# Logic, Probability and Computation: Statistical Relational AI and Beyond 

David Poole

Department of Computer Science, University of British Columbia

18 May 2011

For when I am presented with a false theorem, I do not need to examine or even to know the demonstration, since I shall discover its falsity a posteriori by means of an easy experiment, that is, by a calculation, costing no more than paper and ink, which will show the error no matter how small it is. . .

And if someone would doubt my results, I should say to him: "Let us calculate, Sir," and thus by taking to pen and ink, we should soon settle the question.
-Gottfried Wilhelm Leibniz [1677]

## AI: computational agents that act intelligently



## Foundations

## Logic, Probability, Statistics, Ontology over time



From: Google Books Ngram Viewer
(http://ngrams.googlelabs.com/)

## Logic, Probability, Statistics, Sex, Drugs, Rock



From: Google Books Ngram Viewer
(http://ngrams.googlelabs.com/)

## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Why Logic?

Logic provides a semantics linking

- the symbols in our language
- the (real or imaginary) world we are trying to characterise Suppose $K$ represents our knowledge of the world
- If

$$
K \models g
$$

then $g$ must be true of the world.

- If

$$
K \not \vDash g
$$

there is a model of $K$ in which $g$ is false.
Thus logical consequence seems like the correct notion for prediction.

## First-order Predicate Calculus

The world (we want to represent) is made up of individuals (things) and relationships between things.

Classical (first order) logic lets us represent:

- individuals in the world
- relations amongst those individuals
- conjunctions, disjunctions, negations of relations
- quantification over individuals


## Why Probability?

- There is lots of uncertainty about the world, but agents still need to act.
- Predictions are needed to decide what to do:
- definitive predictions: you will be run over tomorrow
- point probabilities: probability you will be run over tomorrow is 0.002
- probability ranges: you will be run over with probability in range [0.001,0.34]
- Acting is gambling: agents who don't use probabilities will lose to those who do - Dutch books.
- Probabilities can be learned from data. Bayes' rule specifies how to combine data and prior knowledge.


## Bayes' Rule

## Likelihood <br> Prior <br> $P($ hle $)=\frac{P(e l h) P(h)}{P(e)}$ <br> Normalizing constant

## Example Observation, Geology

## Input Layer: Slope



## Example Observation, Geology

Input Layer: Structure


## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Relational Learning

- Often the values of properties are not meaningful values but names of individuals.
- It is the properties of these individuals and their relationship to other individuals that needs to be learned.
- Relational learning has been studied under the umbrella of "Inductive Logic Programming" as the representations are often logic programs.


## Example: trading agent

What does Joe like?

| Individual | Property | Value |
| :--- | :--- | :--- |
| joe | likes | resort_14 |
| joe | dislikes | resort_35 |
| $\ldots$ | $\ldots$ | $\ldots$ |
| resort_14 | type | resort |
| resort_14 | near | beach_18 |
| beach_18 | type | beach |
| beach_18 | covered_in | ws |
| ws | type | sand |
| ws | color | white |
| $\ldots$ | $\ldots$ | $\ldots$ |

Values of properties may be meaningless names.

## Example: trading agent

Possible theory that could be learned:

$$
\begin{aligned}
& \operatorname{prop}(\text { joe, likes, } R) \leftarrow \\
& \quad \operatorname{prop}(R, \text { type, resort }) \wedge \\
& \quad \operatorname{prop}(R, \text { near }, B) \wedge \\
& \quad \operatorname{prop}(B, \text { type, beach }) \wedge \\
& \operatorname{prop}(B, \text { covered_in, } S) \wedge \\
& \operatorname{prop}(S, \text { type, sand }) .
\end{aligned}
$$

Joe likes resorts that are near sandy beaches.

- But we want probabilistic predictions.


## Bayesian Networks



## Bayesian Networks



What if there were multiple digits

## Bayesian Networks



What if there were multiple digits, problems

## Bayesian Networks



What if there were multiple digits, problems, students

## Bayesian Networks



What if there were multiple digits, problems, students, times?

## Bayesian Networks



What if there were multiple digits, problems, students, times? How can we build a model before we know the individuals?

## Multi-digit addition with parametrized BNs / plates

| $x_{j_{x}}$ | $\cdots$ | $x_{2}$ | $x_{1}$ |
| ---: | :--- | :--- | :--- |
| $+\quad y_{j_{z}}$ | $\cdots$ | $y_{2}$ | $y_{1}$ |
| $z_{j_{z}}$ | $\cdots$ | $z_{2}$ | $z_{1}$ |



Random Variables: $x(D, P), y(D, P)$, knowsCarry $(S, T)$, knowsAddition $(S, T)$, carry $(D, P, S, T), z(D, P, S, T)$ for each: digit $D$, problem $P$, student $S$, time $T$

- parametrized random variables


## Parametrized belief networks

- Allow random variables to be parametrized. interested $(X)$
- Parameters correspond to logical variables.
- Each parameter is typed with a population. $X$ : person
- Each population has a size. $\quad \mid$ person $\mid=1000000$
- Parametrized belief network means its grounding: for each combination of parameters, an instance of each random variable for each member of parameters' population. interested $\left(p_{1}\right) \ldots$ interested $\left(p_{1000000}\right)$
- Instances are independent (but can have common ancestors and descendants).


## Example: collaborative filtering



Parametrized random variables: age $(P)$, likes $(P, M)$, genre $(M)$.
If there are 1000 people and 100 movies,
Grounding contains: 100,000 likes $+1,000$ age +100 genre $=$ 101,100 random variables

## Example: collaborative filtering

The network means its grounding:

- the population of Person is $\{$ sam, chris, kim $\}$
- the population of Movie is $\{$ terminator, rango $\}$



## Representing Conditional Probabilities

- $P($ knows_addition $(X) \mid$ bright $(X)$, taught_addition $(X))$ parameter sharing - individuals share probability parameters.
- $P($ happy $(X) \mid$ friend $(X, Y), \operatorname{mean}(Y))$ needs aggregation - happy (a) depends on an unbounded number of parents.
- the carry of one digit depends on carry of the previous digit


## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Probabilistic Programming Languages

- Probabilistic inputs (used in Simula in 1966)
- Conditioning on observations, and querying for distributions
- Inference: more efficient than rejection sampling
- Learning probabilities from data


## Representing Bayesian networks

$$
\begin{aligned}
P(a) & =0.1 \\
P(b \mid a) & =0.8 \\
P(b \mid \neg a) & =0.3 \\
P(c \mid b) & =0.4 \\
P(c \mid \neg b) & =0.75
\end{aligned}
$$

begin
Boolean $a, b, c$;

$$
\text { (B) } P(b \mid a)=0.8
$$ a $:=$ draw (0.1); if a then b : $=\operatorname{draw}(0.8)$;

else

$$
\mathrm{b}:=\operatorname{draw}(0.3) ;
$$

$P(a)=0.1$,
$P($ bifa $)=0.8, P($ bifna $)=0.3$,
$P(c i f b)=0.4, P(c i f n b)=0.75$.
$b \Longleftrightarrow(a \wedge b i f a) \vee(\neg a \wedge b i f n a)$
if $b$ then
c $:=\operatorname{draw}(0.4)$;
else
c $:=\operatorname{draw}(0.75)$;
$c \Longleftrightarrow(b \wedge c i f b) \vee(\neg b \wedge c i f n b c)$

## Semantics of Probabilistic Programming Languages

"Alternative" for each instance of a probabilistic input possibly encountered in an execution of a program.

- Rejection sampling
- Independent choice: possible world for each assignment of a value for each alternative; program specifies what is true in each world
- Program trace semantics: possible world for each choice encountered in execution path
- Abductive semantics: possible world for each choice needed to infer observations and a value for a query


## Independent Choice Semantics

(A)
1
B
1
(C)

$$
P(a)=0.1, P(\text { bifa })=0.8, P(\text { bifna })=0.3
$$

$$
P(c i f b)=0.4, P(c i f n b)=0.75
$$

$$
b \Longleftrightarrow(a \wedge \text { bifa }) \vee(\neg a \wedge \text { bifna })
$$

$$
c \Longleftrightarrow(b \wedge c i f b) \vee(\neg b \wedge c i f n b c)
$$

| World | A | Bifa | Bifna | Cifb | Cifnb | Probability |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $w_{0}$ | false | false | false | false | false | $0.9 \cdot 0.2 \cdot 0.7 \cdot 0.6 \cdot 0.25$ |
| $w_{1}$ | false | false | false | false | true | $0.9 \cdot 0.2 \cdot 0.7 \cdot 0.6 \cdot 0.75$ |
| $\ldots$ |  |  |  |  |  |  |
| $w_{30}$ | true | true | true | true | false | $0.1 \cdot 0.8 \cdot 0.3 \cdot 0.4 \cdot 0.75$ |
| $w_{31}$ | true | true | true | true | true | $0.1 \cdot 0.8 \cdot 0.3 \cdot 0.4 \cdot 0.75$ |

## Program Trace Semantics

(A)
1
B
1
C
$P(a)=0.1, P(b i f a)=0.8, P($ bifna $)=0.3$,
$P(c i f b)=0.4, P(c i f n b)=0.75$.
$b \Longleftrightarrow(a \wedge$ bifa $) \vee(\neg a \wedge$ bifna $)$
$c \Longleftrightarrow(b \wedge c i f b) \vee(\neg b \wedge c i f n b c)$

| World | A | Bifa | Bifna | Cifb | Cifnb | Probability |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $w_{0}$ | false | $\perp$ | false | $\perp$ | false | $0.9 \times 0.7 \times 0.25$ |
| $w_{1}$ | false | $\perp$ | false | $\perp$ | true | $0.9 \times 0.7 \times 0.75$ |


| $W_{7}$ | true | true | $\perp$ | false | $\perp$ | $0.1 \times 0.8 \times 0.6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $w_{8}$ | true | true | $\perp$ | true | $\perp$ | $0.1 \times 0.8 \times 0.4$ |

Abductive semantics for computing $P(q \mid o b s)$, only need minimum set of choices needed to infer obs $\wedge q$ or obs $\wedge \neg q$.

## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Independent Choice Logic (ICL)

- A language for relational probabilistic models.
- Idea: combine logic and probability, where all uncertainty in handled in terms of Bayesian decision theory, and logic specifies consequences of choices.
- An ICL theory consists of a choice space with probabilities over choices and a logic program that gives consequences of choices.
- History: parametrized Bayesian networks, abduction and default reasoning $\longrightarrow$ probabilistic Horn abduction (IJCAI-91); richer language (negation as failure + choices by other agents $\longrightarrow$ independent choice logic (AIJ 1997).


## Independent Choice Logic

- An atomic hypothesis is an atomic formula. An alternative is a set of atomic hypotheses.
$\mathcal{C}$, the choice space is a set of disjoint alternatives.
- $\mathcal{F}$, the facts is an acyclic logic program that gives consequences of choices (can contain negation as failure). No atomic hypothesis is the head of a rule.
- $P_{0}$ a probability distribution over alternatives:

$$
\forall A \in \mathcal{C} \sum_{a \in A} P_{0}(a)=1
$$

## Meaningless Example

$$
\begin{aligned}
& \mathcal{C}=\left\{\left\{c_{1}, c_{2}, c_{3}\right\},\left\{b_{1}, b_{2}\right\}\right\} \\
& \mathcal{F}=\left\{\begin{array}{cc}
f \leftarrow c_{1} \wedge b_{1}, & f \leftarrow c_{3} \wedge b_{2}, \\
d \leftarrow c_{1}, & d \leftarrow \neg c_{2} \wedge b_{1}, \\
e \leftarrow f, & e \leftarrow \neg d\}
\end{array}\right. \\
& P_{0}\left(c_{1}\right)=0.5 \quad P_{0}\left(c_{2}\right)=0.3 \quad P_{0}\left(c_{3}\right)=0.2 \\
& P_{0}\left(b_{1}\right)=0.9 \quad P_{0}\left(b_{2}\right)=0.1
\end{aligned}
$$

## Semantics of ICL

- There is a possible world for each selection of one element from each alternative.
- The logic program together with the selected atoms specifies what is true in each possible world.
- The elements of different alternatives are independent.


## Meaningless Example: Semantics

$$
\begin{aligned}
& \mathcal{F}=\left\{f \leftarrow c_{1} \wedge b_{1}, \quad d \leftarrow c_{1}, \quad e \leftarrow f,\right. \\
& \left.f \leftarrow c_{3} \wedge b_{2}, \quad d \leftarrow \neg c_{2} \wedge b_{1}, \quad e \leftarrow \neg d\right\} \\
& P_{0}\left(c_{1}\right)=0.5 \quad P_{0}\left(c_{2}\right)=0.3 \quad P_{0}\left(c_{3}\right)=0.2 \\
& P_{0}\left(b_{1}\right)=0.9 \quad P_{0}\left(b_{2}\right)=0.1 \\
& \text { selection logic program } \\
& P(e)=0.45+0.27+0.03+0.02=0.77
\end{aligned}
$$

## Multi-digit addition with parametrized BNs / plates

| $x_{j_{x}}$ | $\cdots$ | $x_{2}$ | $x_{1}$ |
| ---: | :--- | :--- | :--- |
| $+\quad y_{j_{z}}$ | $\cdots$ | $y_{2}$ | $y_{1}$ |
| $z_{j_{z}}$ | $\cdots$ | $z_{2}$ | $z_{1}$ |



Random Variables: $x(D, P), y(D, P)$, knowsCarry $(S, T)$, knowsAddition $(S, T)$, carry $(D, P, S, T), z(D, P, S, T)$ for each: digit $D$, problem $P$, student $S$, time $T$

- parametrized random variables


## ICL rules for multi-digit addition

$$
\begin{aligned}
& z(D, P, S, T)=V \leftarrow \\
& x(D, P)=V x \wedge \\
& y(D, P)=V y \wedge \\
& \text { carry }(D, P, S, T)=V c \wedge \\
& \text { knowsAddition }(S, T) \wedge \\
& \neg \text { mistake }(D, P, S, T) \wedge \\
& V \text { is }(V x+V y+V c) \operatorname{div} 10 .
\end{aligned}
$$

Alternatives:
$\forall D P S T\{$ noMistake $(D, P, S, T)$, mistake $(D, P, S, T)\}$
$\forall D P S T\{\operatorname{selectDig}(D, P, S, T)=V \mid V \in\{0 . .9\}\}$

## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Bayesian Network Inference



$$
\begin{aligned}
& P(E \mid g)=\frac{P(E \wedge g)}{p(g)} \\
& P(E \wedge g)=\sum_{F} \sum_{B} \sum_{C} \sum_{A} \sum_{D} P(A) P(B \mid A C) \\
& \quad P(C) P(D \mid C) P(E \mid B) P(F \mid E) P(g \mid E D) \\
& =\left(\sum_{F} P(F \mid E)\right) \\
& \quad \sum_{B} P(e \mid B) \sum_{C} P(C)\left(\sum_{A} P(A) P(B \mid A C)\right) \\
& \quad\left(\sum_{D} P(D \mid C) P(g \mid E D)\right)
\end{aligned}
$$

## Exchangeability

- Before we know anything about individuals, they are indistinguishable, and so should be treated identically.


## Lifted Inference

- Idea: treat those individuals about which you have the same information as a block; just count them.
- Use the ideas from lifted theorem proving - no need to ground.
- Potential to be exponentially faster in the number of non-differentialed individuals.
- Relies on knowing the number of individuals (the population size).


## Example parametrized belief network


$P$ (boring)
$\forall X P($ interested $(X) \mid$ boring $)$
$\forall X P($ ask_question $(X) \mid$ interested $(X))$

## First-order probabilistic inference



## Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground steps with one step:

$$
\underbrace{f(X, Z) \vee p(X, a) \quad \neg p(b, Y) \vee g(Y, W)}_{f(b, Z) \vee g(a, W)}
$$

Substitution $\{X / b, Y / a\}$ is the most general unifier of $p(X, a)$ and $p(b, Y)$.

## Variable Elimination and Unification

- Multiplying parametrized factors:

$$
\underbrace{[f(X, Z), p(X, a)] \quad \times \quad[p(b, Y), g(Y, W)]}_{[f(b, Z), p(b, a), g(a, W)]}
$$

Doesn't work because the first parametrized factor can't subsequently be used for $X=b$ but can be used for other instances of $X$.

- We split $[f(X, Z), p(X, a)]$ into

$$
\begin{aligned}
& {[f(b, Z), p(b, a)]} \\
& {[f(X, Z), p(X, a)] \text { with constraint } X \neq b}
\end{aligned}
$$

## Parametric Factors

A parametric factor is a triple $\langle C, V, t\rangle$ where

- $C$ is a set of inequality constraints on parameters,
- $V$ is a set of parametrized random variables
- $t$ is a table representing a factor from the random variables to the non-negative reals.

$$
\left\langle\{X \neq \text { sue }\},\{\text { interested }(X), \text { boring }\}, \begin{array}{|ll|l|}
\hline \text { interested } & \text { boring } & \text { Val } \\
\hline \begin{array}{ll}
\text { yes } & \text { yes } \\
\text { yes } & \text { no }
\end{array} & 0.001 \\
& \ldots & \\
\hline
\end{array}\right.
$$

## Removing a parameter when summing


$n$ people
we observe no questions Eliminate interested:
$\left\langle\left\},\{\right.\right.$ boring, interested $\left.(X)\}, t_{1}\right\rangle$
$\left\langle\left\},\{\right.\right.$ interested $\left.(X)\}, t_{2}\right\rangle$
$\downarrow$
$\left\langle\left\},\{\right.\right.$ boring $\left.\},\left(t_{1} \times t_{2}\right)^{n}\right\rangle$
$\left(t_{1} \times t_{2}\right)^{n}$ is computed pointwise; we can compute it in time $O(\log n)$.

## Counting Elimination


$\mid$ people $\mid=n$

## Eliminate boring:

VE: factor on $\left\{\operatorname{int}\left(p_{1}\right), \ldots, \operatorname{int}\left(p_{n}\right)\right\}$ Size is $O\left(d^{n}\right)$ where $d$ is size of range of interested.

Exchangeable: only the number of interested individuals matters.
Counting Formula:

| \#interested | Value |
| :---: | :---: |
| 0 | $v_{0}$ |
| 1 | $v_{1}$ |
| $\ldots$ | $\ldots$ |
| n | $v_{n}$ |
| Complexity: $O\left(n^{d-1}\right)$. |  |

[de Salvo Braz et al. 2007] and [Milch et al. 08]

## Potential of Lifted Inference

- Reduce complexity:
polynomial $\longrightarrow$ logarithmic
exponential $\longrightarrow$ polynomial
- We need a representation for the intermediate (lifted) factors that is closed under multiplication and summing out (lifted) variables.
- Still an open research problem.


## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Science is the foundation of belief

- If a KR system makes a prediction, we should ask: what evidence is there? The system should be able to provide such evidence.
- A knowledge-based system should believe based on evidence. Not all beliefs are equally valid.
- The mechanism that has been developed for judging knowledge is called science. We trust scientific conclusions because they are based on evidence.


## Science is the foundation of belief

- If a KR system makes a prediction, we should ask: what evidence is there? The system should be able to provide such evidence.
- A knowledge-based system should believe based on evidence. Not all beliefs are equally valid.
- The mechanism that has been developed for judging knowledge is called science. We trust scientific conclusions because they are based on evidence.
- The semantic web is an endeavor to make all of the world's knowledge accessible to computers.
- We have used to term semantic science, in an anaolgous way to the semantic web.
- Claim: semantic science will form the foundation of the world-wide mind.


## Science as the foundation of world-wide mind

Science can be about anything:

- where and when landslides occur
- where to find gold
- what errors students make
- disease symptoms, prognosis and treatment
- what companies will be good to invest in
- what apartment Mary would like
- which celebrities are having affairs


## Semantic Science

- Ontologies represent the meaning of symbols.
- Data that adheres to ontologies are published.
- Hypotheses that make (probabilistic) predictions on data are published.
- Data used to evaluate hypotheses; the best hypotheses are theories.
- Hypotheses form models for predictions on new cases.
- All evolve in time.


## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Ontologies

- In philosophy, ontology the study of existence.
- In CS, an ontology is a (formal) specification of the meaning of the vocabulary used in an information system.
- Ontologies are needed so that information sources can inter-operate at a semantic level.


## Ontologies



## Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class $C$ in terms of:

- Genus: the super-class
- Differentia: the attributes that make members of the class $C$ different from other members of the super-class "If genera are different and co-ordinate, their differentiae are themselves different in kind. Take as an instance the genus 'animal' and the genus 'knowledge'. 'With feet', 'two-footed', 'winged', 'aquatic', are differentiae of 'animal'; the species of knowledge are not distinguished by the same differentiae. One species of knowledge does not differ from another in being 'two-footed'."

Aristotle, Categories, 350 B.C.

## An Aristotelian definition

- An apartment building is a residential building with multiple units and units are rented.

$$
\begin{aligned}
\text { ApartmentBuilding } \equiv & \text { ResidentialBuilding\& } \\
& \text { NumUnits = many\& } \\
& \text { Ownership }=\text { rental }
\end{aligned}
$$

NumUnits is a property with domain ResidentialBuilding and range \{one, two, many\}
Ownership is a property with domain Building and range \{owned, rental, coop\}.

- All classes are defined in terms of properties.
- Aristotelean definitions provide the (parametrized) random variables.


## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Data

Real data is messy!

- Multiple levels of abstraction
- Multiple levels of detail
- Uses the vocabulary from many ontologies: rocks, minerals, top-level ontology,...
- Rich meta-data:
- Who collected each datum? (identity and credentials)
- Who transcribed the information?
- What was the protocol used to collect the data? (Chosen at random or chosen because interesting?)
- What were the controls - what was manipulated, when?
- What sensors were used? What is their reliability and operating range?


## Example Data, Geology

## Input Layer: Slope



## Example Data, Geology

## Input Layer: Structure



## Data is theory-laden

- Sapir-Whorf Hypothesis [Sapir 1929, Whorf 1940]: people's perception and thought are determined by what can be described in their language. (Controversial in linguistics!)
- A stronger version for information systems:

What is stored and communicated by an information system is constrained by the representation and the ontology used by the information system.

- Ontologies come logically prior to the data.
- Data can't make distinctions that can't be expressed in the ontology.
- Different ontologies result in different data.


## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Hypotheses make predictions on data

Hypotheses are procedures that make prediction on data.
Theories are hypotheses that best fit the observational data.

- Hypotheses can make various predictions about data:
- definitive predictions
- point probabilities
- probability ranges
- ranges with confidence intervals
- qualitative predictions
- For each prediction type, we need ways to judge predictions on data
- Users can use whatever criteria they like to evaluate hypotheses (e.g., taking into account simplicity and elegance)
- Semantic science search engine: extract theories from published hypotheses.


## Example Prediction from a Hypothesis

## Test Results: Model SoilSlide02



M92G065ABCD by SoilSlide2m65score_raw

| 80,000 to 85,000 | $(31)$ |
| ---: | ---: |
| 79,000 to 80,000 | $(1002)$ |
| 78,000 to 79,000 | $(1531)$ |

all others (10979)

JacksonOutlines01Type by LSType

| $\square$ | $(21)$ |
| ---: | ---: | ---: |
| rockfall | $(2)$ |
| rockslide | $(6)$ |
| soil slide | $(22)$ |
| $\square$ |  |

Map Sheet No: 92G065
Observed Landslides (black outlines) plotted over Soilslide Model 2 Susceptibility Scores

## Applying hypotheses to new cases

- Hypotheses are often narrow, e.g., prognosis of people with a lung cancer.
- Hypotheses are general in the sense that they can be adapted to different cases.
- A model is a set of hypotheses applied to a particular case.
- Judge hypotheses by how well they fit into models.
- Models can be judged by simplicity.
- Hypothesis designers don't need to game the system by manipulating the generality of hypotheses


## Dynamics of Semantic Science

- New data and hypotheses are continually added.
- Anyone can design their own ontologies.
- People vote with their feet what ontology they use.
- Need for semantic interoperability leads to ontologies with mappings between them.
- Hypotheses engineered + learned (e.g., using ILP)
- Ontologies evolve with hypotheses:

A hypothesis learns useful unobserved features
$\longrightarrow$ add these to an ontology
$\longrightarrow$ other researchers can refer to them
$\longrightarrow$ reinterpretation of data

- Ontologies can be judged by the predictions of the hypotheses that use them
- role of a vocabulary is to describe useful distinctions.


## Outline

(1) Logic and Probability

- Relational Probabilistic Models
- Probabilistic Programming Languages
- Probabilistic Logic Programs
- Lifted Inference
(2) Semantic Science Overview
- Ontologies
- Data
- Hypotheses and Theories
- Models
(3) Existence and Identity Uncertainty


## Existence and Identity

h1: The house with the brown roof
h2: The tall house
h3: The house with the green roof -
h 4 : The house with the pink roof

## Clarity Principle

Clarity principle: probabilities must be over well-defined propositions.

- What if an individual doesn't exist?
- house $(h 4) \wedge$ roof_colour $(h 4$, pink $) \wedge \neg$ exists $(h 4)$


## Clarity Principle

Clarity principle: probabilities must be over well-defined propositions.

- What if an individual doesn't exist?
- house (h4) $\wedge$ roof_colour (h4, pink) $\wedge \neg$ exists (h4)
- What if more than one individual exists? Which one are we referring to?
-In a house with three bedrooms, which is the second bedroom?


## Role assignments

Hypothesis about what apartment Mary would like.
Whether Mary likes an apartment depends on:

- Whether there is a bedroom for daughter Sam
- Whether Sam's room is green
- Whether there is a bedroom for Mary
- Whether Mary's room is large
- Whether they share


## BN Representation



How can we condition on the observation of the apartment?

## Naive Bayes representation



How do we specify that Mary chooses a room?
What about the case where they (have to) share?

## Causal representation



How do we specify that Sam and Mary choose one room each, but they can like many rooms?

## Observation Protocols



Observe a triangle and a circle touching. What is the probability the triangle is green?

$$
\begin{aligned}
& P(\operatorname{green}(x) \\
& \quad \mid \exists x \text { triangle }(x) \wedge \exists y \operatorname{circle}(y) \wedge \text { touching }(x, y))
\end{aligned}
$$

The answer depends on how the $x$ and $y$ were chosen!

## Protocol for Observing


$P($ green $(x)$
$\mid \exists x$ triangle $(x) \wedge \exists y \operatorname{circle}(y) \wedge$ touching $(x, y))$

select ( $y$ )
select $(x, y)$
select $(x)$
$2 / 3$
$4 / 5$

## Conclusion

- To decide what to do an agent should take into account its uncertainty and it preferences (utility).
- The field of "statistical relational Al" looks at how to combine first-order logic and probabilistic reasoning.
- We need both (prior) knowledge and data to make predictions needed for action.

Challenges

- Knowledge representations that are heuristically and epistemologically adequate and take into account all data that can be obtained.
- Combine representations with ontologies to interoperate with heterogenous data sets and predictions made by various hypotheses developed by different people.


## Bayes' Rule

## Likelihood <br> Prior <br> $P($ hle $)=\frac{P(e l h) P(h)}{P(e)}$ <br> 4 <br> Normalizing <br> constant

## Al: computational agents that act intelligently



## Foundations

