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Abstract

This paper studies issues relating to the
parameterization of probability distributions
over binary data sets. Several such param-
eterizations of models for binary data are
known, including the Ising, generalized Ising,
canonical and full parameterizations. We
also discuss a parameterization that we call
the “spectral parameterization”, which has
received significantly less coverage in existing
literature. We provide this parameterization
with a spectral interpretation by casting log-
linear models in terms of orthogonal Walsh-
Hadamard harmonic expansions. Using var-
ious standard and group sparse regularizers
for structural learning, we provide a compre-
hensive theoretical and empirical comparison
of these parameterizations. We show that
the spectral parameterization, along with
the canonical, has the best performance and
sparsity levels, while the spectral does not de-
pend on any particular reference state. The
spectral interpretation also provides a new
starting point for analyzing the statistics of
binary data sets; we measure the magnitude
of higher order interactions in the underlying
distributions for several data sets.

1 Introduction

Log-linear models are used as e�cient parameteriza-
tions for probability distributions in a wide variety
of applications (Bishop et al., 1975; Whittaker, 1990;
Lauritzen, 1996; Wasserman, 2004; Koller and Fried-
man, 2009). Due to their relatively small number
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of parameters, pairwise log-linear models have some-
times been advocated in scenarios where limited data
is available (Whittaker, 1990, §9.3). However, pair-
wise models only focus on unary and pairwise sta-
tistical properties of the data; a pairwise assumption
can be restrictive if higher-order moments of the data
are important and we have su�cient training examples
available to reliably estimate these higher-order statis-
tics. Despite this fact, almost all previous work on
structure learning with `1-regularization has made the
pairwise assumption, with a few exceptions. Dahin-
den et al. (2007) consider log-linear models of dis-
crete data where all potentials up to a fixed order are
considered with (group) `1-regularization to learn the
structure, Schmidt and Murphy (2010) address hierar-
chical log-linear models with (overlapping-group) `1-
regularization, and Ding et al. (2011) further consider
hierarchical log-linear models with covariates.

This paper makes two contributions. First, it develops
a spectral interpretation of an existing parameteriza-
tion of full log-linear models in terms of orthogonal
Walsh-Hadamard bases (Beer, 1981). Although this
parameterization has been used occasionally, to the
best of our knowledge, its interpretation in terms of
orthogonal expansions is new. We should also point
out that a spectral expansion of probability measures
in terms of Walsh basis functions has been studied
in the context of univariate and bivariate probability
density functions (Maqusi, 1981), and that orthogonal
Walsh-Hadamard bases were used for analyzing binary
factorial designs (Rockmore, 1997, §2.2). Our focus on
log-linear models enables us to use this parameteriza-
tion to study the “natural statistics”, or spectrum, of
several popular binary data sets, in the same fashion
that researchers have investigated the natural statis-
tics of images and other signals. Our results show that
in this spectral domain, lower-order potentials tend to
have much more weight than higher-order potentials.
This result is very intuitive, but it is not obvious. For
example, one can construct distributions which only
have high-order potentials, such as the “parity distri-
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bution”:

p
parity

(x) / e
Q

i xi , x
i

2 {�1,+1}.

The parameterization we describe here, which we coin
the spectral parameterization, was suggested previ-
ously by Bishop et al. (1975). That work examined the
‘full’ parameterization of general discrete probabilistic
models, and suggested adding constraints to the model
parameters in order to obtain a minimal parameteri-
zation. For binary variables, the constraints leave a
single degree of freedom for each potential, and can
thus be modeled using a single parameter – essentially
leading to the spectral parameterization. This initial
work failed to notice the harmonic properties of the
parameterization and does not make a connection to
Walsh-Hadamard expansions.

The spectral parameterization has received minimal
attention in the machine learning and statistics liter-
ature. Most recently, both the spectral representation
and the Hadamard transform appeared in a paper in
the field of haplotype inference (Kato et al., 2010).
Kato et al. (2010), however, do not use the Hadamard
transform to describe the harmonic structure of the
parameterization, but rather use it as a computational
tool to geometrically average approximated marginal
distributions in a computationally e�cient manner,
and to find maximum-probability states given a model
with a specific structure. This work, which is the one
we believe is closest to ours, does not address the is-
sue of learning. However, when used for learning, the
spectral parameterization implicitly defines a new cat-
egory of priors – priors over the spectral parameters of
the distribution.

This spectral interpretation is important for several
reasons. First, it allows us to conduct empirical anal-
yses similar to the ones that are carried out for other
types of data using the Fourier and wavelet transforms.
Second, it provides an important bridge between har-
monic analysis and related fields such as compressed
sensing, and the problem of learning the parameters
and structure of discrete probabilistic graphical mod-
els. Although we do not explore this theoretical con-
nection in this paper, we believe it could potentially
lead to new theoretical results about the sample com-
plexity of sparse undirected probabilistic models (Can-
des et al., 2006; Abbeel et al., 2006; Ravikumar et al.,
2010).

The second contribution of this paper is to present a
comprehensive comparison of di↵erent parameteriza-
tions of undirected discrete probabilistic models, in-
cluding the full, Ising, canonical and spectral param-
eterizations. This comparison is done in the context
of learning with several types of standard and group
`1 regularizers. These experiments can be seen as an
extension of the ones conducted by Schmidt and Mur-
phy (2010) to a much broader range of parameteriza-

tions. A comparative analysis of such a wide range
has not been previously undertaken in the literature.
We believe researchers will find it useful as it sheds
light on the choice of parameterization and variant of
`1 regularization that are used when learning discrete
probabilistic models.

2 Log-linear Models

Given n binary random variables x 2 {�1,+1}n,
we can express a positive joint probability as a
globally normalized product of potential functions
exp(�

A

(x
A

)) defined for each possible subset A of
S , {1, 2, . . . , n}:

p(x) , 1

Z

Y

A✓S

exp(�
A

(x
A

)).

The normalizing constant Z ensures that the distribu-
tion sums to one. When the logarithm of each poten-
tial is linear in the parameters of the potential, and the
normalizing constant is encoded as � log(Z) = �;(x),
we can express the model in the standard log-linear
form (Bishop et al., 1975):

log p(x) =
X

A✓S

�
A

(x
A

) =
X

A✓S

wT

A

f
A

(x
A

), (1)

where f
A

(x
A

) is a feature vector derived from x
A

. The
vectorw is the set of log-linear parameters. We use the
short-handw

A

to refer to all the parameters associated
with the function �

A

(x
A

), and use w to refer to the
concatenation of all w

A

.

Undirected probabilistic graphical models can be de-
rived from log-linear models by connecting node i to j
if variables x

i

and x
j

co-occur in some � term. More
precisely, a log-linear model is graphical if there is a
non-zero � term for every clique in the graph (Wasser-
man, 2004). Conversely, �

A

(x) = 0 if {s, t} ✓ A for
t 6= s, and (s, t) is not an edge. Second, a log-linear
model is hierarchical if �

A

= 0 and A ⇢ B implies
that �

B

= 0. Typically, attention is restricted to the
class of hierarchical log-linear models due to the inter-
pretability of their sparsity pattern in terms of condi-
tional independence (Whittaker, 1990).

In practice, it is typically not feasible to include a po-
tential �

A

(x
A

) for all 2n subsets. Removing the po-
tential �

A

(x
A

) from the model is equivalent to setting
it to zero for all values of x

A

, or equivalently setting
all elements of w

A

to zero. For example, we obtain the
class of pairwise models if we enforce w

A

= 0 for all
A with a cardinality greater than two. This e↵ectively
nullifies the e↵ects of higher-order statistics present in
the data on the model.
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3 Parameterizations

3.1 Full Parameterization

With the full parameterization of log-linear models,
pairwise potentials have the form:

�
ij

(x
i

, x
j

) =
X

s1

X

s2

I
<s1,s2>(xi

, x
j

)w
ijs1s2 ,

where s1, s2 2 {�1,+1} and the indicator
I
<s1,s2>(xi

, x
j

) is one if x
i

= s1 and x
j

= s2, and
zero otherwise. For three-way potentials we have:

�
ijk

(x
i

, x
j

, x
k

) =
X

s1,s2,s3

I
<s1,s2,s3>(xi

, x
j

, x
k

)w
ijks1s2s3

and similarly for higher-order potentials. In general,
if A contains k elements that can each take 2 values,
�
A

(x
A

) will have 2k parameters w
A

.

3.2 Ising Parameterizations

The Ising parameterization allows us to reduce the
model complexity and consider potentials with a single
parameter:

�
ij

(x
i

, x
j

) =
X

s

I
<s,s>

(x
i

, x
j

)w
ij

.

Generalized Ising models allow potentials to take c
parameters rather than a single one, where c is the
number of values that variables can take. For binary
variables, c = 2, which we assume throughout. For
pairwise potentials we have:

�
ij

(x
i

, x
j

) =
X

s

I
<s,s>

(x
i

, x
j

)w
ijs

.

And similarly, for three-way potentials:

�
ijk

(x
i

, x
j

, x
k

) =
X

s

I
<s,s,s>

(x
i

, x
j

, x
k

)w
ijks

.

3.3 Canonical Parameterizations

Another strategy for decreasing the number of pa-
rameters is the canonical parameterization (Koller and
Friedman, 2009; Lauritzen, 1996). To understand this
parameterization, consider the set of features:

f
A

(x
A

) =

(
1 i↵ x

A

= 1

0 otherwise,

where 1 denotes a vector of ones. It is a simple exercise
to verify that for this choice one has:

log p(x
A

= 1,x
A

= �1) =
X

C✓A

w
C

,

where A is the set complement of A, and all f
A

and w
A

are scalars. Solving the linear system of 2n equations
for w yields:

w
A

=
X

C✓A

(�1)|A�C| log p(x
C

= 1,x
C

= �1). (2)

This is a special case of the Möbius inversion lemma.
We have chosen here the specific reference state 1,
which may be replaced with an arbitrary reference
state (see Koller and Friedman (2009) for discussion).

In this canonical parameterization we need only one
parameter per potential, hence 2n parameters are
needed to represent the entire distribution, one of
which is the normalizing constant. The Ising pa-
rameterization also requires 2n parameters, but it is
not complete (it can’t represent all positive distribu-
tions). The other parameterizations require more pa-
rameters: the full parameterization requires 3n, since
each parameter corresponds to an assignment of one
of {not in A,�1,+1} to each variable, and generalized
Ising requires 2nc = 2n+1 (c = 2 for binary variables).

3.4 Spectral Parameterization

We consider an alternative parameterization that has
received less attention in the literature, but which has
important properties of theoretical and practical sig-
nificance. We refer to this fourth parameterization as
the spectral parameterization. The motivation for con-
sidering such a parameterization was made aptly by
Koller and Friedman (2009, §4.4.2.1, pg. 130): “...
canonical parameters are not very intuitive, highlight-
ing yet again the di�culties of constructing a reason-
able parameterization of a Markov network by hand.”

With n = 3, the spectral parameterization of log p(x)
is as follows:
X

A✓S

�
A

(x
A

) = w0 + w1x1 + w2x2 + w3x3 + w12x1x2

+w13x1x3 + w23x2x3 + w123x1x2x3.

That is, the spectral parameterization has only one
parameter per potential. In general, we have:

log p(x) =
X

A✓S

w
A

Y

i2A

x
i

. (3)

Again, we only need 2n parameters to represent the
entire distribution. We are required to assess 2n � 1
parameters for all w

A

, where A 6= ;; w; can be used
to ensure values sum to 1.

Although this spectral parameterization is not widely
discussed in existing literature, it has been known (for
general discrete log-linear models) for several decades
(Bishop et al., 1975). Here, we show that the spec-
tral representation provides a map between log-linear
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models and orthogonal expansions in terms of Walsh-
Hadamard bases. As an example, consider a log-linear
model with two random variables: q(x1, x2) = w0 +
w1x1+w2x2+w12x1x2, where q(x1, x2) , log p(x1, x2).
We can ground this expression for all realizations of the
random variables to obtain:

q(+1,+1) = w0 + w1 + w2 + w12

q(�1,+1) = w0 � w1 + w2 � w12

q(+1,�1) = w0 + w1 � w2 � w12

q(�1,�1) = w0 � w1 � w2 + w12,

which written in matrix notation is: q = 2H2w. H2

is the Hadamard matrix for two variables:

H2 = 2�1

2

64

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3

75 (4)

For n variables, the Hadamard matrix has entries
(H

n

)
ij

= 2�n/2(�1)i·j , where i · j is the bitwise dot
product of the binary representations of the numbers
i and j indexing the 2n possible realizations of x (e.g.,
Pratt et al. (1969)). The rows (and columns) of the
Hadamard matrix are orthogonal Walsh functions h(·)
(Beer, 1981). Let x(t) denote the t-th realization of x
for t = 0, . . . , 2n � 1. Then, we can rewrite our linear
system in terms of these basis functions as follows:

q(x(t)) =
X

A✓S

h
A

(x(t))w
A

. (5)

This is the forward Walsh-Hadamard transform.
Since the Walsh functions are orthogonal, that isP2n�1

t=0 h
A

(x(t))h
B

(x(t)) = 2nI
A=B

, we can multiply
both sides of the forward transform by h

A

and sum
over t to obtain the reverse transform:

w
A

= 2�n

2n�1X

t=0

q(x(t))h
A

(x(t)). (6)

Equations 5 and 6 define the Walsh-Hadamard trans-
form. H

n

is symmetrical, and as with the Fourier
transform, the Walsh-Hadamard transform pair can
be expressed as:

q = 2n/2H
n

w and w = 2�n/2H
n

q. (7)

Likewise, it can be computed using the Fast Walsh-
Hadamard transform (FWHT) in O(n2n) (that is,
m logm instead of m2, where m = 2n).

3.5 Comparing di↵erent parameterizations

Table 1 summarizes the properties of the parameteri-
zations under consideration. We consider the general-
ization of the parameterizations to variables with c val-
ues, however the spectral parameterization is consid-
ered only for c = 2. “Canonical” refers to the canonical

parameterization with a general reference state, while
C1 and C2 use reference states 1 and �1 respectively.

A parameterization is complete if it can represent any
positive distribution. A parameterization is minimal
if it has no redundant parameters. The next column
corresponds to symmetry with respect to the values of
individual variables. Assume we flip the values of a
specific variable. How would the parameters change,
in order to reflect the modification to the distribu-
tion? Symmetric parameterizations would only need
to make trivial modifications to their parameters, such
as exchanging some of them with each other, or flip-
ping their signs. Non-symmetric parameterizations re-
quire much more complex calculations. In particular, a
sparsew may then become dense. The next column of-
fers a similar analysis, for exchanging the values of two
di↵erent variables. Finally, “uniquely defined” means
the distribution is uniquely defined as a function of
the parameter vector w, without additional external
information such as an identity of a reference state.

Generalized Ising is complete only for binary variables,
for which it has two times the minimal number of pa-
rameters. Ising has the minimal number, but with
redundancy, as it is not complete. The canonical pa-
rameterization requires the specification of a reference
state. Each possible reference state can be seen as
giving rise to a di↵erent parameterization, therefore
the canonical parameterization is not uniquely defined.
The spectral parameterization is the only one that is
minimal and symmetric w.r.t. values. In addition, it
is also complete, symmetric w.r.t. variables, and it is
unique.

4 Sparse Regularization for Structure
Learning

All complete parameterizations share the same
maximum-likelihood (ML) estimate. Once regulariza-
tion is introduced, each combination of parameteriza-
tion and regularizer defines a di↵erent prior over the
space of distributions. Aside from computational is-
sues, this choice also impacts prediction performance.
In our experiments, we consider four di↵erent forms
of sparse regularization. The first is the standard `1-
regularization, used in the context of log-linear models
by Lee et al. (2006):

||w
A

||1 ,
X

j

|w
(j)
A

|, ||w
A

||2 ,
�X

j

(w(j)
A

)2
�1/2

,

max
w

nX

i=1

log p(x
i

|w)�
X

A✓S

�
A

||w
A

||1. (8)

The `1-regularization encourages the parameter vector
w to be sparse. To illustrate why one has to devote
careful thinking to the pairing of parameterization and
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Table 1: Properties of parameterizations.
Parameterization #Parameters Complete Minimal Symm w.r.t. Symm w.r.t. Uniquely

values variables defined

Full (c+ 1)

n
Yes No Yes Yes Yes

Ising 2

n
No No No Yes Yes

Generalized Ising 2

nc For c = 2 No No Yes Yes

Canonical cn Yes Yes No No No

Canonical (C1/C2) cn Yes Yes No Yes Yes

Spectral (for c = 2) 2

n
Yes Yes Yes Yes Yes

sparse regularizer let us look at a very simple exam-
ple where undesirable behavior can easily arise. As-
sume we have a model with two binary random vari-
ables described by the following joint probability table:

p(x1, x2) =


�1 �2
�3 1� �1 � �2 � �3

�
. If we place an `1

regularizer on the parameters �
i

, then while the first
three cells are forced to shrink to zero, the fourth one
is forced to grow to 1. Thus, a naive choice of param-
eterization with `1-regularization can induce arbitrary
and potentially unwanted behavior.

For parameterizations where eachw
A

is a scalar (Ising,
canonical, and spectral), Equation 8 encourages the
removal of factors from the model. However, for pa-
rameterizations where each w

A

has more than one el-
ement (generalized Ising, full), `1-regularization does
not encourage entire factors w

A

to be equal to the zero
vector simultaneously. If this is desired, one can use
group `1-regularization:

max
w

nX

i=1

log p(x
i

|w)�
X

A✓S

�
A

||w
A

||2, (9)

which was first used in the context of log-linear mod-
els by Dahinden et al. (2007). In cases where w

A

is a scalar, Equations 8 and 9 are equivalent. Al-
though group `1-regularization encourages the removal
of entire factors even for parameterizations that have
more than one parameter per factor, it still does not
directly encourage conditional independencies in the
learned distribution. This is because it may estimate
a sparse but non-hierarchical model, where w

A

= 0
in the solution of Equation 8 or 9 but this is not
true under a re-parameterization of the same distribu-
tion (for non-minimal parameterizations). To encour-
age the removal of factors and the underlying model
to be hierarchical, we also use the hierarchical group
`1-regularization proposed by Schmidt and Murphy
(2010):

max
w

nX

i=1

log p(x
i

|w)�
X

A✓S

�
A

✓ X

B◆A

||w
B

||

2
2

◆1/2

. (10)

The fourth choice, which we refer to as the “flat” reg-

ularizer, is simply `p
p

:

max
w

nX

i=1

log p(x
i

|w)� �||w||

p

p

= max
w

nX

i=1

log p(x
i

|w)� �
X

j

|w(j)
|

p. (11)

We use this regularizer only for the spectral parame-
terization, and for p = 1, 2. For p = 1, this is iden-
tical to the standard `1 regularizer with a constant
�
A

= �. This regularizer penalizes all parameters in-
dependently and identically, a fact we rely on in Sec-
tion 6.

5 Experiment 1: Comparing
Parameterizations

Here, we compare di↵erent parameterizations and reg-
ularizers on several data sets in terms of test-set neg-
ative log-likelihood. We followed the same training
protocol as Schmidt and Murphy (2010). For cross-
validation of the hyperparameter, we divided the data
into equal training, validation and testing sets. We re-
peated this with 10 di↵erent splits to control for vari-
ability in the results. We refer the reader to Schmidt
and Murphy (2010) for further details. We experi-
mented with a wide range of benchmark data sets, in-
cluding the Yeast (Elissee↵ and Weston, 2002), USPS
(Roweis), Jokes (Goldberg et al., 2001), Flow (Sachs
et al., 2005), Rochdale (Whittaker, 1990), Czech (Ed-
wards and Havranek, 1985) and NLTCS (Erosheva
et al., 2007) data sets. We found the same trends in
the results across these data sets, so for clarity of pre-
sentation we focus only on the NLTCS, Yeast (labels
only), and USPS (central 16 pixels). We purposely
chose data sets with a limited number of variables, for
which it is possible to compute the partition function
by enumeration, so as to avoid introducing artifacts in
the comparison due to approximations.

We studied the Ising (I), canonical (C1, C2 and CR),
spectral (S), generalized Ising (GI), and full (F) pa-
rameterizations. We use C1 and C2 to denote the
parameterizations using reference states 1 and �1, re-
spectively. CR uses a random reference state. Note
that Schmidt and Murphy (2010) consider the GI and
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F parameterizations, while Ding et al. (2011) consider
the C1 parameterization. Each parameterization was
assessed using the standard `1 regularization (Equa-
tion 8). The over-complete parameterizations (gener-
alized Ising and full) were also tested with the group
`1 regularization (Equation 9), where each group refers
to the parameters w

A

associated with a particular set
of variables A. For the other parameterizations group
`1 regularization is identical to the standard `1 regu-
larization. In addition, we tested all parameterizations
using the hierarchical group `1 regularization (Equa-
tion 10), where each group refers to the set of param-
eters associated with a particular A and all its super-
sets. We set �

A

= I|A|�22
|A|�2�. The hyperparameter

� was chosen using the validation sets. We used the
optimization software and hierarchical-search strategy
of Schmidt and Murphy (2010). Finally, we examined
the spectral parameterization with the flat regularizer
of Equation 11 with p = 1 (“flat `1”) and p = 2 (“flat
`22”), along with a pseudo-counts (PC) estimator. The
PC estimator uses Dirichlet smoothing to estimate the
log-probabilities from data.

Figure 1 shows a comparison of the predictive per-
formance for several combinations of regularizers and
parameterizations, in which lower values mean better
performance. Figure 2 shows the corresponding spar-
sity levels of the learned models. In the figures, we
use ‘-group’ to indicate that the parameterization is
subject to the group `1 regularizer and ‘-h’ for the
hierarchical regularizer. Due to space considerations,
not all combinations are shown, but the ones shown
do capture most of the important information.

The flat and PC models under-perform (Figures 1(b),
1(c)) and produce dense models (Figures 2(b), 2(c)).
We do not consider them attractive for practical mod-
eling purposes, but we added them to the comparison
to facilitate the analysis of the next section. For all
parameterizations, we have found no significant dif-
ference between the standard, group and hierarchical
`1 regularizers in terms of predictive performance, as
shown in Figure 1(a) for the NLTCS data set. An
exception is the full parameterization, for which stan-
dard `1 under-performed relative to the other regular-
izers (Figures 1(a-c)). A possible explanation could be
the much larger number of parameters in the full pa-
rameterization: 3n, versus 2n for the Ising, canonical
and spectral parameterizations, and 2n+1 for the gen-
eralized Ising parameterization. More importantly, a
much smaller percentage of its parameters correspond
to the lower-cardinality potential functions, compared
to the other parameterizations. For all parameteriza-
tions, standard `1 produced sparser models than group
`1 and hierarchical group `1 (see Figure 2).

Figure 1 shows that the Ising parameterization per-
forms poorly. This is not surprising, considering the
fact that it is not complete. The canonical, spectral

and generalized Ising parameterizations seem to have
performance similar to each other. However, both the
canonical and spectral parameterizations seem to do
best in terms of both sparsity and predictive perfor-
mance. These are also the only parameterizations that
are both complete and minimal. The performance
of the canonical parameterization may depend on the
particular reference state. This is particularly evident
in Figure 2(c).

For problems that can naturally be described as hav-
ing a base state with rare deviations from this state,
the canonical parameterization with this state as the
reference state may be an appealing choice. In other
cases, our experiments suggest either trying di↵erent
reference states for the canonical parameterization, or
using the spectral parameterization instead. Our ex-
periments also suggest that standard `1 regularization
is preferred due to its simplicity and sparser resulting
models.

6 Experiment 2: The Statistics
(Spectrum) of Binary Data Sets

The spectral decomposition of binary distributions en-
ables us to answer the question: What are the statis-
tics of commonly used binary data sets? Researchers
have used tools such as the Fourier and wavelet trans-
forms to understand the properties of natural data,
such as images. By casting binary distributions in
terms of the Walsh-Hadamard transform, we can now
develop a method for estimating the spectral coe�-
cients of the underlying distribution. This experiment
reveals that low-order statistics are much more sig-
nificant than higher-order ones for binary data sets
routinely used in practice.

We trained the spectral parameterization with the flat
`1 and `22 regularizers on all the data sets mentioned
in the previous experiment. We also computed the
pseudo-counts estimate, and used FWHT to transform
the log-probabilities from the pseudo-counts model to
the spectral parameterization. Readers may wonder,
in light of the previous experiment, why we use the
flat regularizers. Flat regularizers do not impose a
prior bias for smaller-cardinality factors, so it is in-
teresting to see that without this bias there is still
a preference for smaller factors: indeed this is what
our experiments indicate. This then provides a ratio-
nale for a prior bias towards considering only low-order
factors. The parameter � was estimated using 10-fold
cross-validation. We used the size of the factors |A|

to group parameters. For each group, we calculated
the mean magnitude E(|w

A

|) of the parameters in the
group (for example, the average magnitude of the pa-
rameters for all factors of size 3). For the flat `1 es-
timates, we also calculated the density (percentage of
non-zero parameters).
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Figure 1: Test set negative log-likelihood for di↵erent parameterizations and regularizers.
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Figure 2: Model sparsity for di↵erent parameterizations and regularizers.

The results in Figure 3 show that the average mag-
nitude of the spectral parameters diminishes with in-
creasing factor size |A|. This behavior is especially
pronounced for the `1 regularizer. According to our
results in the previous experiment, the flat `1 regu-
larizer allows for a much better fit than the flat `22
and PC strategies. It is therefore a more reliable es-
timator of the underlying distribution. Putting this
fact together with the fact that `1 predicts that |w

A

|

declines rapidly with increasing |A| provides empiri-
cal support for the statement that real-world distribu-
tions tend to be sparse (with most parameters close
to zero). Figures 3(b), 3(d) show the sparsity levels
for di↵erent values of |A| and for di↵erent data sets,
when training took place with the flat `1 regularizer.
We can see that parameters associated with a large |A|

are sparse, especially for the data sets that have more
parameters (in Figure 3(b), Jokes has 100% density
for |A| = 10, however, there is only one such parame-
ter, so this is not significant). In addition, the “spec-
tra” (Figures 3(a), 3(c)) illustrate that pair-wise and
three-way models can capture a large portion of the
variability in these data sets. This probably accounts
for their popularity. The idea of ignoring higher-order
potentials was also recently considered by Jalali et al.
(2010), who analyzed the e↵ect of fitting a pairwise
model to data in terms of consistency of estimating

the presence of higher-order interactions in hierarchi-
cal models. Nonetheless, our results also show that
while adding higher order potentials may lead to an
improvement in performance, this potential improve-
ment comes with an additional computational cost
that might not be justifiable in practical domains. Our
spectral analysis of binary distributions provides jus-
tification for the standard machine learning and sta-
tistical practices of ignoring higher-order potentials.
Importantly, it enables researchers to assess the cost
of ignoring these terms.

7 Conclusions and Future Work

We have presented a comparison of di↵erent param-
eterizations for discrete probabilistic log-linear mod-
els, when learning their parameters and structure with
sparsity-promoting regularizers. We found that the
spectral parameterization is one of the best perform-
ing, and were able to interpret it as a harmonic se-
ries expansion of orthogonal Walsh-Hadamard bases.
Since this interpretation brings closer the fields of har-
monic analysis and discrete probabilistic modeling, it
opens many doors for future research. We have al-
ready used the spectral parameterization to study the
statistics, or the spectrum, of popular binary data
sets. However, we believe this theoretical connection
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Figure 3: (a),(c) Mean parameter magnitude (log-scale), and (b),(d) percentage of non-zero parameters, for di↵erent

factor sizes |A|. Data sets are split into two groups to allow for clearer plots. Solid lines correspond to the flat `1
regularizer, dashed lines to the flat `22 regularizer and dotted lines for the pseudo-counts estimator. The di↵erence

between the pseudo-counts and `22 regularizer is hardly discernible.

could be exploited in connection with compressed sens-
ing to provide sample complexity theorems for learn-
ing discrete probabilistic models. For example, if we
could measure log-probabilities directly, then the the-
orems of compressed sensing could be easily adapted
to this domain to estimate the number of measure-
ments needed to reconstruct the sparse probabilistic
model. However, since log-probabilities cannot typi-
cally be measured directly, some theoretical challenges
lie ahead. In future work, we also plan to build on the
work of Bishop et al. (1975) to extend the results to
distributions over random variables with more than
two values.
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