# Logical Generative Models for Probabilistic Reasoning about Existence, Roles and Identity

#### David Poole

Department of Computer Science, University of British Columbia

AAAI 2007

David Poole Probabilistic Reasoning about Existence, Roles and Identity

Provide a clean semantic framework for reasoning about uncertainty in existence and identity.

- Existence and Identity
- Semantic Trees
- First-order Semantic Trees
- Exchangeability
- Conclusion and future work

#### Existence and Identity



Clarity principle: probabilities must be over well-defined propositions.

- What if an object doesn't exist?
  - $house(h4) \land roof\_colour(h4, pink) \land \neg exists(h4)$

Clarity principle: probabilities must be over well-defined propositions.

- What if an object doesn't exist?
  - $house(h4) \land roof\_colour(h4, pink) \land \neg exists(h4)$

- What if more than one object exists? Which one are we referring to?
  - In a house with three bedrooms, which is the second bedroom?

#### Correspondence Problem



c symbols and i individuals  $\longrightarrow c^{i+1}$  correspondences

#### Semantic Tree



#### Semantic Tree



- Nodes are propositions
- Left branch is when proposition is false Right branch is when proposition is true
- There is a probability distribution over the children of each node
- Each finite path from the root corresponds to a formula
- Each finite path from the root has a probability that is the product of the probabilities in the path
- A generative model generates a semantic tree.

#### Infinite Semantic Tree



The probability of  $\alpha$  is well defined if for all  $\epsilon > 0$ there is a finite sub-tree that can answer  $\alpha$  in  $> 1 - \epsilon$  of the probability mass. You can split on quantified first-order formulae:



- The "true" sub-tree is in the scope of x
- The "false" sub-tree is not in the scope of x

A logical generative model generates a first-order semantic tree.

## First-order Semantic Tree (cont)



- 1 there is no apartment
- 2) there is no bedroom in the apartment
- ${}^{(3)}$  there is a bedroom but no green room
- $^{(4)}$  there is a bedroom and a green room

Each path from the root corresponds to a logical formula. The **path formula** to node *n* is:

- The path formula of the root node is "true".
- If the path formula of node *n* is formula *f* and node *n* is labelled with formula *f*'
  - the "true" child of node *n* has path formula

 $f \wedge f'$ 

where f' is in the scope of the quantification of f.

• The "false" child of node *n* has path formula:

$$f \wedge \neg (f \wedge f')$$

## First-order Semantic Tree (cont)



Path formulae:

#### First-order Semantic Tree (cont)



- 6  $\exists a \ apt(a) \land \exists r_1 \ br(r_1) \land in(r_1, a) \land \exists r_2 \ room(r_2) \land in(r_2, a) \land green(r_2) \land r_1 = r_2$ There is a green bedroom.
- (5) There is a bedroom and a green room, but no green bedroom.

#### Distributions over number



## Roles and Identity (1)



- 1 there no object filling either role
- 2 there is an object filling role  $r_2$  but none filling  $r_1$
- ③ there is an object filling role  $r_1$  but none filling  $r_2$
- ④ only different objects fill roles  $r_1$  and  $r_2$
- (5) some object fills both roles  $r_1$  and  $r_2$

## Roles and Identity (2)



- 1 there no object filling either role
- 2 there is an object filling role  $r_2$  but none filling  $r_1$
- ③ there is an object filling role  $r_1$  but none filling  $r_2$
- ④ only the same object fill roles  $r_1$  and  $r_2$
- $\bigcirc$  there are different objects that fill roles  $r_1$  and  $r_2$

We can solve many probabilistic queries, but we can't draw balls out of urns!

≣ ▶

We can solve many probabilistic queries, but we can't draw balls out of urns!

$$P(h|e) = rac{P(h \wedge e)}{P(e)}$$

What if h refers to an object in e?



Consider the query:

 $P(green(x) \\ |\exists x \ triangle(x) \land \exists y \ circle(y) \land touching(x, y))$ 

The answer depends on how the x and y were chosen!

## Exchangeability

- Exchangeability: a priori each individual is equally likely to be chosen.
- A generalized first-order semantic tree is a first-order semantic tree that can contain commit(x) nodes.
  For each commit(x) node:
  - $\overline{x}$  is a set of variables
  - the node is in the scope of each x in  $\overline{x}$
  - no x is in an ancestor commit.
  - This node has one child.

For each possible world, each tuple of individuals that satisfies the path formula to  $commit(\overline{x})$  has an equal chance of being chosen.

#### Commit



 $P(green(x) \\ |\exists x \ triangle(x) \land \exists y \ circle(y) \land touching(x, y))$ 



- Probabilities are only over well-defined probabilities.
- We don't need to consider correspondences between symbol and objects: only between symbols
- "Only" a decision problem down each branch (except for "commit").

## To Do



- A language to generate semantic trees as needed.
- Efficient inference.
- Learning the probabilities of existence and identity.
- Incorporation into existing and new frameworks...