Population Size Extrapolation in Relational Probabilistic Modelling

David Poole, David Buchman, Seyed Mehran Kazemi, Kristian Kersting and Sriraam Natarajan

> University of British Columbia, Technical University of Dortmund, Indiana University

> > September 2014

Relational Probabilistic Models

Markov Logic Networks and Relational Logistic Regression

Varying Populations

Relational Probabilistic Models

Markov Logic Networks and Relational Logistic Regression

Varying Populations

< <p>I >

Poole, Buchman, Kazemi, Kersting, Natarajan Population Size Extrapolation in Relational Probabilistic Model

Student	Course	Grade
<i>s</i> 1	<i>c</i> 1	A
<i>s</i> ₂	<i>c</i> 1	С
<i>s</i> ₁	<i>c</i> ₂	В
<i>s</i> ₂	<i>c</i> 3	В
<i>s</i> 3	<i>c</i> ₂	В
<i>s</i> ₄	<i>c</i> 3	В
<i>s</i> ₃	С4	?
<i>S</i> 4	С4	?

- Students s₃ and s₄ have the same averages, on courses with the same averages. Why should we make different predictions?
- How can we make predictions when the values of properties Student and Course are individuals?

From Relations to Belief Networks

D(C)	A	Gr(S, C B	с) С
true	0.5	0.4	0.1
false	0.9	0.09	0.01
true	0.01	0.1	0.9
false	0.1	0.4	0.5
	true false	A true 0.5 false 0.9 true 0.01	A B true 0.5 0.4 false 0.9 0.09 true 0.01 0.1

P(I(S)) = 0.5P(D(C)) = 0.5

"parameter sharing"

- S is a logical variable representing students
- C is a logical variable representing courses
- the set of individuals of a type is called a population
- ► I(S), Gr(S, C), D(C) are parametrized random variables

- ► S is a logical variable representing students
- C is a logical variable representing courses
- the set of individuals of a type is called a population
- ► I(S), Gr(S, C), D(C) are parametrized random variables
- for every student s, there is a random variable I(s)
- for every course c, there is a random variable D(c)
- ▶ for every student s and course c pair there is a random variable Gr(s, c)
- all instances share the same structure and parameters

Relational Probabilistic Models

Markov Logic Networks and Relational Logistic Regression

Varying Populations

< <p>I >

Poole, Buchman, Kazemi, Kersting, Natarajan Population Size Extrapolation in Relational Probabilistic Model

Directed and Undirected models

- ► Weighted formula (WF): ⟨L, F, w⟩
 - L is a set of logical variables,
 - ▶ *F* is a logical formula: {free logical variables in *F*} \subseteq *L*
 - w is a real-valued weight.
- Instances of weighted formule obtained by assigning individuals to variables in L.

Directed and Undirected models

- ▶ Weighted formula (WF): ⟨*L*, *F*, *w*⟩
 - L is a set of logical variables,
 - *F* is a logical formula: {free logical variables in *F*} $\subseteq L$
 - w is a real-valued weight.
- Instances of weighted formule obtained by assigning individuals to variables in *L*.
- A world is an assignment of a value to each ground instance of each atom.
- Markov logic network (MLN): "undirected model" weighted formulae define measures on worlds: Probability of a world is proportional to the exponent of the sum of the instances of the formulae true in the world.

Directed and Undirected models

- ▶ Weighted formula (WF): ⟨*L*, *F*, *w*⟩
 - L is a set of logical variables,
 - *F* is a logical formula: {free logical variables in *F*} $\subseteq L$
 - w is a real-valued weight.
- Instances of weighted formule obtained by assigning individuals to variables in L.
- A world is an assignment of a value to each ground instance of each atom.
- Markov logic network (MLN): "undirected model" weighted formulae define measures on worlds: Probability of a world is proportional to the exponent of the sum of the instances of the formulae true in the world.
- Relational logistic regression (RLR): "directed model" weighted formulae define conditional probabilities: Probability of a variable assignment given a parent assignment is proportional to the exponent of the sum of the weights the instances of the formulae true in the assignment.

Weighted formulae:

$$\langle \{x\}, funFor(x), -5 \rangle$$

 $\langle \{x, y\}, funFor(x) \land knows(x, y) \land social(y), 10 \rangle$

If Π includes observations for all knows(x, y) and social(y):

$$P(funFor(x) \mid \Pi) = sigmoid(-5+10n_T)$$

 n_T is the number of individuals y for which $knows(x, y) \land social(y)$ is *True* in Π .

sigmoid(x) =
$$\frac{1}{1 + e^{-x}}$$

$$\begin{array}{l} \langle \{\}, q, \alpha_0 \rangle \\ \langle \{x\}, q \land \neg r(x), \alpha_1 \rangle \\ \langle \{x\}, q \land r(x), \alpha_2 \rangle \\ \langle \{x\}, r(x), \alpha_3 \rangle \end{array}$$

If r(x) for every individual x is observed:

 $P(q \mid obs) = sigmoid(\alpha_0 + n_F\alpha_1 + n_T\alpha_2)$

 n_T is number of individuals for which r(x) is true n_F is number of individuals for which r(x) is false

sigmoid(x) =
$$\frac{1}{1 + e^{-x}}$$

Three Elementary Models

- (a) Naïve Bayes
- (b) (Relational) Logistic Regression
- (c) Markov network

Independence Assumptions

- ▶ Naïve Bayes and Markov network: R(x) and R(y) (for $x \neq y$)
 - ► are independent given Q
 - ▶ are dependent not given *Q*.
- ▶ Directed model with aggregation: R(x) and R(y) (for $x \neq y$)
 - are dependent given Q,
 - ▶ are independent not given *Q*.

Relational Probabilistic Models

Markov Logic Networks and Relational Logistic Regression

Varying Populations

< <p>I >

What happens as Population size *n* Changes: Simplest case

$$\begin{array}{l} \langle \{\}, \boldsymbol{q}, \alpha_0 \rangle \\ \langle \{x\}, \boldsymbol{q} \wedge \neg r(x), \alpha_1 \rangle \\ \langle \{x\}, \boldsymbol{q} \wedge r(x), \alpha_2 \rangle \\ \langle \{x\}, r(x), \alpha_3 \rangle \end{array}$$

$$P_{MLN}(q \mid n) = sigmoid(\alpha_0 + n \log(e^{\alpha_2} + e^{\alpha_1 - \alpha_3}))$$

$$P_{RLR}(q \mid n) = \sum_{i=0}^{n} {n \choose i} sigmoid(\alpha_0 + i\alpha_1 + (n-i)\alpha_2)(1-p_r)^i p_r^{n-i}$$

$$P_{MF}(q \mid n) = sigmoid(\alpha_0 + np_r\alpha_1 + n(1 - p_r)\alpha_2)$$

Poole, Buchman, Kazemi, Kersting, Natarajan

Population Size Extrapolation in Relational Probabilistic Model

Population Growth: $P(q \mid n)$

Poole, Buchman, Kazemi, Kersting, Natarajan

Population Size Extrapolation in Relational Probabilistic Model

Population Growths: $P_{RLR}(q \mid n)$

Whereas this MLN is a sigmoid of n, RLR needn't be monotonic:

Poole, Buchman, Kazemi, Kersting, Natarajan

Population Size Extrapolation in Relational Probabilistic Model

Dependence of R(x) on population size

- In (b), the directed model with aggregation, P(R(x)) is not affected by the population size.
- In (c), P_{MLN}(R(x)) is unaffected by population size if and only if the MLN is equivalent to a Naïve Bayes model (a).
- For other MLNs...

$P_{MLN}(q \mid \alpha_3)$ for various *n*

Poole, Buchman, Kazemi, Kersting, Natarajan

Population Size Extrapolation in Relational Probabilistic Model

 For RLR the probability of child given the parents is aways the sigmoid of a polynomial of the counts of the parents.
All polynomials can be represented.

- For RLR the probability of child given the parents is aways the sigmoid of a polynomial of the counts of the parents.
 All polynomials can be represented.
- In an MLN without infinite weights, if V is not in a formula with a logical variable of a population, then P(V | n) is bounded away from 0 and 1 as population n→∞.

- For RLR the probability of child given the parents is aways the sigmoid of a polynomial of the counts of the parents.
 All polynomials can be represented.
- In an MLN without infinite weights, if V is not in a formula with a logical variable of a population, then P(V | n) is bounded away from 0 and 1 as population n→∞.
- ► In an MLN without infinite weights, if V is in a formula with some R(X), where X does not appear in V and R(X) doesn't unify with other formulae:

then either P(r) is independent of the population size *n* or $\lim_{n\to\infty} P_{MLN}(r)$ is either 1 or 0.

Real Data

Observed P(25 < Age(p) < 45 | n), where *n* is number of movies watched from the Movielens dataset.

Poole, Buchman, Kazemi, Kersting, Natarajan

Population Size Extrapolation in Relational Probabilistic Model

Example of polynomial dependence of population

$$\begin{array}{l} \langle \{\}, q, \alpha_0 \rangle \\ \langle \{x\}, q \land true(x), \alpha_1 \rangle \\ \langle \{x\}, q \land r(x), \alpha_2 \rangle \\ \langle \{x\}, true(x), \alpha_3 \rangle \\ \langle \{x\}, r(x), \alpha_4 \rangle \\ \langle \{x, y\}, q \land true(x) \land true(y), \alpha_5 \rangle \\ \langle \{x, y\}, q \land r(x) \land true(y), \alpha_6 \rangle \\ \langle \{x, y\}, q \land r(x) \land r(y), \alpha_7 \rangle \end{array}$$

In RLR and in MLN, if all $R(A_i)$ are observed:

$$P(q \mid obs) = sigmoid(\alpha_0 + n\alpha_1 + n_T\alpha_2 + n^2\alpha_5 + n_Tn\alpha_6 + n_T^2\alpha_7)$$

R(x) is true for n_T individuals out of a population of n.

Danger of fitting to data without understanding the model

- RLR can fit sigmoid of any polynomial.
- Consider a polynomial of degree 2:

- The form of the formulae used gives prior information about the dependence on population.
- The model should fit with our prior knowledge.
- We are beginning to understand this dependence, but there is a lot we don't know.
- MLNs and RLR provide different modelling assumptions, which are applicable in different circumstances.