\right)$ specifies the sensor model. $R\left(S_{t}, A_{t-1}\right)$ specifies the reward at time i

Policies

What the agent does based on its perceptions is specified by a policy a function from history into actions:

$$
O_{0}, A_{0}, O_{1}, A_{1}, \ldots, O_{t-1}, A_{t-1}, O_{t} \rightarrow A_{t}
$$

> For POMDPs, a belief state is a probability distribution over states. A belief state is an adequate statistic about the history.

$$
\text { policy : } B_{t} \rightarrow A_{t}
$$

If there are n states, this is a function on \mathfrak{R}^{n}.

Reinforcement Learning

Use (fully observable) MDP model, but the state transition function and the reward function are not given, but must be learned from acting in the environment.
$>$ exploration versus exploitation
> model-based algorithms (learn the probabilities) or model-free algorithms (don't learn the state transition or reward functions).
$>$ The use of properties is common in reinforcement learning. For example, using a neural network to model the dynamics and reward functions or the value function.

Influence Diagrams

An influence diagram is a belief network with decision nodes (rectangles) and a value node (diamond).

Dynamic Belief Networks

Idea: represent the state in terms of random variables / propositions.

DBN in ICL

$r(T+1) \leftarrow r(T) \wedge$ rain_continues (T).
$r(T+1) \leftarrow \overline{r(T)} \wedge$ rain_starts (T).
$h c(T+1) \leftarrow h c(T) \wedge d o(A, T) \wedge A \neq$ pass_coffee
\wedge keep_coffee (T).
$h c(T+1) \leftarrow h c(T) \wedge d o($ pass_coffee,$T)$
\wedge keep_coffee $(T) \wedge$ passing_fails (T).
$h c(T+1) \leftarrow d o\left(g e t _c o f f e e, T\right) \wedge$ get_succeeds (T).
$\forall T\{$ rain_continues (T), rain_stops $(T)\} \in \mathbf{C}$
$\forall T\{$ keep_coffee (T), spill_coffee $(T)\} \in \mathbf{C}$
$\forall T\{$ passing_fails (T), passing_succeeds $(T)\} \in \mathbf{C}$

Modelling Assumptions

$>$ deterministic or stochastic dynamics
$>$ goals or utilities
$>$ finite stage or infinite stage
> fully observable or partial observable
$>$ explicit state space or properties
zeroth-order or first-order
$>$ dynamics and rewards given or learned
> single agent or multiple agents

Comparison of Some Representations

	CP	DTP	ID	RL	HMM	GT
stochastic dynamics		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
values		\checkmark	\checkmark	\checkmark		\checkmark
infinite stage	\checkmark	\checkmark		\checkmark	\checkmark	
partially observable			\checkmark		\checkmark	\checkmark
properties	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
first-order	\checkmark					
dynamics not given multiple agents				\checkmark	\checkmark	

Other Issues

> Modelling and reasoning at multiple levels of abstraction abstracting both states and times
> Approximate reasoning and approximate modelling
$>$ Bounded rationality: how to balance acting and thinking. Value of thinking.

Overview

> Knowledge representation, logic, decision theory.
$>$ Belief networks
> Independent Choice Logic
$>$ Stochastic Dynamic Systems
$>$ Bayesian Learning
Learning belief networks
$>$ Belief networks for learning

Decision trees and rules

Decision trees with probabilities on leaves \rightarrow rules:

$$
\begin{array}{ll}
e \leftarrow a \wedge b \wedge h_{1} . & P_{0}\left(h_{1}\right)=0.7 \\
e \leftarrow a \wedge \bar{b} \wedge h_{2} . & P_{0}\left(h_{2}\right)=0.2 \\
e \leftarrow \bar{a} \wedge c \wedge d \wedge h_{3} . & P_{0}\left(h_{3}\right)=0.9 \\
e \leftarrow \bar{a} \wedge c \wedge \bar{d} \wedge h_{4} . & P_{0}\left(h_{4}\right)=0.5 \\
e \leftarrow \bar{a} \wedge \bar{c} \wedge h_{5} . & P_{0}\left(h_{5}\right)=0.3
\end{array}
$$

A common way to learn belief networks

$>$ Totally order the variables.
> Build a decision tree for each for each variable based on its predecessors.
$>$ Search over different orderings.

Issues in learning belief networks

There is a good understanding of:
$>$ noisy data
> combining background knowledge and data
> observational and experimental data
$>$ hidden variables
$>$ missing data

Belief networks for learning

Suppose we observe data $d_{1}, d_{2}, \ldots, d_{k}$, i.i.d.

Domain of Θ is the set of all models (sometimes model parameters).

Bayesian learning compute $P\left(\Theta \mid d_{1}, d_{2}, \ldots, d_{k}\right)$

Classic example

Estimate the probability a drawing pin lands "heads"

heads $(E) \leftarrow$ prob_heads $(P) \wedge$ lands_heads (P, E).
tails $(E) \leftarrow$ prob_heads $(P) \wedge$ lands_tails (P, E).
$\forall P \forall E\{$ lands_heads (P, E), lands_tails $(P, E)\} \in \mathbf{C}$
$\left\{p r o b _h e a d s(V): 0 \leq V \leq 1\right\} \in \mathbf{C}$
$P_{0}($ lands_heads $(P, E)=P$.
$P_{0}($ lands_tails $(P, E)=1-P$.

Explaining the data

To explain data:
heads $\left(e_{1}\right), \operatorname{tails}\left(e_{2}\right), \operatorname{tails}\left(e_{3}\right)$, heads $\left(e_{4}\right), \ldots$
there is an explanation:
$\left\{l a n d s _h e a d s\left(p, e_{1}\right)\right.$, lands_tails $\left(p, e_{2}\right)$,
lands_tails $\left(p, e_{3}\right), l a n d s _h e a d s\left(p, e_{4}\right), \ldots$, prob_heads(p)\}
for each $p \in[0,1]$.
This explanation has probability:

$$
p^{\# h e a d s}(1-p)^{\# t a i l s} P_{0}(\text { prob_heads }(p))
$$

Where to now?

- Keep the representation as simple as possible to solve your problem, but no simpler.
> Approximate. Bounded rationality.
> Approximate the solution, not the problem (Sutton).
- We want everything, but only as much as it is worth to us.
$>$ Preference elicitation.

Conclusions

> If you are interested in acting in real domains you need to treat uncertainty seriously.
> There is a large community working on stochastic dynamical systems for robotics, factory control, diagnosis, user modelling, multimedia presentation, collaborative filtering ...
> There is much the computational logic community can contribute to this endeavour.

