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Logic and Probability Semantic Science Existence

For when I am presented with a false theorem, I
do not need to examine or even to know the
demonstration, since I shall discover its falsity a
posteriori by means of an easy experiment, that is,
by a calculation, costing no more than paper and
ink, which will show the error no matter how small it
is. . .

And if someone would doubt my results, I should
say to him: ”Let us calculate, Sir,” and thus by
taking to pen and ink, we should soon settle the
question.

—Gottfried Wilhelm Leibniz [1677]
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Logic and Probability Semantic Science Existence

AI: computational agents that act intelligently

What should 
an agent do?

Logic
Probability

Ontologies

Knowledge Representation

Learning

Relations

Preferences/Utilities

Decision Theory

Inference
Knowledge Aquisition

Perceiving

Game theory

Acting

Modelling

Data

Foundations

Prior Knowledge

InputsTasks

Hypotheses

Computation

Diagnosis
Observations

Dynamical Systems

Abilities
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Logic and Probability Semantic Science Existence

Logic, Probability, Statistics, Ontology over time

From: Google Books Ngram Viewer
(http://ngrams.googlelabs.com/)
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Logic and Probability Semantic Science Existence

Logic, Probability, Statistics, Sex, Drugs, Rock

From: Google Books Ngram Viewer
(http://ngrams.googlelabs.com/)
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Why Logic?

Logic provides a semantics linking

the symbols in our language

the (real or imaginary) world we are trying to characterise

Suppose K represents our knowledge of the world

If

K |= g

then g must be true of the world.

If

K 6|= g

there is a model of K in which g is false.

Thus logical consequence seems like the correct notion for
prediction.
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First-order Predicate Calculus

The world (we want to represent) is made up of
individuals (things) and relationships between things.

Classical (first order) logic lets us represent:

individuals in the world

relations amongst those individuals

conjunctions, disjunctions, negations of relations

quantification over individuals
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Why Probability?

There is lots of uncertainty about the world, but agents
still need to act.

Predictions are needed to decide what to do:

definitive predictions: you will be run over tomorrow
point probabilities: probability you will be run over
tomorrow is 0.002
probability ranges: you will be run over with probability
in range [0.001,0.34]

Acting is gambling: agents who don’t use probabilities
will lose to those who do — Dutch books.

Probabilities can be learned from data.
Bayes’ rule specifies how to combine data and prior
knowledge.
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Bayes’ Rule

P(h|e) = P(e|h)  P(h)
P(e)

Likelihood Prior

Normalizing
constant

10 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence Relational Probabilistic Models Probabilistic Programming Languages Probabilistic Logic Programs Inference

Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Slope
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Example Observation, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Structure
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Relational Learning

Often the values of properties are not meaningful values
but names of individuals.

It is the properties of these individuals and their
relationship to other individuals that needs to be learned.

Relational learning has been studied under the umbrella of
“Inductive Logic Programming” as the representations are
often logic programs.
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Example: trading agent

What does Joe like?

Individual Property Value
joe likes resort 14
joe dislikes resort 35
. . . . . . . . .
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
. . . . . . . . .

Values of properties may be meaningless names.
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Example: trading agent

Possible theory that could be learned:

prop(joe, likes,R)←
prop(R , type, resort)∧
prop(R , near ,B)∧
prop(B , type, beach)∧
prop(B , covered in, S)∧
prop(S , type, sand).

Joe likes resorts that are near sandy beaches.

But we want probabilistic predictions.
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Bayesian Networks

x2 x1
+ y2 y1

z3 z2 z1

x2

x1

y2
y1

z1z2z3

carry2carry3

knows 
addition

knows 
carry

What if there were multiple digits, problems, students, times?
How can we build a model before we know the individuals?
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

Student
Time

Digit
Problem

x

y
z

carry

knows 
addition

knows 
carry

Random Variables: x(D,P), y(D,P), knowsCarry(S ,T ),
knowsAddition(S ,T ), carry(D,P , S ,T ), z(D,P , S ,T )
for each: digit D, problem P , student S , time T
* parametrized random variables
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Parametrized belief networks

Allow random variables to be parametrized. interested(X )

Parameters correspond to logical variables. X

Each parameter is typed with a population. X : person

Each population has a size. |person| = 1000000

Parametrized belief network means its grounding: for
each combination of parameters, an instance of each
random variable for each member of parameters’
population. interested(p1) . . . interested(p1000000)

Instances are independent (but can have common
ancestors and descendants).
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Example: collaborative filtering

Movie

Person

likes

age
genre

Parametrized random variables: age(P), likes(P ,M),
genre(M).
If there are 1000 people and 100 movies,
Grounding contains: 100,000 likes + 1,000 age + 100 genre =
101,100 random variables
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Example: collaborative filtering

The network means its grounding:

the population of Person is {sam, chris, kim}
the population of Movie is {terminator , rango}

likes(s,r)

age(s)

age(c)

age(k) likes(c,r)

likes(k,r)

likes(s,t)

likes(c,t)

likes(k,t)

genre(r) genre(t)
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Representing Conditional Probabilities

P(knows addition(X )|bright(X ), taught addition(X ))
parameter sharing — individuals share probability
parameters.

P(happy(X )|friend(X ,Y ),mean(Y ))
needs aggregation — happy(a) depends on an unbounded
number of parents.

the carry of one digit depends on carry of the previous
digit
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Probabilistic Programming Languages

Probabilistic inputs (used in Simula in 1966)

Conditioning on observations, and querying for
distributions

Inference: more efficient than rejection sampling

Learning probabilities from data
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Representing Bayesian networks

A

B

C

P(a) = 0.1
P(b|a) = 0.8

P(b|¬a) = 0.3
P(c |b) = 0.4

P(c |¬b) = 0.75

P(a) = 0.1,
P(bifa) = 0.8, P(bifna) = 0.3,
P(cifb) = 0.4, P(cifnb) = 0.75.
b ⇐⇒ (a∧ bifa)∨ (¬a∧ bifna)
c ⇐⇒ (b∧cifb)∨(¬b∧cifnbc)

b e g i n
Boolean a , b , c ;
a := draw ( 0 . 1 ) ;
i f a then

b := draw ( 0 . 8 ) ;
e l s e

b := draw ( 0 . 3 ) ;
i f b then

c := draw ( 0 . 4 ) ;
e l s e

c := draw ( 0 . 7 5 ) ;
end
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Semantics of Probabilistic Programming Languages

“Alternative” for each instance of a probabilistic input possibly
encountered in an execution of a program.

Rejection sampling

Independent choice: possible world for each assignment of
a value for each alternative; program specifies what is
true in each world

Program trace semantics: possible world for each choice
encountered in execution path

Abductive semantics: possible world for each choice
needed to infer observations and a value for a query
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Independent Choice Semantics

A

B

C

P(a) = 0.1,P(bifa) = 0.8, P(bifna) = 0.3,
P(cifb) = 0.4, P(cifnb) = 0.75.
b ⇐⇒ (a ∧ bifa) ∨ (¬a ∧ bifna)
c ⇐⇒ (b ∧ cifb) ∨ (¬b ∧ cifnbc)

World A Bifa Bifna Cifb Cifnb Probability

w0 false false false false false 0.9 · 0.2 · 0.7 · 0.6 · 0.25
w1 false false false false true 0.9 · 0.2 · 0.7 · 0.6 · 0.75
. . .
w30 true true true true false 0.1 · 0.8 · 0.3 · 0.4 · 0.75
w31 true true true true true 0.1 · 0.8 · 0.3 · 0.4 · 0.75
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Program Trace Semantics

A

B

C

P(a) = 0.1,P(bifa) = 0.8, P(bifna) = 0.3,
P(cifb) = 0.4, P(cifnb) = 0.75.
b ⇐⇒ (a ∧ bifa) ∨ (¬a ∧ bifna)
c ⇐⇒ (b ∧ cifb) ∨ (¬b ∧ cifnbc)

World A Bifa Bifna Cifb Cifnb Probability

w0 false ⊥ false ⊥ false 0.9× 0.7× 0.25
w1 false ⊥ false ⊥ true 0.9× 0.7× 0.75
. . .
w7 true true ⊥ false ⊥ 0.1× 0.8× 0.6
w8 true true ⊥ true ⊥ 0.1× 0.8× 0.4

Abductive semantics for computing P(q|obs), only need
minimum set of choices needed to infer obs ∧ q or obs ∧ ¬q.

28 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence Relational Probabilistic Models Probabilistic Programming Languages Probabilistic Logic Programs Inference

Outline

1 Logic and Probability
Relational Probabilistic Models
Probabilistic Programming Languages
Probabilistic Logic Programs
Lifted Inference

2 Semantic Science Overview
Ontologies
Data
Hypotheses and Theories
Models

3 Existence and Identity Uncertainty

29 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence Relational Probabilistic Models Probabilistic Programming Languages Probabilistic Logic Programs Inference

Independent Choice Logic (ICL)

A language for relational probabilistic models.

Idea: combine logic and probability, where all uncertainty
in handled in terms of Bayesian decision theory, and logic
specifies consequences of choices.

An ICL theory consists of a choice space with probabilities
over choices and a logic program that gives consequences
of choices.

History: parametrized Bayesian networks, abduction and
default reasoning −→ probabilistic Horn abduction
(IJCAI-91); richer language (negation as failure + choices
by other agents −→ independent choice logic (AIJ 1997).

30 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence Relational Probabilistic Models Probabilistic Programming Languages Probabilistic Logic Programs Inference

Independent Choice Logic

An atomic hypothesis is an atomic formula.
An alternative is a set of atomic hypotheses.
C, the choice space is a set of disjoint alternatives.

F , the facts is an acyclic logic program that gives
consequences of choices (can contain negation as failure).
No atomic hypothesis is the head of a rule.

P0 a probability distribution over alternatives:

∀A ∈ C
∑
a∈A

P0(a) = 1.

31 David Poole Logic, Probability and Computation
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Meaningless Example

C = {{c1, c2, c3}, {b1, b2}}

F = { f ← c1 ∧ b1, f ← c3 ∧ b2,
d ← c1, d ← ¬c2 ∧ b1,
e ← f , e ← ¬d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1
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Semantics of ICL

There is a possible world for each selection of one
element from each alternative.

The logic program together with the selected atoms
specifies what is true in each possible world.

The elements of different alternatives are independent.
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Meaningless Example: Semantics

F = { f ← c1 ∧ b1, d ← c1, e ← f ,
f ← c3 ∧ b2, d ← ¬c2 ∧ b1, e ← ¬d}

P0(c1) = 0.5 P0(c2) = 0.3 P0(c3) = 0.2
P0(b1) = 0.9 P0(b2) = 0.1

selection︷ ︸︸ ︷ logic program︷ ︸︸ ︷
w1 |= c1 b1 f d e P(w1) = 0.45
w2 |= c2 b1 ¬f ¬d e P(w2) = 0.27
w3 |= c3 b1 ¬f d ¬e P(w3) = 0.18
w4 |= c1 b2 ¬f d ¬e P(w4) = 0.05
w5 |= c2 b2 ¬f ¬d e P(w5) = 0.03
w6 |= c3 b2 f ¬d e P(w6) = 0.02

P(e) = 0.45 + 0.27 + 0.03 + 0.02 = 0.77
34 David Poole Logic, Probability and Computation
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Multi-digit addition with parametrized BNs / plates

xjx · · · x2 x1
+ yjz · · · y2 y1

zjz · · · z2 z1

Student
Time

Digit
Problem

x

y
z

carry

knows 
addition

knows 
carry

Random Variables: x(D,P), y(D,P), knowsCarry(S ,T ),
knowsAddition(S ,T ), carry(D,P , S ,T ), z(D,P , S ,T )
for each: digit D, problem P , student S , time T
* parametrized random variables
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ICL rules for multi-digit addition

z(D,P , S ,T ) = V ←
x(D,P) = Vx∧
y(D,P) = Vy∧
carry(D,P , S ,T ) = Vc∧
knowsAddition(S ,T )∧
¬mistake(D,P , S ,T )∧
V is (Vx + Vy + Vc) div 10.

z(D,P , S ,T ) = V ←
knowsAddition(S ,T )∧
mistake(D,P , S ,T )∧
selectDig(D,P , S ,T ) = V .

z(D,P , S ,T ) = V ←
¬knowsAddition(S ,T )∧
selectDig(D,P , S ,T ) = V .

Alternatives:
∀DPST{noMistake(D,P , S ,T ),mistake(D,P , S ,T )}
∀DPST{selectDig(D,P , S ,T ) = V | V ∈ {0..9}}
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Bayesian Network Inference

A C

B D

E

F G

P(E |g) =
P(E ∧ g)

p(g)

P(E ∧ g) =
∑
F

∑
B

∑
C

∑
A

∑
D

P(A)P(B |AC )

P(C )P(D|C )P(E |B)P(F |E )P(g |ED)

=

(∑
F

P(F |E )

)
∑
B

P(e|B)
∑
C

P(C )

(∑
A

P(A)P(B |AC )

)
(∑

D

P(D|C )P(g |ED)

)
38 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence Relational Probabilistic Models Probabilistic Programming Languages Probabilistic Logic Programs Inference

Exchangeability

Before we know anything about individuals, they are
indistinguishable, and so should be treated identically.

39 David Poole Logic, Probability and Computation
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Lifted Inference

Idea: treat those individuals about which you have the
same information as a block; just count them.

Use the ideas from lifted theorem proving - no need to
ground.

Potential to be exponentially faster in the number of
non-differentialed individuals.

Relies on knowing the number of individuals (the
population size).

40 David Poole Logic, Probability and Computation
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Example parametrized belief network

interested(X)

ask_question(X)

boring

X:person

P(boring)
∀X P(interested(X )|boring)
∀X P(ask question(X )|interested(X ))

41 David Poole Logic, Probability and Computation
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First-order probabilistic inference

Parametrized
Belief Network

Belief Network

Parametrized
Posterior

Posterior

FOVE

VE

ground ground
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Theorem Proving and Unification

In 1965, Robinson showed how unification allows many ground
steps with one step:

f (X ,Z ) ∨ p(X , a) ¬p(b,Y ) ∨ g(Y ,W )︸ ︷︷ ︸
f (b,Z ) ∨ g(a,W )

Substitution {X/b,Y /a} is the most general unifier of p(X , a)
and p(b,Y ).

43 David Poole Logic, Probability and Computation
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Variable Elimination and Unification

Multiplying parametrized factors:

[f (X ,Z ), p(X , a)] × [p(b,Y ), g(Y ,W )]︸ ︷︷ ︸
[f (b,Z ), p(b, a), g(a,W )]

Doesn’t work because the first parametrized factor can’t
subsequently be used for X = b but can be used for other
instances of X .

We split [f (X ,Z ), p(X , a)] into

[f (b,Z ), p(b, a)]

[f (X ,Z ), p(X , a)] with constraint X 6= b,

44 David Poole Logic, Probability and Computation
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Parametric Factors

A parametric factor is a triple 〈C ,V , t〉 where

C is a set of inequality constraints on parameters,

V is a set of parametrized random variables

t is a table representing a factor from the random
variables to the non-negative reals.〈

{X 6= sue}, {interested(X ), boring},

interested boring Val
yes yes 0.001
yes no 0.01

· · ·

〉

45 David Poole Logic, Probability and Computation
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Removing a parameter when summing

interested(X)

ask_question(X)

boring

X:person

n people
we observe no questions

Eliminate interested :
〈{}, {boring , interested(X )}, t1〉
〈{}, {interested(X )}, t2〉

↓
〈{}, {boring}, (t1 × t2)n〉

(t1 × t2)n is computed point-
wise; we can compute it in time
O(log n).
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Counting Elimination

       int(X)

ask_question(X)

boring

X:person

|people| = n

Eliminate boring :
VE: factor on {int(p1), . . . , int(pn)}
Size is O(dn) where d is size of range
of interested.

Exchangeable: only the number of in-
terested individuals matters.
Counting Formula:

#interested Value
0 v0
1 v1

. . . . . .
n vn

Complexity: O(nd−1).
[de Salvo Braz et al. 2007] and [Milch et al. 08]
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Potential of Lifted Inference

Reduce complexity:

polynomial −→ logarithmic

exponential −→ polynomial

We need a representation for the intermediate (lifted)
factors that is closed under multiplication and summing
out (lifted) variables.

Still an open research problem.
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Science is the foundation of belief

If a KR system makes a prediction, we should ask: what
evidence is there? The system should be able to provide
such evidence.

A knowledge-based system should believe based on
evidence. Not all beliefs are equally valid.

The mechanism that has been developed for judging
knowledge is called science. We trust scientific
conclusions because they are based on evidence.

The semantic web is an endeavor to make all of the
world’s knowledge accessible to computers.

We have used to term semantic science, in an anaolgous
way to the semantic web.

Claim: semantic science will form the foundation of the
world-wide mind.
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Science as the foundation of world-wide mind

Science can be about anything:

where and when landslides occur

where to find gold

what errors students make

disease symptoms, prognosis and treatment

what companies will be good to invest in

what apartment Mary would like

which celebrities are having affairs
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Semantic Science

Data

World Ontologies

Training
Data Hypotheses/

Theories
New 

Cases Models → 
Predictions

Ontologies represent the
meaning of symbols.

Data that adheres to
ontologies are published.

Hypotheses that make
(probabilistic) predictions
on data are published.

Data used to evaluate
hypotheses; the best
hypotheses are theories.

Hypotheses form models
for predictions on new
cases.

All evolve in time.
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Ontologies

In philosophy, ontology the study of existence.

In CS, an ontology is a (formal) specification of the
meaning of the vocabulary used in an information system.

Ontologies are needed so that information sources can
inter-operate at a semantic level.

54 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence Ontologies Data Hypotheses and Theories Models

Ontologies

55 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence Ontologies Data Hypotheses and Theories Models

Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class C in
terms of:

Genus: the super-class

Differentia: the attributes that make members of the
class C different from other members of the super-class

“If genera are different and co-ordinate, their differentiae are
themselves different in kind. Take as an instance the genus
’animal’ and the genus ’knowledge’. ’With feet’, ’two-footed’,
’winged’, ’aquatic’, are differentiae of ’animal’; the species of
knowledge are not distinguished by the same differentiae. One
species of knowledge does not differ from another in being
’two-footed’.”

Aristotle, Categories, 350 B.C.
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An Aristotelian definition

An apartment building is a residential building with
multiple units and units are rented.

ApartmentBuilding ≡ ResidentialBuilding&

NumUnits = many&

Ownership = rental

NumUnits is a property with domain ResidentialBuilding
and range {one, two,many}
Ownership is a property with domain Building and range
{owned , rental , coop}.
All classes are defined in terms of properties.

Aristotelean definitions provide the (parametrized)
random variables.
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Data

Real data is messy!

Multiple levels of abstraction

Multiple levels of detail

Uses the vocabulary from many ontologies: rocks,
minerals, top-level ontology,. . .

Rich meta-data:

Who collected each datum? (identity and credentials)
Who transcribed the information?
What was the protocol used to collect the data?
(Chosen at random or chosen because interesting?)
What were the controls — what was manipulated, when?
What sensors were used? What is their reliability and
operating range?
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Example Data, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Slope
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Example Data, Geology

WWW.GEOREFERENCEONLINE.COM

Input Layer:  Structure
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Data is theory-laden

Sapir-Whorf Hypothesis [Sapir 1929, Whorf 1940]:
people’s perception and thought are determined by what
can be described in their language. (Controversial in
linguistics!)

A stronger version for information systems:

What is stored and communicated by an information
system is constrained by the representation and the
ontology used by the information system.

Ontologies come logically prior to the data.

Data can’t make distinctions that can’t be expressed in
the ontology.

Different ontologies result in different data.
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Hypotheses make predictions on data

Hypotheses are procedures that make prediction on data.
Theories are hypotheses that best fit the observational data.

Hypotheses can make various predictions about data:
definitive predictions
point probabilities
probability ranges
ranges with confidence intervals
qualitative predictions

For each prediction type, we need ways to judge
predictions on data
Users can use whatever criteria they like to evaluate
hypotheses (e.g., taking into account simplicity and
elegance)
Semantic science search engine: extract theories from
published hypotheses.
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Example Prediction from a Hypothesis

WWW.GEOREFERENCEONLINE.COM

 Test Results: Model SoilSlide02
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Applying hypotheses to new cases

Hypotheses are often narrow, e.g., prognosis of people
with a lung cancer.

Hypotheses are general in the sense that they can be
adapted to different cases.

A model is a set of hypotheses applied to a particular
case.

Judge hypotheses by how well they fit into models.
Models can be judged by simplicity.
Hypothesis designers don’t need to game the system by
manipulating the generality of hypotheses
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Dynamics of Semantic Science

New data and hypotheses are continually added.

Anyone can design their own ontologies.
— People vote with their feet what ontology they use.
— Need for semantic interoperability leads to ontologies
with mappings between them.

Hypotheses engineered + learned (e.g., using ILP)

Ontologies evolve with hypotheses:
A hypothesis learns useful unobserved features
−→ add these to an ontology
−→ other researchers can refer to them
−→ reinterpretation of data

Ontologies can be judged by the predictions of the
hypotheses that use them
— role of a vocabulary is to describe useful distinctions.
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Existence and Identity

h2: The tall house

h1: The house with the brown roof

h3: The house with the green roof

h4: The house with the pink roof
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Clarity Principle

Clarity principle: probabilities must be over well-defined
propositions.

What if an individual doesn’t exist?

house(h4) ∧ roof colour(h4, pink) ∧ ¬exists(h4)

What if more than one individual exists? Which one are
we referring to?
—In a house with three bedrooms, which is the second
bedroom?
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Role assignments

Hypothesis about what apartment Mary would like.

Whether Mary likes an apartment depends on:

Whether there is a bedroom for daughter Sam

Whether Sam’s room is green

Whether there is a bedroom for Mary

Whether Mary’s room is large

Whether they share

71 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence

BN Representation

Which 
room is 
Mary's

Which 
room is 
Sam's

Mary's 
room is 
large

Sam's 
room is 
green

Mary 
Likes her 

room

Sam 
likes her 

room

Need 
to 

share

Apartment 
is suitable

r1 r2

r3

How can we condition on the observation of the apartment?
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Naive Bayes representation

Mary 
Likes

Room1

Sam
Likes

Room2

Room1 
is large

Room2 
is green

Apartment 
is suitable

r1 r2

r3

Apartment

Room1
Room2

How do we specify that Mary chooses a room?
What about the case where they (have to) share?
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Causal representation

Mary 
Likes

Room1
Sam
Likes

Room2

Room1 
is large Room2 

is green

Apartment 
is suitable

r1 r2

r3

Apartment

Room1 Room2

Mary 
Chooses
Room1

Room1 in 
Apartment

Sam 
Chooses
Room2

Room2 in 
Apartment

=

How do we specify that Sam and Mary choose one room each,
but they can like many rooms?
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Observation Protocols

Observe a triangle and a circle touching. What is the
probability the triangle is green?

P(green(x)

|∃x triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

The answer depends on how the x and y were chosen!
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Protocol for Observing

P(green(x)

|∃x triangle(x) ∧ ∃y circle(y) ∧ touching(x , y))

| | |
select(x) select(y) select(x , y)
| | |

select(y) select(x)
| |

3/4 2/3 4/5
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Conclusion

To decide what to do an agent should take into account
its uncertainty and it preferences (utility).

The field of “statistical relational AI” looks at how to
combine first-order logic and probabilistic reasoning.

We need both (prior) knowledge and data to make
predictions needed for action.

Challenges

Knowledge representations that are heuristically and
epistemologically adequate and take into account all data
that can be obtained.

Combine representations with ontologies to interoperate
with heterogenous data sets and predictions made by
various hypotheses developed by different people.
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Bayes’ Rule

P(h|e) = P(e|h)  P(h)
P(e)

Likelihood Prior

Normalizing
constant

78 David Poole Logic, Probability and Computation



Logic and Probability Semantic Science Existence

AI: computational agents that act intelligently

What should 
an agent do?

Logic
Probability

Ontologies

Knowledge Representation

Learning

Relations

Preferences/Utilities

Decision Theory

Inference
Knowledge Aquisition

Perceiving

Game theory

Acting

Modelling

Data

Foundations

Prior Knowledge

InputsTasks

Hypotheses

Computation

Diagnosis
Observations

Dynamical Systems

Abilities
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