Semantic Science and Machine-Accessible Scientific Theories

David Poole* Clinton Smyth[†] Rita Sharma[†]

*Department of Computer Science, University of British Columbia [†]Georeference Online

March 2008

Ontologies Data Theories

Outline

- Semantic Science Vision
 - Ontologies
 - Data
 - Theories
- 2 Theoretical Foundations
 - Probabilistic Prediction
 - Probabilities with Ontologies
 - Existence and Identity Uncertainty

Fielded Systems

Ontologies Data Theories

Example: medical diagnosis

Example: people give symptoms and want to know what is wrong with them.

Current Practice (Google)	Vision
— describe symptoms using	
keywords	
— results ranked by popular-	
ity (pagerank)	
— text results	

Ontologies Data Theories

Example: medical diagnosis

Example: people give symptoms and want to know what is wrong with them.

Current Practice (Google)	Vision
— describe symptoms using	— use ontologies
keywords	
— results ranked by popular-	
ity (pagerank)	
— text results	

Ontologies Data Theories

Example: medical diagnosis

3

Example: people give symptoms and want to know what is wrong with them.

Current Practice (Google)	Vision
— describe symptoms using	— use ontologies
keywords	
— results ranked by popular-	— theories ranked by rele-
ity (pagerank)	vance and fit to data
— text results	

Ontologies Data Theories

Example: medical diagnosis

Example: people give symptoms and want to know what is wrong with them.

Current Practice (Google)	Vision
— describe symptoms using	— use ontologies
keywords	
— results ranked by popular-	— theories ranked by rele-
ity (pagerank)	vance and fit to data
— text results	— probabilistic predictions
	with references to sources

★ Ξ →

Example: finding a location that contains gold

Given a model of where gold can be found and 25000 location descriptions:

Current Practice	Vision
— keyword database look-up	— describe model using on-
	tology
— results (if any) unranked	— results ranked by fit to
or ranked by popularity	model
— text	— probabilistic prediction
— repeat for more and less	
general terms	

Ontologies Data Theories

Example: finding minerals at a location

Given one location and 100 models of where minerals can be found:

Current Practice ????	Vision
— keyword database look-up	— describe location and
	models using ontology
— results (if any) unranked	— results ranked by rele-
or ranked by popularity	vance and fit to data
— text	— probabilistic prediction
	with references

3 N

Ontologies Data Theories

Notational Minefield

- Theory / hypothesis / model / law (Science)
- Variable (probability and logic and programming languages)
- Model (science, probability and logic)
- Parameter (mathematics and statistics)
- Domain (science and logic and probability and mathematics)
- Object/class (object-oriented programming and ontologies)
- = (probability and logic)
- First-order (logic and dynamical systems)

Ontologies Data Theories

Our Semantic Science Vision

- Ontologies represent the meaning of symbols.
- Data that adheres to an ontology is published.
- Theories that make (probabilistic) predictions on data are published.
- Data can be used to evaluate theories.
- Theories make predictions on new cases.

30.00

Ontologies Data Theories

AI Traditions

- Expert Systems of 70's and 80's (e.g., Prospector '74-83)
 - Probabilistic models and machine learning. Bayesian networks, Bayesian X...
 - Ontologies and Knowledge Representations. Description logic, X logic...

Ontologies Data Theories

Science in Broadest Sense

We mean *science* in the broadest sense:

- where and when landslides occur
- where to find gold
- what errors students make
- disease symptoms, prognosis and treatment
- what companies will be good to invest in
- what house Mary would like

Ontologies Data Theories

Outline

- Theories
- 2 Theoretical Foundations
 - Probabilistic Prediction
 - Probabilities with Ontologies
 - Existence and Identity Uncertainty

3 Fielded Systems

Ontologies Data Theories

Ontologies

- In philosophy, ontology the study of existence.
- In CS, an ontology is a (formal) specification of the meaning of the vocabulary used in an information system.
- Ontologies are needed so that information sources can inter-operate at a semantic level.

Ontologies Data Theories

Ontologies

Ontologies Data Theories

Main Components of an Ontology

- Individuals: the objects in the world (not usually specified as part of the ontology)
- Classes: sets of (potential) individuals
- Properties: between individuals and their values

Ontologies Data Theories

Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class C in terms of:

• Genus: the super-class

• Differentia: the attributes that make members of the class *C* different from other members of the super-class "If genera are different and co-ordinate, their differentiae are themselves different in kind. Take as an instance the genus 'animal' and the genus 'knowledge'. 'With feet', 'two-footed', 'winged', 'aquatic', are differentiae of 'animal'; the species of knowledge are not distinguished by the same differentiae. One species of knowledge does not differ from another in being 'two-footed'."

Aristotle, Categories, 350 B.C.

Ontologies Data Theories

An Aristotelian definition

• An apartment building is a residential building with multiple units and units are rented.

 $A partment Building \equiv Residential Building \&$

NumUnits = *many*&

Ownership = *rental*

NumUnits is a property with domain ResidentialBuilding and range {one, two, many} Ownership is a property with domain Building and range {owned, rental, coop}.

• All classes can be defined in terms of properties.

Ontologies Data Theories

Outline

- Ontologies
- Data
- Theories
- 2 Theoretical Foundations
 - Probabilistic Prediction
 - Probabilities with Ontologies
 - Existence and Identity Uncertainty

3 Fielded Systems

Ontologies **Data** Theories

Data

Real data is messy!

- Multiple levels of abstraction
- Multiple levels of detail
- Uses the vocabulary from many ontologies: rocks, minerals, top-level ontology,...
- Rich meta-data:
 - Who collected each datum? (identity and credentials)
 - Who transcribed the information?
 - What was the protocol used to collect the data? (Chosen at random or chosen because interesting?)
 - What were the controls what was manipulated, when?
 - What sensors were used? What is their reliability and operating range?

Ontologies Data Theories

Example Data in Geology (I)

Input Layer: Slope

< 同 > < 国 > < 国 >

Semantic Science Vision Fielded Systems Data

Example Data in Geology (II)

Input Layer: Structure

David Poole, Clinton Smyth, Rita Sharma Semantic Science and Machine-Accessible Scientific Theories

▲□ ▶ ▲ 臣 ▶ ▲ 臣

Ontologies Data Theories

Data is theory-laden

- Sapir-Whorf Hypothesis [Sapir 1929, Whorf 1940]: people's perception and thought are determined by what can be described in their language. (Controversial in linguistics!)
- A stronger version for information systems:

What is stored and communicated by an information system is constrained by the representation and the ontology used by the information system.

- Ontologies must come logically prior to the data.
- Data can't make distinctions that can't be expressed in the ontology.
- Different ontologies result in different data.

Ontologies Data Theories

Outline

Semantic Science Vision

- Ontologies
- Data
- Theories

2 Theoretical Foundations

- Probabilistic Prediction
- Probabilities with Ontologies
- Existence and Identity Uncertainty

3 Fielded Systems

Ontologies Data Theories

Theories make predictions on data

A theory is a procedure that makes a prediction on data.

- Theories can make whatever predictions they like about data:
 - definitive predictions
 - point probabilities
 - probability ranges
 - ranges with confidence intervals
 - qualitative predictions
- For each prediction type, we need ways to judge predictions on data
- Users can use whatever criteria they like to evaluate theories (e.g., taking into account simplicity and elegance)

Ontologies Data Theories

Theory Ensembles

- How can we compare theories that differ in their generality?
- Theory A makes predictions about all cancers. Theory B makes predictions about lung cancers. Should the comparison between A and B take into account A's predictions on non-lung cancer?

Ontologies Data Theories

Theory Ensembles

- How can we compare theories that differ in their generality?
- Theory A makes predictions about all cancers. Theory B makes predictions about lung cancers. Should the comparison between A and B take into account A's predictions on non-lung cancer?
- What about theory C: *if lung cancer, use B's prediction, else use A's prediction*?

Ontologies Data Theories

Theory Ensembles

- How can we compare theories that differ in their generality?
- Theory A makes predictions about all cancers. Theory B makes predictions about lung cancers. Should the comparison between A and B take into account A's predictions on non-lung cancer?
- What about theory C: *if lung cancer, use B's prediction, else use A's prediction*?
- Proposal: make theory ensembles the norm.
 - Judge theories by how well they fit into ensembles.
 - Ensembles can be judged by simplicity.
 - Theory designers don't need to game the system by manipulating the generality of theories

Dynamics of Semantic Science

- Anyone can design their own ontologies.
 - People vote with their feet what ontology they use.
 - Need for semantic interoperability leads to ontologies with mappings between them.
- Ontologies evolve with theories:

A theory hypothesizes unobserved features or useful distinctions

- \longrightarrow add these to an ontology
- \longrightarrow other researchers can refer to them
- \longrightarrow reinterpretation of data
- Ontologies can be judged by the predictions of the theories that use them

- the role of the vocabulary is to describe useful

distinctions.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Outline

Semantic Science Vision

- Ontologies
- Data
- Theories

2 Theoretical Foundations

- Probabilistic Prediction
- Probabilities with Ontologies
- Existence and Identity Uncertainty

3 Fielded Systems

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Why Probabilistic Prediction?

- Probabilities are what you get from data. (Most suggested measures of prediction accuracy are optimized by probabilistic prediction!)
- There is a well defined procedure for combining background knowledge with data (conditioning).
- Probabilities are what is needed (with utilities) to make decisions.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Probabilistic Prediction

• The role of models in prediction: Given a description of a new case,

P(prediction|description)

 $= \sum_{m \in Models} \left(\begin{array}{c} P(prediction|m\&description) \times \\ P(m|description) \end{array} \right)$

Models is a set of mutually exclusive and covering set of hypotheses.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Probabilistic Prediction

• The role of models in prediction: Given a description of a new case,

P(prediction|description)

 $= \sum_{m \in Models} \left(\begin{array}{c} P(prediction | m\&description) \times \\ P(m | description) \end{array} \right)$

Models is a set of mutually exclusive and covering set of hypotheses.

- What features of the description are predictive?
- How do the features interact?
- What are the appropriate probabilities? (How can these be learned with limited data?)

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Outline

Semantic Science Vision

- Ontologies
- Data
- Theories

2 Theoretical Foundations

- Probabilistic Prediction
- Probabilities with Ontologies
- Existence and Identity Uncertainty

3 Fielded Systems

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Random Variables and Triples

- Reconcile:
 - random variables of probability theory
 - individuals, classes, properties of modern ontologies

A 3 b

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Random Variables and Triples

- Reconcile:
 - random variables of probability theory
 - individuals, classes, properties of modern ontologies
- For functional properties:

random variable for each $\langle \textit{individual},\textit{property}\rangle$ pair, where the domain of the random variable is the range of the property.

 For non-functional properties: Boolean random variable for each (*individual*, *property*, *value*) triple.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

First-order probabilistic models

30

- Individuals are not known until run time.
- Therefore the random variables are not known until run time (and they change for each situation).
- We want to build the models before we know the random variables.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

First-order probabilistic models

- Individuals are not known until run time.
- Therefore the random variables are not known until run time (and they change for each situation).
- We want to build the models before we know the random variables.
- \longrightarrow First-order probabilistic models
 - Idea: if you are a Bayesian, you need to treat every individual that you have the same knowledge about the same (exchangability).
 - Probabilities are specified for all individuals.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Probabilities and Aristotelian Definitions

Aristotelian definition

ApartmentBuilding ≡ ResidentialBuilding& NumUnits = many& Ownership = rental

leads to probability over property values

 $P(\langle A, type, ApartmentBuilding \rangle)$

 $= P(\langle A, type, ResidentialBuilding \rangle) \times P(\langle A, NumUnits, many \rangle | \langle A, type, ResidentialBuilding \rangle) \times P(\langle A, Ownership, rental \rangle | \langle A, NumUnits, many \rangle, \langle A, type, ResidentialBuilding \rangle)$

Type uncertainty \longrightarrow uncertainty over property values.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Outline

Semantic Science Vision

- Ontologies
- Data
- Theories

2 Theoretical Foundations

- Probabilistic Prediction
- Probabilities with Ontologies
- Existence and Identity Uncertainty

3 Fielded Systems

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Existence and Identity Uncertainty

Theory about what house Mary would like:

Whether Mary likes an house depends on:

- Whether there is a bedroom for daughter Sam
- Whether Sam's room is green
- Whether there is a bedroom for Mary
- Whether Mary's room is large
- Whether they share

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Existence and Identity

< E.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Clarity Principle

Clarity principle: probabilities must be over well-defined propositions.

- What if an individual doesn't exist?
 - $house(h4) \land roof_colour(h4, pink) \land \neg exists(h4)$

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Clarity Principle

Clarity principle: probabilities must be over well-defined propositions.

• What if an individual doesn't exist?

house(h4) ∧ roof _colour(h4, pink) ∧ ¬exists(h4) X
 Want: probability that there exists an object that matches some description. Name the the object that exists.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Clarity Principle

Clarity principle: probabilities must be over well-defined propositions.

• What if an individual doesn't exist?

house(h4) ∧ roof _colour(h4, pink) ∧ ¬exists(h4) X
 Want: probability that there exists an object that matches some description. Name the the object that exists.

• What if more than one individual exists? Which one are we referring to?

— In a house with three bedrooms, which is the second bedroom?

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Clarity Principle

Clarity principle: probabilities must be over well-defined propositions.

- What if an individual doesn't exist?
 - house(h4) ∧ roof _colour(h4, pink) ∧ ¬exists(h4) X
 Want: probability that there exists an object that matches some description. Name the the object that exists.
- What if more than one individual exists? Which one are we referring to?

— In a house with three bedrooms, which is the second bedroom?

- Note: Reified individuals are special:
 - Non-existence means the relation is false.
 - Well defined what doesn't exist when existence is false.
 - Same description implies the same individual.

Probabilistic Prediction Probabilities with Ontologies Existence and Identity Uncertainty

Role assignments

David Poole, Clinton Smyth, Rita Sharma Semantic Science and Machine-Accessible Scientific Theories

Outline

Semantic Science Vision

- Ontologies
- Data
- Theories

2 Theoretical Foundations

- Probabilistic Prediction
- Probabilities with Ontologies
- Existence and Identity Uncertainty

Fielded Systems

Expert Models

What if the models are provided by the experts in the field?

- not covering only provide positive models
- not exclusive they are often refinements of each other
- described at various levels of abstraction and detail
- often the experts don't know the probabilities and there is little data to estimate them

Providing Probabilities

Experts are reluctant to give probabilities:

- No data from which to estimate them
- People who want to make decision use more information than provided in our theories
- Difficult to combine marginal probabilities with new information to make decisions
- It is *not* because decision theory is inappropriate. Decision makers use probabilities and utilities.

What we do

- Use qualitative probabilities: {*always*, *usually*, *sometimes*, *rarely*, *never*}.
- With thousands of instances and hundreds of models, find the most likely and the rationale.
- Independence assumptions.

Example Model

Prototype SoilSlide Model (Jackson, 2007)

Bedrock	Description Presence Comment				Comment		
Dedi Ock B Soi	SoilSlide01 model						
Terrain 👘		Description	Pr	esence	Comment		
renam	SoilSlide02		i i	nodel			
Primary	🖂 Component - Compo	onent1	а	lways	nit is his is		
SOMETH	🗄 Layer - Layer 1		a	lways	Minor terrain unit will ALWAYS be M or C if Major Terrain Unit is R alone		
Commer	SurficialMateri	al - Bedrock		lways	Minor terrain unit will ALWAY or C if Major Terrain Unit is R	S be MIC 19	
areas or	SurficialMateri	al - <other values=""></other>		never	Minor terrain unit will ALWAYS be M or C if Major Terrain Unit is R alone		
<u>Seconda</u> USUALLY	E Component - Compo	onent2		lways	Secondary Primary Terrain u USUALLY C if Primary is R (T the Secondary component)	nit is his is	
	😑 Layer - Layer 1		a	lways			
Minor te	SurficialMateri	al - Colluvium	а	lways	Minor terrain unit will ALWAY or C if Major Terrain Unit is R	S be M talone	
C if <u>Maj</u>	Slope - Gentle	r		never	NEVER on slopes 14 degrees less	or It	
Thus, we	Slope - Plain			never	NEVER on slopes 14 degrees less	or	
this by sayir	Slope - Moderate		ų	isually	USUALLY on slopes between and 40 degrees	20	
ALWAYS ass	S Slope - Moderately Steep usually		isually	USUALLY on slopes between and 40 degrees	20 ctive		
under the set has	Slope - Steep			rarely	RARELY on slopes 41 to 60 d	egrees <mark>Ve</mark>	
whether the	Slope - Very S	Slope - Very Steep RARELY on slopes 41 to 60		egrees/ill he			
components	ents SurficialMaterial - Morainal Material (Till) always Minor terrain unit			Minor terrain unit will ALWAY or C if Major Terrain Unit is R	s be M alone slips		
	GeomorphProcess - Gully Erosion			netimes	es SOMETIMES associated with V or A		
	GeomorphProcess - SnowAvalanches sometimes SOMETIMES associated with V or A					V or A	

David Poole, Clinton Smyth, Rita Sharma

Semantic Science and Machine-Accessible Scientific Theories

Example Prediction from a Model

Test Results: Model SoilSlide02

Conclusion

- Demand from funders, scientists and users.
- Complementary to Semantic web.
- Representing, reasoning and learning complex probabilistic theories is largely unexplored.
- Still lots of work to be done!

To Do

- Fundamental research on complex probabilistic models.
- Build infrastructure to allow publishing and interaction of ontologies, data, theories, theory ensembles, evaluation criteria, meta-data.
- Build inverse semantic science web:
 - Given a theory, find relevant data
 - Given data, find theory ensembles
 - Given a new case, find relevant theory ensembles with explanations