Ontologies, data and probabilistic hypotheses: Conditioning on all the knowledge in the world

David Poole

Department of Computer Science, University of British Columbia Leverhulme Trust visting professor at the University of Oxford

[Work with: Clinton Smyth, Rita Sharma, Jacek Kisynski, Lionel E. Jackon, Jr., Chia-Li Kuo, Arzoo Katiyar, David Buchman]

October 2014

For when I am presented with a false theorem, I do not need to examine or even to know the demonstration, since I shall discover its falsity *a posteriori* by means of an easy experiment, that is, by a calculation, costing no more than paper and ink, which will show the error no matter how small it is...

And if someone would doubt my results, I should say to him: "Let us calculate, Sir," and thus by taking to pen and ink, we should soon settle the question.

-Gottfried Wilhelm Leibniz [1677]

• Search engines give me the results of my query, but why should I believe these answers?

- Search engines give me the results of my query, but why should I believe these answers?
- The semantic web is supposed to make human knowledge accessible to computers, but how can we evaluate that knowledge?

How could we go beyond the sum of human knowledge?

- Search engines give me the results of my query, but why should I believe these answers?
- The semantic web is supposed to make human knowledge accessible to computers, but how can we evaluate that knowledge?

How could we go beyond the sum of human knowledge?

• There seems to be two branches of AI (Machine learning/uncertainty and the KR/logic/ontology); why do we have to choose one? Isn't there a coherent synthesis?

- Search engines give me the results of my query, but why should I believe these answers?
- The semantic web is supposed to make human knowledge accessible to computers, but how can we evaluate that knowledge?

How could we go beyond the sum of human knowledge?

- There seems to be two branches of AI (Machine learning/uncertainty and the KR/logic/ontology); why do we have to choose one? Isn't there a coherent synthesis?
- What will AI and the web look like in 2029?

Example: medical diagnosis

Example: people give symptoms and want to know what is wrong with them.

Current Practice	An Alternative
— describe symptoms using	
keywords	
— results ranked by	
popularity (e.g., pagerank)	
and usually appeal to	
authority	
— text results	

Example: medical diagnosis

Example: people give symptoms and want to know what is wrong with them.

Current Practice	An Alternative
— describe symptoms using	— use unambiguous
keywords	terminology
— results ranked by	— predictions ranked by
popularity (e.g., pagerank)	relevance and fit to data
and usually appeal to	
authority	
— text results	— probabilistic predictions with
	references to sources

5

2014	2029
 skeptics throw doubt on science and scientists say "trust us" 	• data is available for all to view; all alternative hypotheses can be evaluated
David Poole	Ontologies, data and probabilistic hypotheses

2014	2029
 skeptics throw doubt on science and scientists say "trust us" 	 data is available for all to view; all alternative hypotheses can be evaluated
• evidence-based research is buried in research papers	• evidence-based results are available for everyday decisions

2014	2029
 skeptics throw doubt on	 data is available for all to view;
science and scientists say	all alternative hypotheses can be
"trust us"	evaluated
 evidence-based research is	 evidence-based results are
buried in research papers	available for everyday decisions
 separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind

2014	2029
 skeptics throw doubt on	 data is available for all to view;
science and scientists say	all alternative hypotheses can be
"trust us"	evaluated
 evidence-based research is buried in research papers 	• evidence-based results are available for everyday decisions
 separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind
 relational representations	 rich representations with
starting to be used in ML	uncertainty ubiquitous

2014	2029
 skeptics throw doubt on	 data is available for all to view;
science and scientists say	all alternative hypotheses can be
"trust us"	evaluated
 evidence-based research is	 evidence-based results are
buried in research papers	available for everyday decisions
 separation of uncertainty	 uncertainty and ontologies are
and KR issues	integral parts of world-wide mind
 relational representations	 rich representations with
starting to be used in ML	uncertainty ubiquitous
 data sets usable only by	 data sets published, available,
specialists	persistent and interoperable

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses
- Probabilities with Ontologies
- Property Domains and Undefined Random Variables
- 4 Models: Ensembles of hypotheses
- 5 Observation Languages

• A knowledge-based system should believe based on evidence. Not all beliefs are equally valid.

- A knowledge-based system should believe based on evidence. Not all beliefs are equally valid.
- If a KR system makes a prediction, we should ask: what evidence is there?

The system should be able to provide such evidence.

- A knowledge-based system should believe based on evidence. Not all beliefs are equally valid.
- If a KR system makes a prediction, we should ask: what evidence is there?

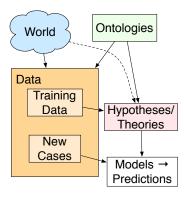
The system should be able to provide such evidence.

• The mechanism that has been developed for judging knowledge is called science. We trust scientific conclusions because they are based on evidence.

- A knowledge-based system should believe based on evidence. Not all beliefs are equally valid.
- If a KR system makes a prediction, we should ask: what evidence is there?

The system should be able to provide such evidence.

- The mechanism that has been developed for judging knowledge is called science. We trust scientific conclusions because they are based on evidence.
- The semantic web is an endeavor to make all of the world's knowledge accessible to computers.
- We use term semantic science, in an analogous way to the *semantic web*.
- Claim: semantic science will form the foundation of the world-wide mind.


Science as the foundation of world-wide mind

I mean *science* in the broadest sense:

- where and when landslides occur
- where to find gold
- what errors students make
- disease symptoms, prognosis and treatment
- what companies will be good to invest in
- what apartment Mary would like
- which celebrities are having affairs

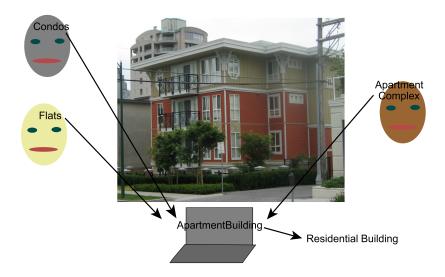
Ontologies Data Hypotheses

Semantic Science

- Ontologies represent the meaning of symbols.
- Observational data is published.
- Hypotheses make predictions on data.
- Data used to evaluate hypotheses.
- Hypotheses used for predictions on new cases.
- All evolve in time.

Outline

Semantic Science Overview


- Ontologies
- Data
- Hypotheses
- Probabilities with Ontologies
- Property Domains and Undefined Random Variables
- 4 Models: Ensembles of hypotheses
- 5 Observation Languages

Ontologies

- In philosophy, ontology the study of existence.
- In CS, an ontology is a (formal) specification of the meaning of the vocabulary used in an information system.
- Ontologies are needed so that information sources can inter-operate at a semantic level.

Ontologies Data Hypotheses

Ontologies

Main Components of an Ontology

- Individuals: the objects in the world (not usually specified as part of the ontology)
- Classes: sets of (potential) individuals
- Properties: between individuals and their values

 $\langle Individual, Property, Value \rangle$ triples are universal representations of relations.

Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class C in terms of:

- Genus: the super-class
- Differentia: the attributes that make members of the class *C* different from other members of the super-class

"If genera are different and co-ordinate, their differentiae are themselves different in kind. Take as an instance the genus 'animal' and the genus 'knowledge'. 'With feet', 'two-footed', 'winged', 'aquatic', are differentiae of 'animal'; the species of knowledge are not distinguished by the same differentiae. One species of knowledge does not differ from another in being 'two-footed'."

Aristotle, Categories, 350 B.C.

An Aristotelian definition

• An apartment building is a residential building with multiple units and units are rented.

 $A partment Building \equiv Residential Building \&$

NumUnits = *many*&

Ownership = *rental*

NumUnits is a property with domain ResidentialBuilding and range {one, two, many} Ownership is a property with domain Building and range {owned, rental, coop}.

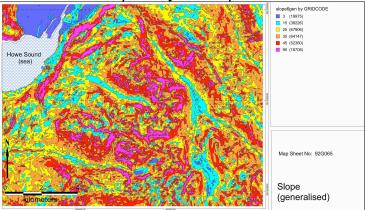
• All classes are defined in terms of properties.

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses
- Probabilities with Ontologies
- Property Domains and Undefined Random Variables
- 4 Models: Ensembles of hypotheses
- Observation Languages

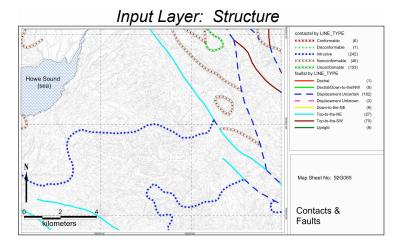
Data


Real data is messy!

- Multiple levels of abstraction
- Multiple levels of detail
- Uses the vocabulary from many ontologies: rocks, minerals, top-level ontology,...
- Rich meta-data:
 - Who collected each datum? (identity and credentials)
 - Who transcribed the information?
 - What was the protocol used to collect the data? (Chosen at random or chosen because interesting?)
 - What were the controls what was manipulated, when?
 - What sensors were used? What is their reliability and operating range?

Ontologies Data Hypotheses

Example Data, Geology


Input Layer: Slope

[Clinton Smyth, Georeference Online.]

Ontologies Data Hypotheses

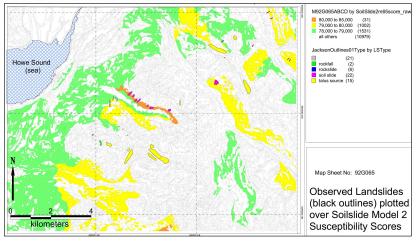
Example Data, Geology

[Clinton Smyth, Georeference Online.]

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses
- Probabilities with Ontologies
- Property Domains and Undefined Random Variables
- 4 Models: Ensembles of hypotheses
- Observation Languages


Hypotheses make predictions on data

Hypotheses are programs that make predictions on data. Theories are hypotheses that best fit the observational data.

- Hypotheses can make various predictions about data:
 - definitive predictions
 - point probabilities
 - probability ranges
 - ranges with confidence intervals
 - qualitative predictions
- For each prediction type, we need ways to judge predictions on data
- Users can use whatever criteria they like to evaluate hypotheses (e.g., taking into account simplicity and elegance)
- Semantic science search engine: extract theories from published hypotheses.

Example Prediction from a Hypothesis

Test Results: Model SoilSlide02

[Clinton Smyth, Georeference Online.]

Dynamics of Semantic Science

- New data and hypotheses are continually added.
- Anyone can design their own ontologies.
 - People vote with their feet what ontology they use.

— Need for semantic interoperability leads to ontologies with mappings between them.

• Ontologies evolve with hypotheses:

A hypothesis hypothesizes unobserved features or useful distinctions

- \longrightarrow add these to an ontology
- \longrightarrow other researchers can refer to them
- \longrightarrow reinterpretation of data
- Ontologies can be judged by the predictions of the hypotheses that use them
 - role of a vocabulary is to describe useful distinctions.

Ontologies Data Hypotheses

Levels of Semantic Science

- 0. Deterministic semantic science where all of the hypotheses make definitive predictions.
- 1. Feature-based semantic science, with non-deterministic predictions about feature values of data.
- 2. Relational semantic science, with predictions about the properties of (known) objects and relationships among objects.
- 3. First-order semantic science, with predictions about the existence of objects, identity, universally quantified statements and relations.

Outline

1 Semantic Science Overview

- Ontologies
- Data
- Hypotheses

Probabilities with Ontologies

- Property Domains and Undefined Random Variables
- 4 Models: Ensembles of hypotheses
- 5 Observation Languages

Random Variables and Triples

- Reconcile:
 - random variables of probability theory
 - individuals, classes, properties of modern ontologies

Random Variables and Triples

- Reconcile:
 - random variables of probability theory
 - individuals, classes, properties of modern ontologies

• For functional properties:

random variable for each $\langle individual, property \rangle$ pair, where the range of the random variable is the range of the property.

E.g., if *Height* is functional, $\langle building 17, Height \rangle$ is a random variable.

Random Variables and Triples

- Reconcile:
 - random variables of probability theory
 - individuals, classes, properties of modern ontologies

• For functional properties:

random variable for each $\langle individual, property \rangle$ pair, where the range of the random variable is the range of the property.

E.g., if *Height* is functional, $\langle building 17, Height \rangle$ is a random variable.

For non-functional properties: Boolean random variable for each (*individual*, *property*, *value*) triple. E.g., if YearRestored is non-functional

 $\langle \textit{building}17, \textit{YearRestored}, 1988 \rangle$ is a Boolean random variable.

Ranges

	OWL	Probability
Datatype	Boolean, Real, Integer, String, DateTime	Boolean, Real, Integer, String, DateTime
ObjectProperty		{ Discrete / Multinomial Relational

E.g., consider the ranges:

- {very_tall, tall, medium, short}
- {10 High St, 22 Smith St, 57 Jericho Ave}

Probabilities and Aristotelian Definitions

Aristotelian definition

ApartmentBuilding ≡ ResidentialBuilding& NumUnits = many& Ownership = rental

leads to probability over property values

 $P(\langle A, type, ApartmentBuilding \rangle)$

 $= P(\langle A, type, ResidentialBuilding \rangle) \times$

- \times $P(\langle A, NumUnits \rangle = many \mid \langle A, type, ResidentialBuilding \rangle$
- $\times P(\langle A, Ownership, rental \rangle \mid \langle A, NumUnits \rangle = many,$

 $\langle A, type, ResidentialBuilding \rangle$)

No need to consider undefined propositions.

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses
- Probabilities with Ontologies

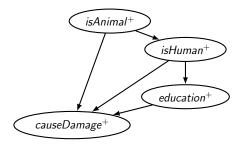
Property Domains and Undefined Random Variables

- 4 Models: Ensembles of hypotheses
- 5 Observation Languages

Aristotelian Ontologies (Example)

Example (Ontology)

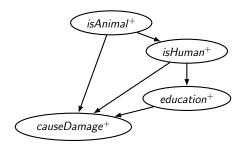
```
Classes:
  Thing
    Animal: Thing and isAnimal = true
      Human: Animal and isHuman = true
Properties:
  isAnimal:
                               range: {true,false}
               domain: Thing
  isHuman:
               domain: Animal
                               range: {true,false}
  education:
               domain: Human
                               range: {low,high}
  causeDamage: domain: Thing
                               range: {true,false}
```


A property is only defined for individuals in its domain.

• E.g., *education* is not defined when *isHuman* = *false*.

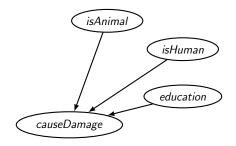
Extended Belief Networks (EBNs)

• Add "undefined" (\bot) to each range.


- range(isHuman⁺) = {true, false, \bot }.
- range(education⁺) = {low, high, \bot }.

- education⁺ is like education but with an expanded range.
- Possible query: *P*(*education*⁺ | *causeDamage*⁺ = *true*)

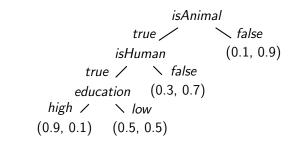
Overview Ontologies Domains Models Observations


Extended Belief Networks (EBNs)

However...

- Expanding ranges is computationally expensive.
 - Exact inference has time complexity $\mathcal{O}(|range|^{treewidth})$.
- It may not be sensible to think about undefined values; no dataset would contain such values.
- Arcs (*isAnimal*⁺, *isHuman*⁺) and (*isHuman*⁺, *education*⁺) represent logical constraints

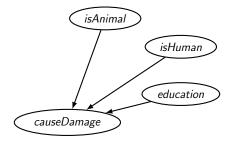
Ontologically-Based Belief Networks (OBBNs)


- OBBNs decouple the logical constraints (from the ontology) from the probabilistic dependencies.
- Don't model undefined (\perp) in ranges.
- The probabilistic network does not contain any ontological information.

Well-defined Formulae

Well-defined conjunctions:

- isAnimal = true ∧ isHuman = false
 is well-defined.
- isHuman = true ∧ isAnimal = false
 is not well-defined.
- isAnimal = true ∧ isHuman = true ∧ education = low is well-defined.
- isAnimal = true ∧ isHuman = false ∧ education = low is not well-defined.


Conditional Probabilities

P(causeDamage | isAnimal, isHuman, education)

 For each random variable, only specify (conditional) probabilities for well-defined contexts.

Ontologically-Based Belief Networks (OBBNs)

- The query P(education⁺ | causeDamage = true) has a non-zero probability of ⊥
 - we can't ignore the undefined values.

Ontologically-Based Belief Networks (Inference)

The following give the same answer for $P(Q^+ | \mathcal{E} = e)$:

- Compute P(Q⁺ | E⁺ = e) using the extended belief network.
- From the OGBN:
 - Query the ontology for *domain(Q)*
 - Let $\alpha = P(domain(Q) \mid \mathcal{E} = e)$
 - If $\alpha \neq 0$ let $\beta = P(Q \mid \mathcal{E} = e \land domain(Q))$
 - Return

$$P(Q^{+} = \bot | \mathcal{E} = e) = 1 - \alpha$$
$$P(Q | \mathcal{E} = e) = \alpha\beta$$

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses
- Probabilities with Ontologies
- Property Domains and Undefined Random Variables
- 4 Models: Ensembles of hypotheses

Observation Languages

Applying hypotheses to new cases

- How can we compare hypotheses that differ in their generality?
- Hypothesis A makes predictions about all cancers. Hypothesis B makes predictions about lung cancers. Should the comparison between A and B take into account A's predictions on non-lung cancer?

Applying hypotheses to new cases

- How can we compare hypotheses that differ in their generality?
- Hypothesis A makes predictions about all cancers.
 Hypothesis B makes predictions about lung cancers.
 Should the comparison between A and B take into account A's predictions on non-lung cancer?
- What about C: if lung cancer, use B's prediction, else use A's prediction?

Applying hypotheses to new cases

- How can we compare hypotheses that differ in their generality?
- Hypothesis A makes predictions about all cancers. Hypothesis B makes predictions about lung cancers. Should the comparison between A and B take into account A's predictions on non-lung cancer?
- What about C: *if lung cancer, use* B's prediction, else use A's prediction?
- A model is a set of hypotheses applied to a particular case.
 - Judge hypotheses by how well they fit into models.
 - Models can be judged by simplicity.
 - Hypothesis designers don't need to game the system by manipulating the generality of hypotheses

Example Data

person visiting doctor:

Age	Sex	Coughs	HasLump
23	male	true	true

lump for person visiting doctor:

Location	LumpShape	Colour	CancerousLump
leg	oblong	red	false

person with cancer:

HasLungCancer	Treatment	Age	Outcome	Months
true	chemo	77	dies	7

Hypotheses

A hypothesis is of the form $\langle c, I, O, P \rangle$

- A context *c* in which specifies when it can be applied.
- A set of input features *I* about which it does not make predictions
- A set of output features *O* to predict (as a function of the input features).

• A program *P* to compute the output from the input. Represents:

 $P(O \mid c, I)$

or divide I into observation I_{obs} and intervention inputs I_{do} :

 $P(O \mid c, I_{obs}, do(I_{do}))$

Example

Consider the following hypotheses:

- T_1 predicts the prognosis of people with lung cancer.
- T_2 predicts the prognosis of people with cancer.
- *T*₃ is the null hypothesis that predicts the prognosis of people in general.
- *T*₄ predicts whether people with cancer have lung cancer, as a function of coughing.
- T_5 predicts whether people have cancer.

What should be used to predict the prognosis of a patient with observed coughing?

Models

To make a prediction, multiple hypotheses need to be used together in a model.

A model consists of multiple hypotheses, where each hypothesis can be used to predict a subset of its output features.

A model M needs to satisfy the following properties:

- *M* is coherent: it does not rely on the value of a feature in a context where the features is not defined
- *M* is consistent: it does not make different predictions for any feature in any context.
- *M* is predictive: it makes a prediction in every context that is possible (probability > 0).
- *M* is minimal: no subset is also a model.

Model and Ensembles of Hypotheses

A hypothesis instance is a tuple of the form $\langle h, c, I, O \rangle$ such that:

- h is a hypothesis,
- c is a context in which the hypothesis will be used
- I is a set of inputs used by the hypothesis
- *O* is a set of outputs the hypothesis will be used to predict.

A model is a set of hypothesis instances that satisfy the previous conditions.

[Think of a model as a Bayesian belief network, but allowing for context-specific independence, avoiding undefined features, and allowing a program to compute the conditional probabilities.]

Example

- T_1 predicts the prognosis of people with lung cancer.
- T_2 predicts the prognosis of people with cancer.
- *T*₃ is the null hypothesis that predicts the prognosis of people in general.
- *T*₄ predicts (probabilistically) whether people with cancer have lung cancer, as a function of coughing.
- T_5 predicts (probabilistically) whether people have cancer.
- A possible model for $P(Lives \mid person \land coughs)$:
 - $\langle T_5, person, \{\}, \{HC\} \rangle$,
 - $\langle T_3, person \land \neg hc, \{\}, \{Lives\}\rangle$,
 - $\langle T_4, person \land hc, \{Coughs\}, \{HLC\}\rangle$,
 - $\langle T_1, person \land hlc, \{\}, \{Lives\}\rangle$,
 - $\langle T_2, person \land hc \land \neg hlc, \{\}, \{Lives\} \rangle$.

Outline

Semantic Science Overview

- Ontologies
- Data
- Hypotheses
- Probabilities with Ontologies
- Property Domains and Undefined Random Variables
- 4 Models: Ensembles of hypotheses
- 5 Observation Languages

- Given a model of rooms of houses and their colours:
- A person observes a house and reports: "The house has a green kitchen."
- What is the probability of the observation?

- Given a model of rooms of houses and their colours:
- A person observes a house and reports: "The house has a green kitchen."
- What is the probability of the observation?
- Why did they tell us this?
 - They picked a room at random and reported its colour.

- Given a model of rooms of houses and their colours:
- A person observes a house and reports: "The house has a green kitchen."
- What is the probability of the observation?
- Why did they tell us this?
 - They picked a room at random and reported its colour.
 - They told us the colour of all of the rooms.

- Given a model of rooms of houses and their colours:
- A person observes a house and reports: "The house has a green kitchen."
- What is the probability of the observation?
- Why did they tell us this?
 - They picked a room at random and reported its colour.
 - They told us the colour of all of the rooms.
 - They searched for a room that is green and reported that they found the kitchen was green.

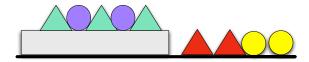
- Given a model of rooms of houses and their colours:
- A person observes a house and reports: "The house has a green kitchen."
- What is the probability of the observation?
- Why did they tell us this?
 - They picked a room at random and reported its colour.
 - They told us the colour of all of the rooms.
 - They searched for a room that is green and reported that they found the kitchen was green.
 - This was the most interesting/unusual aspect of the house.

- Given a model of rooms of houses and their colours:
- A person observes a house and reports: "The house has a green kitchen."
- What is the probability of the observation?
- Why did they tell us this?
 - They picked a room at random and reported its colour.
 - They told us the colour of all of the rooms.
 - They searched for a room that is green and reported that they found the kitchen was green.
 - This was the most interesting/unusual aspect of the house.
 - They just finished painting the kitchen.

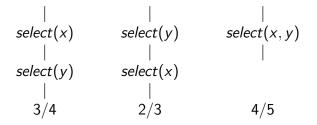
- Given a model of rooms of houses and their colours:
- A person observes a house and reports: "The house has a green kitchen."
- What is the probability of the observation?
- Why did they tell us this?
 - They picked a room at random and reported its colour.
 - They told us the colour of all of the rooms.
 - They searched for a room that is green and reported that they found the kitchen was green.
 - This was the most interesting/unusual aspect of the house.
 - They just finished painting the kitchen.
- The probability depends on the protocol for observations.

Overview Ontologies Domains Models Observations

Observation Protocols


Observe a triangle and a circle touching. What is the probability the triangle is green?

 $P(green(x) | triangle(x) \land \exists y \ circle(y) \land touching(x, y))$


The answer depends on how the x and y were chosen!

Overview Ontologies Domains Models Observations

Protocol for Observing

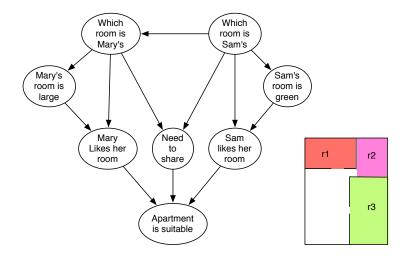
 $P(green(x) | triangle(x) \land \exists y \ circle(y) \land touching(x, y))$

Apartment/House Domain

Given:

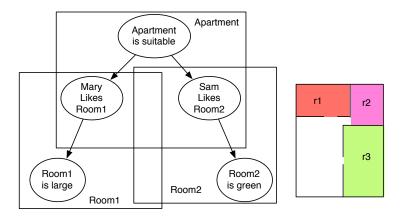
- a database of descriptions apartments and houses available to rent.
- a database of descriptions of what a person would be happy with. Each specifies P(person_likes | description).
 Want:
 - for each house determine which person would most likely want it
 - for each person determine which house they would be most likely to like.

Role assignments

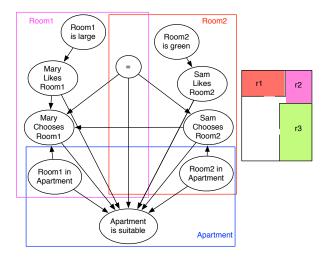

Hypothesis about what apartment Mary would like.

Whether Mary likes an apartment depends on:

- Whether there is a bedroom for daughter Sam
- Whether Sam's room is green
- Whether there is a bedroom for Mary
- Whether Mary's room is large
- Whether they share


... but apartments don't come labelled with the roles.

Bayesian Belief Network Representation


How can we condition on the observation of the apartment?

Naive Bayes representation

How do we specify that Mary chooses a room? What about the case where they (have to) share?

Causal representation

How do we specify that Sam and Mary choose one room each, but they can like many rooms?

• Currently hypotheses are buried in research articles; can't we just use IBM's Watson to read these?

- Currently hypotheses are buried in research articles; can't we just use IBM's Watson to read these?
- Surely we should have probabilistic ontologies?

- Currently hypotheses are buried in research articles; can't we just use IBM's Watson to read these?
- Surely we should have probabilistic ontologies?
- How can we stop people from publishing fictional data?

- Currently hypotheses are buried in research articles; can't we just use IBM's Watson to read these?
- Surely we should have probabilistic ontologies?
- How can we stop people from publishing fictional data?
- How can we test hypotheses if there is no "held-out" data?

- Currently hypotheses are buried in research articles; can't we just use IBM's Watson to read these?
- Surely we should have probabilistic ontologies?
- How can we stop people from publishing fictional data?
- How can we test hypotheses if there is no "held-out" data?
- Why do you assume that probability is the right formalism?

- Currently hypotheses are buried in research articles; can't we just use IBM's Watson to read these?
- Surely we should have probabilistic ontologies?
- How can we stop people from publishing fictional data?
- How can we test hypotheses if there is no "held-out" data?
- Why do you assume that probability is the right formalism?
- How can you convince people to use maximally informed priors rather than maximally uninformed priors?

Conclusion

- Semantic science is a way to develop and deploy knowledge about how the world works.
 - Scientists (and others) develop hypotheses that refer to standardized ontologies and predict for new cases.
 - Multiple hypotheses—forming models—are needed to make predictions in particular cases.
 - For each prediction, we can ask what hypotheses it is based on.
 - For each hypothesis, we can ask about the evidence on which it can be evaluated.
- Ontologies, hypotheses and observations interact in complex ways.
- Many formalisms will be developed and discarded before we converge on useful representations.

To Do

- Representing, reasoning and learning complex (probabilistic) hypotheses. "probabilistic programming"
- Representations for observations that interacts with hypotheses.
- Build infrastructure to allow publishing and interaction of ontologies, data, hypotheses, models, evaluation criteria, meta-data.
- Build inverse semantic science web:
 - Given a hypothesis, find relevant data
 - Given data, find hypotheses that make predictions on the data
 - Given a new case, find relevant models with explanations

Data is theory-laden

- Sapir-Whorf Hypothesis [Sapir 1929, Whorf 1940]: people's perception and thought are determined by what can be described in their language. (Controversial in linguistics!)
- A stronger version for information systems:

What is stored and communicated by an information system is constrained by the representation and the ontology used by the information system.

- Ontologies must come logically prior to the data.
- Data can't make distinctions that can't be expressed in the ontology.
- Different ontologies result in different data.