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Why Logic?

Logic provides a semantics linking

the symbols in our language

the (real or imaginary) world we are trying to characterise

Suppose K represents our knowledge of the world

If

K |= g

then g must be true of the world.

If

K 6|= g

there is a model of K in which g is false.

Thus logical consequence seems like the correct notion for
prediction.
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First-order Predicate Calculus

The world (we want to represent) is made up of
individuals (things) and relationships between things.

Classical (first order) logic lets us represent:

individuals in the world

relations amongst those individuals

conjunctions, disjunctions, negations of relations

quantification over individuals

5 David Poole Logic, Probability and Computation
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Why Probability?

There is lots of uncertainty about the world, but agents still
need to act.

Predictions are needed to decide what to do:

definitive predictions: you will be run over tomorrow
point probabilities: probability you will be run over tomorrow is
0.002
probability ranges: you will be run over with probability in
range [0.001,0.34]

Acting is gambling: agents who don’t use probabilities will
lose to those who do — Dutch books.

Probabilities can be learned from data.
Bayes’ rule specifies how to combine data and prior
knowledge.
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Bayes’ Rule

P(h|e) = P(e|h)  P(h)
P(e)

Likelihood Prior

Normalizing
constant

What if e is an electronic health record?

What if e is all the electronic health records?
What if e is a description of everything known about the geology
of Earth?

7 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Bayes’ Rule

P(h|e) = P(e|h)  P(h)
P(e)

Likelihood Prior

Normalizing
constant

What if e is an electronic health record?
What if e is all the electronic health records?

What if e is a description of everything known about the geology
of Earth?

7 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Bayes’ Rule

P(h|e) = P(e|h)  P(h)
P(e)

Likelihood Prior

Normalizing
constant

What if e is an electronic health record?
What if e is all the electronic health records?
What if e is a description of everything known about the geology
of Earth?

7 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Slope
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Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Structure
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Relational Learning

Often the values of properties are not meaningful values but
names of individuals.

It is the properties of these individuals and their relationship
to other individuals that needs to be learned.

Relational learning has been studied under the umbrella of
“Inductive Logic Programming” as the representations are
often logic programs.
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Example: trading agent

What does Joe like?

Individual Property Value

joe likes resort 14
joe dislikes resort 35
. . . . . . . . .
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
. . . . . . . . .

12 David Poole Logic, Probability and Computation
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Example: trading agent

Possible theory that could be learned:

prop(joe, likes,R)←
prop(R, type, resort)∧
prop(R, near ,B)∧
prop(B, type, beach)∧
prop(B, covered in, S)∧
prop(S , type, sand).

Joe likes resorts that are near sandy beaches.

But we want probabilistic predictions.

13 David Poole Logic, Probability and Computation
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Example: Predicting Relations

Student Course Grade

s1 c1 A
s2 c1 C
s1 c2 B
s2 c3 B
s3 c2 B
s4 c3 B
s3 c4 ?
s4 c4 ?

Students s3 and s4 have the same averages, on courses with
the same averages.

Which student would you expect to better?

14 David Poole Logic, Probability and Computation
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From Relations to Belief Networks

Gr(s1, c1)
I(s1)

I(s2)

I(s3)

Gr(s2, c1)

Gr(s1, c2)

Gr(s2, c3)

D(c1)

D(c2)

I(s4)

D(c3)

D(c4)

Gr(s3, c2)

Gr(s4, c3)

Gr(s4, c4)

Gr(s3, c4)

I (S) D(C ) Gr(S ,C )
A B C

true true 0.5 0.4 0.1
true false 0.9 0.09 0.01
false true 0.01 0.09 0.9
false false 0.1 0.4 0.5

P(I (S)) = 0.5
P(D(C )) = 0.5

“parameter sharing”

15 David Poole Logic, Probability and Computation
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Example: Predicting Relations
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

S , C logical variable representing students, courses
the set of individuals of a type is called a population
I (S), Gr(S ,C ), D(C ) are parametrized random variables

Grounding:

for every student s, there is a random variable I (s)
for every course c , there is a random variable D(c)
for every s, c pair there is a random variable Gr(s, c)
all instances share the same structure and parameters

17 David Poole Logic, Probability and Computation
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Plate Notation

C

S

Gr(S,C)

I(S) D(C)

If there were 1000 students and 100 courses:
Grounding contains

1000 I (s) variables
100 D(C ) variables
100000 Gr(s, c) variables

total: 101100 variables

Numbers to be specified to define the probabilities:
1 for I (s), 1 for D(C ), 8 for Gr(S ,C ) = 10 parameters.

18 David Poole Logic, Probability and Computation
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Bayesian Networks

x2 x1
+ y2 y1

z3 z2 z1

x2

x1

y2
y1

z1z2z3

carry2carry3

knows 
addition

knows 
carry

What if there were multiple digits, problems, students, times?
How can we build a model before we know the individuals?

19 David Poole Logic, Probability and Computation
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Bayesian Networks
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

Student
Time

Digit
Problem

x

y
z

carry

knows 
addition

knows 
carry

Random Variables: x(D,P), y(D,P), knowsCarry(S ,T ),
knowsAddition(S ,T ), carry(D,P,S ,T ), z(D,P,S ,T )
for each: digit D, problem P, student S , time T
* parametrized random variables

20 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence Relational Probabilistic Models Probabilistic Logic Programs

Relational Probabilistic Models

Often we want random variables for combinations of individual in
populations

build a probabilistic model before knowing the individuals

learn the model for one set of individuals

apply the model to new individuals

allow complex relationships between individuals

21 David Poole Logic, Probability and Computation
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Exchangeability

Before we know anything about individuals, they are
indistinguishable, and so should be treated identically.

22 David Poole Logic, Probability and Computation
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Representing Conditional Probabilities

P(grade(S ,C ) | intelligent(S), difficult(C )) — parameter
sharing — individuals share probability parameters.

P(happy(X ) | friend(X ,Y ),mean(Y )) — needs aggregation
— happy(a) depends on an unbounded number of parents.

There can be more structure about the individuals

the carry of one digit depends on carry of the previous digit
probability that two authors collaborate depends on whether
they have a paper authored together

23 David Poole Logic, Probability and Computation
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Example: Aggregation

x

Shot(x,y)

Has_motive(x,y)

Someone_shot(y) y

Has_opportunity(x,y)

Has_gun(x)

24 David Poole Logic, Probability and Computation
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Example Plate Notation for Learning Parameters

T

H(T)

!

H(t1)

!

H(t2) H(tn)...

tosses t1, t2…tn

T is a logical variable representing tosses of a thumb tack

H(t) is a Boolean variable that is true if toss t is heads.

θ is a random variable representing the probability of heads.

Range of θ is {0.0, 0.01, 0.02, . . . , 0.99, 1.0} or interval [0, 1].

P(H(ti )=true | θ=p) = p

H(ti ) is independent of H(tj) (for i 6= j) given θ: i.i.d. or
independent and identically distributed.

25 David Poole Logic, Probability and Computation
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Independent Choice Logic (ICL)

A language for relational probabilistic models.

Idea: combine logic and probability, where all uncertainty in
handled in terms of Bayesian decision theory, and logic
specifies consequences of choices.

An ICL theory consists of a choice space with probabilities
over choices and a logic program that gives consequences of
choices.

History: parametrized Bayesian networks, abduction and
default reasoning −→ probabilistic Horn abduction
(IJCAI-91); richer language (negation as failure + choices by
other agents −→ independent choice logic (AIJ 1997).

27 David Poole Logic, Probability and Computation
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Independent Choice Logic

An atomic hypothesis is an atomic formula.
An alternative is a set of atomic hypotheses.
C, the choice space is a set of disjoint alternatives.

F , the facts is an acyclic logic program that gives
consequences of choices (can contain negation as failure).
No atomic hypothesis is the head of a rule.

P0 a probability distribution over alternatives:

∀A ∈ C
∑
a∈A

P0(a) = 1.

28 David Poole Logic, Probability and Computation
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Meaningless Example

C = {{c1, c2, c3}, {b1, b2}}

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ∼ c2 ∧ b1,
e ← f , e ← ∼ d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

29 David Poole Logic, Probability and Computation
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Semantics of ICL

There is a possible world for each selection of one element
from each alternative.

The logic program together with the selected atoms specifies
what is true in each possible world.

The elements of different alternatives are independent.

30 David Poole Logic, Probability and Computation
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Meaningless Example: Semantics

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ∼ c2 ∧ b1,
e ← f , e ← ∼ d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

selection︷ ︸︸ ︷ logic program︷ ︸︸ ︷
w1 |= c1 b1 f d e P(w1) = 0.45
w2 |= c2 b1 ∼ f ∼ d e P(w2) = 0.27
w3 |= c3 b1 ∼ f d ∼ e P(w3) = 0.18
w4 |= c1 b2 ∼ f d ∼ e P(w4) = 0.05
w5 |= c2 b2 ∼ f ∼ d e P(w5) = 0.03
w6 |= c3 b2 f ∼ d e P(w6) = 0.02

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77
31 David Poole Logic, Probability and Computation
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Belief Networks, Decision trees and ICL rules

There is a local mapping from belief networks into ICL.

Ta Fi

SmAl

Le

Re

prob ta : 0.02.
prob fire : 0.01.
alarm← ta ∧ fire ∧ atf .
alarm← ∼ ta ∧ fire ∧ antf .
alarm← ta ∧ ∼ fire ∧ atnf .
alarm← ∼ ta ∧ ∼ fire ∧ antnf .
prob atf : 0.5.
prob antf : 0.99.
prob atnf : 0.85.
prob antnf : 0.0001.
smoke ← fire ∧ sf .
prob sf : 0.9.
smoke ← ∼ fire ∧ snf .
prob snf : 0.01.

32 David Poole Logic, Probability and Computation
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Belief Networks, Decision trees and ICL rules

Rules can represent decision tree with probabilities:

f t
A

C B

D 0.70.2

0.90.5

0.3

P(e|A,B,C,D)

e ← a ∧ b ∧ h1. P0(h1) = 0.7
e ← a ∧ ∼ b ∧ h2. P0(h2) = 0.2
e ← ∼ a ∧ c ∧ d ∧ h3. P0(h3) = 0.9
e ← ∼ a ∧ c ∧ ∼ d ∧ h4. P0(h4) = 0.5
e ← ∼ a ∧ ∼ c ∧ h5. P0(h5) = 0.3

33 David Poole Logic, Probability and Computation
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Predicting Grades

C

S

Gr(S,C)

I(S) D(C)

prob int(S) : 0.5.
prob diff (C ) : 0.5.
gr(S ,C ,G )← int(S) ∧ diff (C ) ∧ idg(S ,C ,G ).
prob idg(S ,C , a) : 0.5, idg(S ,C , b) : 0.4, idg(S ,C , c) : 0.1.
gr(S ,C ,G )← int(S) ∧ ∼ diff (C ) ∧ indg(S ,C ,G ).
prob indg(S ,C , a) : 0.9, indg(S ,C , b) : 0.09, indg(S ,C , c) : 0.01.
gr(S ,C ,G )← ∼ int(S) ∧ diff (C ) ∧ nidg(S ,C ,G ).
prob nidg(S ,C , a) : 0.01, nidg(S ,C , b) : 0.09, nidg(S ,C , c) : 0.9.
gr(S ,C ,G )← ∼ int(S) ∧ ∼ diff (C ) ∧ nindg(S ,C ,G ).
prob nindg(S ,C , a) : 0.1, nindg(S ,C , b) : 0.4, nindg(S ,C , c) : 0.5.

34 David Poole Logic, Probability and Computation
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

Student
Time

Digit
Problem

x

y
z

carry

knows 
addition

knows 
carry

Random Variables: x(D,P), y(D,P), knowsCarry(S ,T ),
knowsAddition(S ,T ), carry(D,P,S ,T ), z(D,P,S ,T )
for each: digit D, problem P, student S , time T
* parametrized random variables
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ICL rules for multi-digit addition

z(D,P, S ,T ) = V ←
x(D,P) = Vx∧
y(D,P) = Vy∧
carry(D,P, S ,T ) = Vc∧
knowsAddition(S ,T )∧
¬mistake(D,P,S ,T )∧
V is (Vx + Vy + Vc) div 10.

z(D,P,S ,T ) = V ←
knowsAddition(S ,T )∧
mistake(D,P, S ,T )∧
selectDig(D,P,S ,T ) = V .

z(D,P,S ,T ) = V ←
¬knowsAddition(S ,T )∧
selectDig(D,P,S ,T ) = V .

Alternatives:
∀DPST{noMistake(D,P, S ,T ),mistake(D,P,S ,T )}
∀DPST{selectDig(D,P, S ,T ) = V | V ∈ {0..9}}

36 David Poole Logic, Probability and Computation
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Bayesian Network Inference

A C

B D

E

F G

P(E | g) =
P(E ∧ g)

p(g)

P(E ∧ g) =
∑
F

∑
B

∑
C

∑
A

∑
D

P(A)P(B | AC )

P(C )P(D | C )P(E | B)P(F | E )P(g | ED)

=

(∑
F

P(F | E )

)
∑
B

P(e | B)
∑
C

P(C )

(∑
A

P(A)P(B | AC )

)
(∑

D

P(D | C )P(g | ED)

)
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Lifted Inference

Idea: treat those individuals about which you have the same
information as a block; just count them.

Use the ideas from lifted theorem proving - no need to ground.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the population
size).

39 David Poole Logic, Probability and Computation
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First-order probabilistic inference

Parametrized
Belief Network

Belief Network

Parametrized
Posterior

Posterior

FOVE

VE

ground ground

40 David Poole Logic, Probability and Computation
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Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground
steps with one step:

f (X ,Z ) ∨ p(X , a) ∼ p(b,Y ) ∨ g(Y ,W )︸ ︷︷ ︸
f (b,Z ) ∨ g(a,W )

Substitution {X/b,Y /a} is the most general unifier of p(X , a) and
p(b,Y ).

41 David Poole Logic, Probability and Computation
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Variable Elimination and Unification

Multiplying parametrized factors:

[f (X ,Z ), p(X , a)] × [p(b,Y ), g(Y ,W )]︸ ︷︷ ︸
[f (b,Z ), p(b, a), g(a,W )]

Doesn’t work because the first parametrized factor can’t
subsequently be used for X = b but can be used for other
instances of X .

We split [f (X ,Z ), p(X , a)] into

[f (b,Z ), p(b, a)]

[f (X ,Z ), p(X , a)] with constraint X 6= b,

42 David Poole Logic, Probability and Computation
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Parametric Factors

A parametric factor is a triple 〈C ,V , t〉 where

C is a set of inequality constraints on parameters,

V is a set of parametrized random variables

t is a table representing a factor from the random variables to
the non-negative reals.〈

{X 6= sue}, {interested(X ), boring},

interested boring Val

yes yes 0.001
yes no 0.01

· · ·

〉

43 David Poole Logic, Probability and Computation
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Removing a parameter when summing

interested(X)

ask_question(X)

boring

X:person

n people
we observe no questions

Eliminate interested :
〈{}, {boring , interested(X )}, t1〉
〈{}, {interested(X )}, t2〉

↓
〈{}, {boring}, (t1 × t2)n〉

(t1 × t2)n is computed point-
wise; we can compute it in time
O(log n).
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Counting Elimination

       int(X)

ask_question(X)

boring

X:person

|people| = n

Eliminate boring :
VE: factor on {int(p1), . . . , int(pn)}
Size is O(dn) where d is size of range of
interested.

Exchangeable: only the number of inter-
ested individuals matters.
Counting Formula:

#interested Value

0 v0
1 v1

. . . . . .
n vn

Complexity: O(nd−1).
[de Salvo Braz et al. 2007] and [Milch et al. 08]
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Potential of Lifted Inference

Reduce complexity:

polynomial −→ logarithmic

exponential −→ polynomial

We can now do lifting for unary relations, but we know we
can’t do all binary relations [Guy Van den Broeck, 2013]

An active research area.
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Logistic Regression

Logistic Regression, write R(ai ) as Ri :

P(Q|R1, . . . ,Rn) =
1

1 + ew0+w1R1+···+wnRn

If all of the Ri are exchangeable w1, . . . ,wn must all be the same:

P(Q|R1, . . . ,Rn) =
1

1 + ew0+w1(R1+···+Rn)

If we learn the parameters for n = 10 the prediction for n = 20
depends on how values Ri are represented numerically:

If True = 1 and False = 0 then P(Q|R1, . . . ,Rn) depends on
the number of Ri that are true.

If True = 1 and False = −1 then P(Q|R1, . . . ,Rn) depends
on how many more of Ri are true than false.

If True = 0 and False = −1 then P(Q|R1, . . . ,Rn) depends
on the number of Ri that are false.
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Directed and Undirected models

Weighted formula (WF): 〈L,F ,w〉
L is a set of logical variables,
F is a logical formula: {free logical variables in F} ⊆ L
w is a real-valued weight.

Instances of weighted formule obtained by assigning
individuals to variables in L.

A world is an assignment of a value to each ground instance
of each atom.

Markov logic network (MLN): “undirected model”
weighted formulae define measures on worlds.

Relational logistic regression (RLR): “directed model”
weighted formulae define conditional probabilities.
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Example

Weighted formulae:

〈{x}, funFor(x),−5〉
〈{x , y}, funFor(x) ∧ knows(x , y) ∧ social(y), 10〉

If obs includes observations for all knows(x , y) and social(y):

P(funFor(x) | obs) = sigmoid(−5 + 10nT )

nT is the number of individuals y for which
knows(x , y) ∧ social(y) is True in obs.

sigmoid(x) =
1

1 + e−x
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Abstract Example

〈{}, q, α0〉
〈{x}, q ∧ ¬r(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, r(x), α3〉

If r(x) for every individual x is observed:

P(q | obs) = sigmoid(α0 + nFα1 + nTα2)

nT is number of individuals for which r(x) is true
nF is number of individuals for which r(x) is false

sigmoid(x) =
1

1 + e−x
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Three Elementary Models

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(a) (b) (c)

(a) Näıve Bayes

(b) (Relational) Logistic Regression

(c) Markov network
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Independence Assumptions

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(a) (b) (c)

Näıve Bayes and Markov network: R(x) and R(y) (for x 6= y)
are independent given Q
are dependent not given Q.

Directed model with aggregation: R(x) and R(y) (for x 6= y)
are dependent given Q,
are independent not given Q.

53 David Poole Logic, Probability and Computation



Logic and Probability Inference Weighted Existence

What happens as Population size n Changes: Simplest case

〈{}, q, α0〉
〈{x}, q ∧ ¬r(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, r(x), α3〉

PMLN(q | n) = sigmoid( α0 + n log(eα2 + eα1−α3) )

PRLR(q | n) =
n∑

i=0

(
n
i

)
sigmoid(α0+iα1+(n−i)α2)(1−pr )ipn−i

r

PMF (q | n) = sigmoid(α0 + nprα1 + n(1− pr )α2)
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Population Growth: P(q | n)

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0

P
(q

)

relational logistic
mean field
MLN
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Population Growths: PRLR(q | n)

Whereas this MLN is a sigmoid of n, RLR needn’t be monotonic:

0 10 20 30 40 50 60 70 80
n

0.0

0.1

0.2

0.3

0.4

0.5

P
(q

)

Relational Logistic
Mean Field
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Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Logic Programs

2 Lifted Inference

3 Undirected models, Directed models, and Weighted Formulae

4 Existence and Identity Uncertainty
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Correspondence Problem

Symbols Individuals

h2: The tall house

h1: The house with the brown roof

h3: The house with the green roof

h4: The house with the pink roof

c symbols and i individuals −→ c i+1 correspondences
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Clarity Principle

Clarity principle: probabilities must be over well-defined
propositions.

What if an individual doesn’t exist?

house(h4) ∧ roof colour(h4, pink) ∧ ¬exists(h4)

What if more than one individual exists? Which one are we
referring to?
—In a house with three bedrooms, which is the second
bedroom?

Reified individuals are special:
— Non-existence means the relation is false.
— Well defined what doesn’t exist when existence is false.
— Reified individuals with the same description are the same
individual.
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Role assignments

Hypothesis about what apartment Mary would like.

Whether Mary likes an apartment depends on:

Whether there is a bedroom for daughter Sam

Whether Sam’s room is green

Whether there is a bedroom for Mary

Whether Mary’s room is large

Whether they share
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Bayesian Network Representation

Which 
room is 
Mary's

Which 
room is 
Sam's

Mary's 
room is 
large

Sam's 
room is 
green

Mary 
Likes her 

room

Sam 
likes her 

room

Need 
to 

share

Apartment 
is suitable

r1 r2

r3

How can we condition on the observation of the apartment?
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Naive Bayes representation

Mary 
Likes

Room1

Sam
Likes

Room2

Room1 
is large

Room2 
is green

Apartment 
is suitable

r1 r2

r3

Apartment

Room1
Room2

How do we specify that Mary chooses a room?
What about the case where they (have to) share?
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Number and Existence Uncertainty

PRMs (Pfeffer et al.), BLOG (Milch et al.): distribution over
the number of individuals. For each number, reason about the
correspondence.

NP-BLOG (Carbonetto et al.): keep asking: is there one
more?
e.g., if you observe a radar blip, there are three hypotheses:

the blip was produced by plane you already hypothesized
the blip was produced by another plane
the blip wasn’t produced by a plane
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Existence Example

false
alarm

plane

false
alarm plane

observe blip

false
alarm

same
plane

another
plane

false
alarm

plane

another blip

third blip
false
alarm

same
plane

another
plane

false
alarm

same
plane

another
plane

false
alarm

same
plane

another
plane

false
alarm

first
plane

another
plane

second
plane
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First-order Semantic Trees

Split on quantified first-order formulae:

∃x:τ(x)
tf
x

defined

...

x
undefined

The “true” sub-tree is in the scope of x

The “false” sub-tree is not in the scope of x

A logical generative model generates a first-order semantic tree.
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First-order Semantic Tree (cont)

f

f

f

t

t

t

∃a: apartment(a)

∃r1: bedroom(r1)∧in(r1,a)

∃r2: room(r2)∧in(r2,a)∧green(r2)
①

②

③ ④

À there is no apartment

Á there is no bedroom in the apartment

Â there is a bedroom but no green room

Ã there is a bedroom and a green room
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Distributions over number

t
∃c1: chair(c1)

①

②

③

f

④

∃c2: chair(c2) ∧ c1 ≠ c2

∃c3: chair(c3) ∧ c3 ∉{c1,c2} 

tf

∃c4: chair(c4) ∧ c3 ∉{c1,c2,c3} 

tf

f
...

t
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Roles and Identity (1)

f

f

t
∃x: r1(x)

∃y: r2(y)

① ② ③
x=y

⑤
f t

∃z: r2(z)

f t t

④

À there no individual filling either role

Á there is an individual filling role r2 but none filling r1

Â there is an individual filling role r1 but none filling r2

Ã only different individuals fill roles r1 and r2

Ä some individual fills both roles r1 and r2
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Roles and Identity (2)

f

f

t
∃x: r1(x)

∃y: r2(y)

① ② ③
x≠y

⑤
f t

∃z: r2(z)

f t t

④

À there no individual filling either role

Á there is an individual filling role r2 but none filling r1

Â there is an individual filling role r1 but none filling r2

Ã only the same individual fill roles r1 and r2

Ä there are different individuals that fill roles r1 and r2
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Observation Protocols

Observe a triangle and a circle touching. What is the probability
the triangle is green?

P(green(x)

|triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

The answer depends on how the x and y were chosen!
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Protocol for Observing

P(green(x)

| triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

| | |
select(x) select(y) select(x , y)
| | |

select(y) select(x)
| |

3/4 2/3 4/5
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Conclusion

To decide what to do an agent should take into account its
uncertainty and it preferences (utility).

The field of “statistical relational AI” looks at how to combine
first-order logic and probabilistic reasoning.

We need models that can condition on observations that
follow some protocol

Challenges

Representation: heuristically and epistemologically adequate
representations for probabilistic models + observations (+
actions + utilities + ontologies)

Inference: compute posterior probabilities (or optimal actions)
quickly enough to be useful

Learning: get best hypotheses conditioned on all observations
possible
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AI: computational agents that act intelligently

What should 
an agent do?

Logic Probability

Ontologies

Knowledge Representation

Learning

Relations

Preferences/Utilities

Decision Theory

Inference
Knowledge Aquisition

Perceiving

Game theory

Acting

Modelling

Data

Foundations

Prior Knowledge

InputsTasks

Hypotheses

Computation

Diagnosis
Observations

Dynamical Systems

Abilities

Statistics

Design
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