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Abstract

In this chapter I review Bayesian statistics as used for induction
and relate it to logic-based abduction. Much reasoning under un-
certainty, including induction, is based on Bayes’ rule. Bayes’ rule
is interesting precisely because it provides a mechanism for abduc-
tion. I review work of Buntine that argues that much of the work
on Bayesian learning can be best viewed in terms of graphical models
such as Bayesian networks, and review previous work of Poole that re-
lates Bayesian networks to logic-based abduction. This lets us see how
much of the work on induction can be viewed in terms of logic-based
abduction. I then explore what this means for extending logic-based
abduction to richer representations, such as learning decision trees
with probabilities at the leaves. Much of this paper is tutorial in na-
ture; both the probabilistic and logic-based notions of abduction and
induction are introduced and motivated.

1 Introduction

This paper explores the relationship between learning (induction) and ab-
duction. I take what can be called the Bayesian view, where all uncertainty
is reflected in probabilities. In this paper I argue that, not only can ab-
duction be used for induction, but that most current learning techniques
(from statistical learning to neural networks to decision trees to inductive
logic programming to unsupervised learning) can be best viewed in terms of
abduction.



1.1 Causal and Evidential Modelling and Reasoning

In order to understand abduction and its role in reasoning, it is important
to understand ways to model, as well as ways to reason. In this section
we consider reasoning strategies independently of learning, and return to
learning in Section 1.2.

Many reasoning problems can be best understood as evidential reasoning
tasks.

Definition 1.1 An evidential reasoning task is where some parts of a
system are observed and you want to make inferences about other (hidden)
parts.

Example 1.2 The problem of diagnosis is an evidential reasoning task.
Given observations about the symptoms of a patient or artifact, we want to
determine what is going on inside the system to produce those symptoms.

Example 1.3 The problem of perception (including vision) is an eviden-
tial reasoning task. In the world the scene produces the image, but the
problem of vision is, given an image, determine what is in the scene.

Evidential reasoning tasks are often of the form where there is a cause-effect
relationship between the parts. In diagnosis we can think of the disease
causing the symptoms. In vision we can think of the scene causing the image.
By causation?, I mean that different diseases can result in different symptoms
(but changing the symptoms doesn’t affect the disease) and different scenes
can result in different images (but manipulating an image doesn’t affect the
scene).

There are a number of different ways of modelling such a causal domain:

causal modelling where we model the function from causes to effects. For
example, we can model how diseases or faults manifest their symptoms.
We can model how scenes produce images.

evidential modelling where we model the function from effects to causes.
For example we can model the mapping from symptoms to diseases, or
from image to scene.

2See http://singapore.cs.ucla.edu/LECTURE/lecture secl.htm for a fascinating
lecture by Judea Pearl on causation.
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Figure 1: Causal and evidential reasoning

Independently of these two modelling strategies, we can consider two reason-
ing tasks:

Evidential Reasoning given an observation of the effects, determine the
causes. For example, determine the disease from the symptoms, or the
scene from the image.

Causal Reasoning given some cause, make a prediction of the effects. For
example, predicting symptoms or prognoses from a disease, or predict-
ing an image from a scene. This is often called simulation.

In particular, much reasoning consists of evidential reasoning followed by
causal reasoning (see Figure 1). For example, a doctor may observe a patient,
determine possible diseases, then make predictions of other symptoms or
prognoses. This then can feedback to making the doctor look for the presence
or absence of these symptoms, forming the cycle of perception [20]. Similarly,
a robot can observe its world, determine what is where, and act on its beliefs,
leading to further observations.

There are a number of combinations of modelling and reasoning strategies
that have been proposed:

o The simplest strategy is to do evidential modelling and only evidential
reasoning. Examples of this are neural networks [15] and old-fashioned



expert systems such as Mycin [2]. A neural network for character recog-
nition may be able to recognise an “A” from a bitmap, but could not
say what an “A” looks like. In Mycin there are rules leading from
the symptoms to the diseases, but the system can’t tell you what the
symptoms of some disease are.

o The second strategy is to model both causally and evidentially and to
use the causal model for causal reasoning and the evidential model for
evidential reasoning. The main problem with this is the redundancy
of the knowledge, and its associated problem of consistency, although
there are techniques for automatically inferring the evidential model
from the causal model for limited cases [25, 7, 16, 29]. Pearl [23] has
pointed out how naive representations of evidential and causal knowl-
edge can lead to problems.

o The third strategy is to model causally and use different reasoning
strategies for causal and evidential reasoning. For causal reasoning we
can directly use the causal model, and for evidential reasoning we can
use abduction.

This leads to an abstract formulation of abduction that will include both
logical and probabilistic formulations of abduction:

Definition 1.4 Abduction is the use of a model in its opposite direction.
That is, if a model specifies how z gives a y, abduction lets us infer x from
y. Abduction is usually evidential reasoning from a causal model®.

If we have a model of how causes produce effects, abduction lets us infer
causes from effects. Abduction depends on an implicit assumption of com-
plete knowledge of possible causes [7, 29]; when an effect is observed, one of
its causes must be present.

1.2 Learning as an evidential reasoning task

In this section we explore learning as an evidential reasoning task. Given a
task, a prior belief or bias, and some data, the learning task is to produce

3Neither the standard logical definition of abduction nor the probabilistic version of
abduction (presented below) prescribe that the given knowledge is causal. Tt shouldn’t be
surprising that the formal definitions don’t depend on the knowledge base being causal
as the causal relationship is a modelling assumption. We don’t want the logic to impose
arbitrary restrictions on modelling.



an updated theory of the data (the posterior belief) that can be used in the
task.
In order to make this clear, we must be very careful to distinguish:

o the task being learned
o the task of learning itself.

This distinction is very important when the task being learned is also an evi-
dential reasoning task (e.g., learning to do diagnosis, or learning a perceptual
task).

The task of learning can be seen as an evidential reasoning task where
the model “causes” the data. The aim of learning is: given the data, to find
appropriate models (evidential reasoning), and from the model(s) to make
prediction on unseen cases (causal reasoning).

When we look at learning as an evidential reasoning task, not surpris-
ingly, we find learning methods that correspond to the two strategies that
allow causal and evidential reasoning (the second and third strategies of the
previous section).

The second strategy of the previous section is to build special-purpose
reasoning strategies to carry out the evidential reasoning task (i.e., inferring
the model from the data) that is separate from the causal reasoning task
(predicting new data from the model). Examples of such special purpose
mechanisms are decision-tree learning algorithms such as C4.5 [33] and CART
[1], and backpropagation for neural network learning [34].

The rest of this paper will show how the third strategy of the previous
section, namely causal modelling and using different strategies for causal and
evidential reasoning, can be used for learning, and can be carried out with
both logical and probabilistic specifications of abductive reasoning. Such a
strategy implies that we need a specification of the models to be learned and
what these models predict in order to build a learning algorithm.

2 Bayesian Probability

In this section we introduce and motivate probability theory independently
of learning. The interpretation of probability theory we use here is called
Bayesian, personal, or subjective probability, as opposed to the frequentist in-
terpretation of probability as the study of the frequency of repeatable events.



Probability theory [24] is a study of belief update; how an agent’s knowl-
edge affects its beliefs. An agent’s probability of a proposition is a measure
of how much the proposition is believed by the agent. Rather than consider-
ing an agent maintaining one coherent set of beliefs (for example, the most
plausible way the world could be based on the agent’s knowledge), Bayesian
probability specifies that an agent must consider all possible ways that the
world could be and their relative plausibilities. This plausibility when nor-
malised to the range [0,1] so that the values for all possible situations sum
to one is called a probability.

There are a number of reasons why we would be interested in probability,
including:

e An agent can only act according to its beliefs and its goals. An agent
doesn’t have access to everything that is true in its domain, but only to
its beliefs. An agent must somehow be able to decide on actions based
on its beliefs.

e [t is not enough for an agent to have just a single model of the world in
which it is interacting and act on that model. It also needs to consider
what other alternatives may be true, and make sure that its actions are
not too disastrous if these other contingencies happen to arise.

A classic example is wearing a seat belt; an agent may assume that
it won’t have an accident on a particular trip, but wears a seat belt
to cover the possibility that it does have an accident. Under normal
circumstances, the seat belt is a slight nuisance, but if there is an
accident, the agent is much better off when it is wearing a seat belt.
Whether the agent wears a seat belt depends on how inconvenient it is
when there is no accident, how much better off the agent would be if
they were wearing a seat belt when there is an accident, and how likely
an accident is. This tradeoff between various outcomes, their relative
desirability, and their likelihood is the subject of decision theory.

o As we will see below, probabilities are what can be obtained from data.
Probability lets us explicitly model noise in data, and lets us update
our beliefs based on noisy data.

The formalisation of probability theory is simple.
A random variable is a term in a language that can take one of a
number of different values. The set of all possible values a variable can take



is called the domain of the variable. We write ¥ = v to mean the proposition
that variable = has value v. A Boolean random variable is one where the
domain is {true, false}. Often we write & rather than = = true and -z
rather than © = false. A proposition is a Boolean formula made from
assignments of values to variables.

Some example random variables may be a patient’s blood pressure at
2:00p.m. on July 13, 1998, the value of the Australian dollar relative to
the Canadian dollar on January 1, 2001, whether a patient has cancer at
a particular time, whether a light is lit at some time point, or whether a
particular coin lands heads on a particular toss.

There is nothing random about random variables. We introduce them
because it is often useful to be able to refer to a variable without specifying
its value.

Suppose we have a set of random variables. A possible world specifies
an assignment of one value to each random variable. If w is a world, x is a
random variable and v is a value in the domain of z, we write

wkEx=v

to mean that variable x is assigned value v in world w. We can allow Boolean
combinations on the right-hand side of |=, where the logical connectives have
their standard meaning, for example,

wEaNpiffwEaandw [

So far this is just standard logic, but using the terminology of random vari-
ables.

Let’s define a nonnegative measure p(w) to each world w so that the mea-
sures of the possible worlds sum? to 1. The use of 1 is purely by convention;
we could have just as easily used 100, for example.

The probability of proposition a, written P(«), is the sum of the mea-
sures of the worlds in which « is true:

P(a) = 3 ju(w).
wka

The most important part of Bayesian probability is conditioning on ob-
servations. The set of all observations is called the evidence. If you are

*When there are infinitely many possible worlds, we need to use some form of measure
theory, so that the measure of all of the possible worlds is 1. This requires us to assign
probabilities to measurable sets of worlds, but the general idea is essentially the same.



given evidence e, conditioning means that all worlds in which e is false are
eliminated, and the remaining worlds are renormalised so that their prob-
abilities sum to 1. This can be seen as creating a new measure . defined

by:

] if w £ e
pel10) = { u(w)/Ple) ifw e

We can then define the conditional probability of a given e, written P(ale)
in terms of the new measure:

Plale) = 3 p.(w).

wkao

Example 2.1 The probability P(sneeze = yes|cold = severe) specifies, out
of all of the worlds where cold is severe, what proportion have sneeze with
value yes. It is the measure of belief in the proposition sneeze = yes given
that all you knew was that the cold was severe. The probability P(sneeze =
yes|cold # severe) considers the other worlds where the cold isn’t severe,
and specifies the proportion of these in which sneeze has value yes. This
second probability is independent of the first.

2.1 Bayes’ Rule
Given the above semantic definition of conditioning, it is easy to prove:

P(h Ne)

P(hle) = 5

Rewriting the above formula, and noticing that i A e is the same proposition
as e A h, we get:
P(hne) = P(hle) x P(e)
= P(elh) x P(h)

We can divide the right hand sides by P(e), giving

P(c|h) x P(h)

P(ile) = =55

if P(e) # 0. This equation is known as Bayes’ theorem or Bayes’ Rule.
It was first given in this generality by Laplace [17].

8



It may seem puzzling why such an innocuous looking equation should
be so celebrated. It is important because it tells us how to do evidential
reasoning from a causal knowledge base; Bayes’ rule is an equation for
abduction. Suppose P(e|h) specifies a causal model; it gives the propensity
of effect e in the context when £ is true. Bayes’ rule specifies how to do
evidential reasoning; it tells us how to infer the cause i from the effect e.

The numerator is the product of the likelihood, P(e|h), which specifies
how well the hypothesis h predicts the evidence e, and the prior probabil-
ity, P(h), that specifies how much the hypothesis was believed before any
evidence arrived.

The denominator, P(e), is a normalising constant to ensure that the prob-
abilities are well formed. If {hy,..., hi} are a set of pairwise incompatible
(h; and h; cannot both be true if i # j) and covering (one h; must be true)
set of hypotheses, then

P(e) = > P(elh;) x P(h)
hs
If you are only interested in comparing hypotheses this denominator can be
ignored.

2.2 Bayesian Learning

Bayesian learning, or Bayesian statistics [5, 19, 12, 13] is the method for
using Bayes’ rule for evidential reasoning for the evidential reasoning task of
learning.

Bayes’ rule is

P(c|h) x P(h)

P(ile) = =55

If e is the data (all of the training examples), and & is a hypothesis, Bayes’
rule specifies how, given the model of how the hypothesis h produces the
data e and the prior propensity of h, you can infer how likely the hypothesis
is, given the data.

One of the main reasons why this is of interest is that the hypotheses can
be noisy; an hypothesis can specify a probability distribution over the data it
predicts. Moreover, Bayes’ rule allows us to compare those hypotheses that
predict the data exactly (where P(e|h) = 1) amongst themselves and with
the hypotheses that specify any other probability of the data.



Example 2.2 Suppose we are doing Bayesian learning of decision trees, and
are considering a number of definitive decision trees (i.e., they predict clas-
sifications with 0 or 1 probabilities, and thus have no room for noise). For
each such decision tree h, either P(elh) = 1 or P(e|h) = 0. Bayes theorem
tells us that those that don’t predict the data have posterior probability 0,
and those that predict the observed data have posterior probabilities pro-
portional to their priors. Thus the prior probability specifies the learning
bias (for example, towards simpler decision trees); out of all of the trees that
match the data, which are to be preferred. Without such a bias, there can be
no learning as every possible function can be represented as a decision tree.
Bayes rule also specifies how to compare simpler decision trees that may not
exactly fit the data (e.g., if they have probabilities at the leaves) with more
complex ones that exactly fit the data. This gives a principled way to handle
overfitting.

Example 2.3 The simplest form of Bayesian learning with probabilistic hy-
potheses is when there is a single binary event that is repeated and statistics
are collected. That is, we are trying to learn probabilities. Suppose we have
some object that can fall down such that either there is some distinguishing
feature (which we will call heads) showing on top, or there is not heads (which
we will call tails) showing on top. We would like to learn the probability that
there is a heads showing on top. Suppose our hypothesis space consists of
hypotheses that specify P(heads) = p where heads is the proposition that
says heads is on top, and p is a number that specifies the probability of a
heads on top. Implicit in this hypothesis is that repeated tosses are indepen-
dent®. Suppose we have on observation e consisting of a particular sequence
of outcomes with n outcomes with heads true and out of m outcomes. Let
h, be the hypothesis that P(heads) = p for some 0 < p < 1. Then we have,
by elementary probability theory,

P(elh,) =p" (1 —p)"™"

Suppose that our prior probability is uniform on [0,1]. That is, we consider
each value for P(heads) to be equally likely before we see any data.

Figure 2 shows the posterior distributions for various values of n and m.
Note that the only hypotheses that are inconsistent with the observations

>Bayesian probability doesn’t require independent trials. You can model the interde-
pendence of the trials in the hypothesis space.

10
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are P(heads) = 0 when n > 0 and P(heads) = 1 when m > 0. Note that if
the prior isn’t very biased, it soon gets dominated by the data.

Bayesian learning has been applied to many representations including
decision trees [3], neural networks [21], Bayesian networks [10], and unsuper-
vised learning [6]. All we need is a way to specify what a particular decision
tree, neural network, Bayesian network, or logic program predicts (this is well
defined by the definition of the representation), as well as a prior probability
on the different representations.

Prior probabilities may seem to be problematic, but are important for
avoiding overfitting. They give a principled way to do what would otherwise
have to be done by some ad hoc mechanism, such as pruning decision trees
or limiting the size of neural networks. For example, if there is noise in the
data, a more detailed decision tree can always be made to fit the data better,
but usually has worse predictive properties on unseen examples. A prior
probability on decision trees provides a bias that lets us tradeoff fitting the
training data with simplicity of the trees [3].

Bayesian leaning is closely related to the minimum description length
(MDL) principle. If we were to choose the most likely hypothesis given the
data® (called the maximum a posteriori probability, or MAP, hypothesis), we
can use:

arg m}.LaXP(h|e)
P(e|h) x P(h)

P(e)
= arg m}.LaXP(e|h) x P(h)

= argmax — log, P(elh) + —log, P(h)

= argmax

The latter is the number of bits it takes to describe the data in terms of the
model plus the number of bits it takes to describe the model. Thus the best

hypothesis is the one that gives the shortest description of the data in terms
of that model.

5We don’t have to do this. In particular, it is the posterior distribution of the hypotheses
that we want to use to make decisions, rather than the most likely hypothesis.

12



3 Bayesian Networks

Probability specifies a semantic construction and not a representation of
knowledge. A Bayesian network [24] is a way to represent probabilistic knowl-
edge. The idea is to represent a domain in terms of random variables and to
explicitly model the interdependence of the random variables in terms of a
graph. This is useful when a random variable only depends on a few other
random variables, as occurs in many domains.

Suppose we decide to represent some domain using the random variables
x1,...,2,. If we totally order the variables, it is easy to prove that

P(xy,...,2,)
= P(a1)P(az|x)P(as|ey, xa) - Pla, e 2p-1)

For each variable z; suppose there is some minimal set 7., C {ay,..., 2,1}
such that

P(a;|ay,. .. xi21) = P(ai|my,)

That is, once you know the values of the variables in m,,, knowing the values
of other predecessors of x; in the total ordering will not change your belief in
x;. The elements of the set 7., are known as the parents of variable z;. We
say z; is conditionally independent of its predecessors given its parents.
We can create a graph where there is an arc from each parent of a node
into that node. Such a graph, together with the conditional probabilities for
P(x;|r;,) for each variable x; is known as a Bayesian network or a belief
network [24, 14].
There are a few important points to notice about a Bayesian network:

e By construction, the graph defining a Bayesian network is acyclic.

o Different total orderings of the variables can result in different Bayesian
networks for the same underlying distribution.

e The size of the conditional probability table P(a;|m,,) is exponential in
the number of parents of x;.

Typically we try to build Bayesian networks so that the total ordering implies
few parents and a sparse graph.

Bayesian networks are of interest because they can be constructed taking
into account just local information, the information that has to be specified

13



is reasonably intuitive, and there are many domains that have concise rep-
resentations as Bayesian networks. There are algorithms that can exploit
the sparseness of the graph for computational gain [18, 9, 36], exploit the
skewness of distributions [30] or use the structure for stochastic simulation

11, 22, 8].

4 Bayesian learning and logic-based abduc-
tion

So far we have given an informal characterisation of Bayes’ rule as a rule for
abduction. Poole [28] has shown a direct correspondence between Bayesian
networks and logic-based conceptions of abduction. Buntine [4] has shown
how Bayesian networks form a representation for many inductive learning
tasks. In this section we put these together to show how inductive learning
tasks can be related to logic-based abduction. In the following section, we
expand on this mapping to discuss some of the issues of this book relating
abduction and induction.

4.1 Logic Programs, Abduction and Bayesian Networks

This section overviews the relationship between Bayesian networks and logic-
based abduction [28]. In particular, I give the translation of Bayesian net-
works into probabilistic Horn abduction [28], a form of probabilistic logic
programs.

Suppose variable a has parents by, ..., b in a Bayesian network. As part
of the Bayesian network are probabilities of the form

Pla =v|by =v1,...,0, =v,) =p
These can be translated into rules of the form:
a=v ¢ by=viA...ANb,=1v;Ah. (1)

which can be treated as normal logical rules where h is assumable.

In probabilistic Horn abduction (and its successor the independent choice
logic [31], which can handle more general rules, including negation as failure,
as well as different agents choosing assumptions), the assumables are struc-
tured in terms of a choice space, C, which is a set of alternatives (called

14



disjoint sets in [28]), where an alternative is a set of ground atoms. Each
member of an alternative is assumable and can only appear in one alterna-
tive. The integrity constraints are that the elements of an alternative are
pairwise inconsistent.

An independent choice logic theory is specified by a choice space and an
acyclic logic program that doesn’t imply any element of an alternative. The
semantics is defined in terms of possible worlds. There is a possible world
for each selection of one element from each alternative. What is true in a
possible world is given by the stable model of the logic program and the
atoms selected. The logic is abductive in the sense that the explanations of ¢
form a concise specification of the possible worlds in which ¢ is true [28, 32].

We place a probability over the assumables so that the probability of
the elements of an alternative sum to one. We assume that the different
alternatives are probabilistically independent (the alternatives correspond to
random variables).

In term of representing the Bayesian network above, there is an alternative
for each assignment of values to the parents of a. For each such alternative,
there is an element of the alternative for each value of a. The probability
of the assumable h (from equation (1)) is the same as the probability of the
corresponding conditional probability in the Bayesian network:

P(h)=Pla=v|by =v1,...,b, = vy)

The abductive characterisation of probabilistic Horn abduction is straight-
forward. For any proposition h, the probability of A can be computed from
the set of minimal explanations of A. The minimal explanations are disjoint
(by the way the rules were constructed), and so the probability of h is the
sum of the probabilities of the minimal explanations for A. The probability
of an explanation is the product of the probabilities of the assumables. That
is

P(h) = > P(e)
e 1s a minimal explanation of h

where the probability for explanation e is given by

P(e) = ]I P(n)

nee

In [28] it was proved that the Bayesian network and the abductive charac-
terisation result in the same probabilities.

15



Suppose we want to compute a probability given evidence, we have

P(h Ne)

P(hle) = 5

Thus this can be seen in terms of abduction as: given evidence e, first explain
the evidence (this gives P(e)), and from the explanations of the evidence,
explain h (this gives P(h A €)). Note that the explanation of h A e are the
explanations of ¢ extended to also explain 4. In terms of a Bayesian network,
you can first go backwards along the arrows to explain the evidence, and
then go forward along the arrows to make predictions. Thus not only can
Bayes’ rule be seen as a rule for abduction, but Bayesian networks can be
seen a representation for abduction. Note that this reasoning framework of
using abduction for evidential reasoning and assumption-based reasoning for
causal reasoning (see Figure 1), which is what the above analysis gives us for
Bayesian networks, has also been proposed in the default reasoning literature
[26, 27, 35].

The logic programs have a standard logical meaning and can be extended
to include (universally quantified) logical variables” in the usual way. The
only difference to standard logic programs® is that some of the premises are
hypotheses that may have an associated probability.

4.2 Bayesian networks and induction

Buntine [4] argues that Bayesian networks (as well as related chain graphs)
form a good representation for many induction tasks. That is, he argued that
Bayesian networks can form a representation for the evidential reasoning task
of learning.

Note that this is very different from the problem of learning Bayesian
networks themselves for which there are Bayesian and non-Bayesian tech-
niques (see [10] for a review of learning Bayesian networks). Buntine was
using Bayesian networks to represent the task of learning, independently of
the task being learned.

It is important not to confuse logical variables, which stand for individuals, and ran-
dom variables. In this paper, I will follow the Prolog convention of having logical variables
in upper case.

8In the independent choice logic [31], we can also have negation as failure in the rules.
The notion of abduction needs to be expanded to allow abduction through the negation

[32].
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:

Figure 3: Bayesian network for coin tossing, with and without plates

Buntine used the notion of plates which were repeated copies of a network.

Example 4.1 Figure 3 shows a Bayesian network for the coin tossing of
Example 2.3. The probability of heads on example i, which in the left-hand
side of Figure 3 is shown as heads;, is a random variable that depends only
on 6., the probability of heads appearing on a coin toss. The right-hand side
of Figure 3 shows the same network using plates, where there is one copy of
the boxed node for each example.

Given the logic-programming characterisation of Bayesian networks, we
can use universally quantified logical variables in the rules to represent the
plates of Buntine.

Example 4.2 Let’s write the example of Figure 3 in terms of probabilistic
Horn abduction. First we can represent each arc to an example as the rule:

heads(F) < happens_to_turn_heads(F, P) A prob_of_heads(P)
tails(F) < happens_toturn_tails(E, P) A prob_of_heads(P)

where heads(FE) is true if example £ shows a heads, and tails(E) is true if
example F shows a tails.
The corresponding alternatives are

VEYP{happensto_turn_heads(F, P), happens_toturn_heads(F, P)} € C

That is, we can assume that example F turns heads or assume it turns tails.
We then have the probabilities:

P(happens_to_turn_heads(F, P)) = P

17



P(happens_toturn_tails(E,P))=1— P

We also have the alternative that corresponds to the § in Figure 3:
{prob_-of_heads(P): 0 < P <1} eC

That is you can assume any single probability in the range [0, 1].
Suppose you have example ey, ..., eg, and have observed say

heads(ey), tails(ez), tails(es), . . .
The explanations of this observation are of the form:

{happens_toturn_heads(ey, P), happens_to_turn_tails(ez, P),
happens_toturn_tails(es, P),. ..,
prob_of_heads(P)}

for each P € [0, 1]. Suppose there were n heads and m tails in the K = n+m
examples, then the probability of this explanation is

P"x (1 —=P)" xq
where ¢ is P(prob_of_heads(P)).

5 Combining induction and abduction

In terms of abduction, the basic idea of this model of induction is to have some
assumptions that are specific to each example, and some assumptions that
are specific to the model being learned. For each example, you make some
model-specific assumptions and some example-specific assumptions (that also
depend on the model assumptions). When explaining a number of examples,
they each have their own example-specific assumptions, but must share the
model assumptions.

Buntine [4] has shown how many different learning algorithms from neural
networks to unsupervised learning can be put into this framework.

18



5.1 Learning decision trees

In this section we will sketch how the same framework can be used for more
complicated examples, where the models must be constructed, rather than
having a fixed number of parameters to be estimated. Here the flexibility of
representation in terms of logic-based abduction can be seen to have great
advantages over the use of plates [4].

Let’s look at the same framework for Bayesian learning of decision trees
with probabilities at the leaves? [3]. To keep this simple let’s suppose that
all attributes are Boolean.

We use the relation prop(Ex, Att, Val) that is true when example Fx has
value Val on attribute Att. Suppose a decision tree is either a number or is
of the form ¢ f(C, YT, NT) where C is an attribute YT and NT are trees.

We need to write rules that specify the value of the classification based
on the tree:

prop(FEx, classi fication, V) « tree(T) A tree_predicts(T, Ex, V).
It is straightforward to define what a tree predicts:
tree_predicts(if(C,YesT, NoT), Ex,V) +
prop(Fx, C true) A
tree_predicts(YesT, Ex, V).
tree_predicts(if(C,YesT, NoT), Ex,V) +
prop(FEx,C, false) N
tree_predicts(NoT, Fx, V).
tree_predicts(N, Ex, V) +
number(N) A
predicts_prob(Ex, N, V).
where
VExVN{predicts_prob(Ex, N, true), predicts_prob(Ex, N, false)} € C
such that
P(predicts_prob(Ex, N,true)) = N
P(predicts_prob(Ex, N, false)) =1 — N

9Note that when these decision trees are translated into rules, probabilistic Horn ab-
duction theories result. But here we are using probabilistic Horn abduction to represent
the learning task, not the task being learned.
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Similarly we need ways to abduce what the trees are, and (the more difficult)
problem of assigning the priors on the decision trees.

The most likely explanation of a set of classifications on examples results
in the most likely decision tree given those examples.

5.2 Generalization

It has often been thought that probability is unsuitable for generalization as
the generalization VX r(X) must have a lower probability than any set of
examples r(ey),...,r(ex), as the generalization implies the examples. While
the statement of probability is correct, it is misleading because it is not
the hypothesis and the evidence that we want to compare but the different
hypotheses!®.

The different hypotheses may be, for example:

L. r(X) is always true,

2. r(X) is sometimes true (and it just happened to be true for examples

€1y, €L).
3. r(X) is always false.
This can be represented as having the alternatives:

{r_always_true,r_sometimes_true,r_always_false} € C

VX {r_happens_true(X),r_happens_false(X)} € C
with some probabilities associated with the assumables, and the rules

r(X) < r.alwaystrue.
r(X) < r_sometimes_true A r_happens_true(X).

For any set of (all positive) observations: r(ey),...,r(eg), there are two com-
peting explanations:

r_always_true
Yy

{r_sometimes true,r_happens_true(ey),...,r_happens_true(eg)}

10Tt is interesting to note that in the abductive framework the hypothesis always implies
the evidence, and so it is always less likely. But this i1s exactly what we want from learning:
we want the learned hypothesis to make risky prediction, that could be wrong, on unseen
data.
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If there are no extreme (0 or 1) probabilities, with enough positive examples,
the conclusion that r is always true will be the most likely hypothesis. Thus
we can make universal generalizations within this framework.

6 Conclusion

This paper has related the Bayesian approach to learning with logic-based ab-
duction. In particular, I have sketched the the relationship between Bayesian
leaning and the graphical models of Buntine [4] and the relationship between
graphical models and abductive logic programming of Poole [28]. It should
be emphasised that, while each of the links has been developed, the chain has
not been fully investigated. This paper should be seen as a starting point,
rather than a survey of mature work.
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