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Abstract

We outline a method to estimate the value of
computation for a flexible algorithm using em-
pirical data. To determine a reasonable trade-off
between cost and value, we build an empirical
model of the value obtained through computa-
tion, and apply this model to estimate the value of
computation for quite different problems. In par-
ticular, we investigate this trade-off for the prob-
lem of constructing policies for decision prob-
lems represented as influence diagrams. We show
how two features of our anytime algorithm pro-
vide reasonable estimates of the value of compu-
tation in this domain.

1 INTRODUCTION

Anytime algorithms are designed to construct solutions
to difficult computational problems by incrementally im-
proving an existing (sub-optimal) solution [Drummond &
Bresina, 1990]. This kind of algorithm is interruptible;
without interruption, computation may continue well past
the point at which the computation is no longer valuable, if
one were to consider the cost of computation.

Flexible algorithms are designed to solve difficult compu-
tational problems by smoothly trading off the value of the
sub-optimal solution with the cost of computing such a so-
lution [Horvitz, 1990; Russell & Wefald, 1992]. The prob-
lem faced by flexible algorithms is that the problem of find-
ing an appropriate tradeoff point is a meta-level problem,
which can be solved only if computation costs at the meta-
level are less than the computation cost at the object level.
Usually, simplifying assumptions are made at the meta-
level to keep the analysis feasible.
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In this paper, we study a particular anytime algorithm for
the problem of constructing policies for decision problems
represented as influence diagrams [Horsch & Poole, 1998;
Horsch, 1998]. This algorithm has a number of general fea-
tures: the optimal solution is not known before it is com-
puted; the current best solution is incrementally improved,
although it is not known in advance how much improve-
ment will be gained by a single computational step; the
value of the current best solution is known; the cost of a sin-
gle computational step is known.

Our trade-off between computational cost and solution
value is based on an estimate of the expected value of com-
putation (EVC), which we determine empirically. Using
data collected during the course of using information refine-
ment to a large number of simple influence diagrams, we de-
rive a linear model which provides a basis for predicting the
expected value of an optimal policy. Based on this predic-
tion, we show how a decision maker can estimate the incre-
mental value of refinement (i.e., the value of doing one more
step), making use of information available to the anytime
process. The prediction would have negligible cost during
the anytime process.

We present some preliminary empirical results using this
approach. Our anytime algorithm was applied to number
of large influence diagrams which model an agent navigat-
ing a maze. For most of these influence diagrams, the opti-
mal policy is not known. The estimated maximum expected
value predicted by the model on these influence diagrams
is reasonable. The estimate of the incremental value of re-
finement seems to be somewhat optimistic with respect to
value. We are pursuing this issue further.

2 BACKGROUND

An influence diagram is a DAG representing a sequential
decision problem under uncertainty [Howard & Matheson,
1984]. An ID models the subjective beliefs, preferences,
and available actions from the perspective of a single de-
cision maker. A policy prescribes an action for each pos-
sible combination of observation. An optimal policy max-



imizes the decision maker’s expected value, without re-
gard to the cost of finding such a policy. If computational
costs are negligible, the decision maker’s expected value
depends only on the expected value of an optimal policy.
Traditional algorithms which compute the optimal policy
using dynamic programming [Howard & Matheson, 1984;
Shachter, 1986] usually assume computational costs to be
negligible.

2.1 FLEXIBLE COMPUTATION

In situations in which there is uncertainty about the state
of the world and uncertainty about the possible outcomes
of action, it has been argued that a rational decision maker
should act so as to maximize expected utility[von Neuman
& Morgenstern, 1947; Savage, 1972]. The situation be-
comes a little more complex when the actions which can be
taken include computation.

We treat computation as a meta–level action. That is, the
decision maker is faced with a sequential decision problem
which has been abstracted in such a way as to ignore com-
putational costs; this level is called the object level prob-
lem. The decision to invest computational resources to-
wards finding a policy in the object level problem is a meta-
level problem. This approach is the basis for flexible com-
putation [Horvitz, 1990; Russell & Wefald, 1992].

We also define two kinds of “value” for a policy �. The
first is the object value of the policy, EVI���, which is the
expected value of the policy assuming that computational
costs on either level are negligible. The second is the com-
prehensive value, EVII ���, which includes an accounting
for computational costs at the object level.1

We consider in this paper those problems for which the
comprehensive value is separable; that is, the comprehen-
sive value can be separated into two terms, one for the ob-
ject level value, and one for the computational costs, e.g.:

EVII ��� � EVI��� � c���

where c��� is the cost of computing the object level pol-
icy. Figure 1 gives a prototypical situation: we show three
curves: the object value, the computational costs, and the
comprehensive value which is the difference between the
object value and computational cost [Horvitz, 1990; Rus-
sell & Wefald, 1992].

When computational costs are negligible (i.e., c��� � �),
the decision maker maximizes EVII��� by maximizing
EVI���. In Figure 1, this happens at the rightmost edge of
the graph. When costs are not negligible, the policy which
maximizes EVI��� may not maximize EVII ���, as the cost

1The subscripts I and II are employed here as a reference
to the ideas of Good [Good, 1972], who identified two types of
“rationality;” the first, type I , is without regard to computational
costs, and the second, type II , accounting for computational costs.

may be too high. In general, EVII ��� � EVI ���; i.e., a
given policy never increases in value when costs are figured
into the value.

2.2 INFORMATION REFINEMENT

Information refinement is an iterative approach to con-
structing policies for decision problems [Horsch & Poole,
1998; Horsch, 1998]. This approach is closely related to
the work on compilation of decision models [Heckerman,
Breese, & Horvitz, 1989; Lehner & Sadigh, 1993].

The basis of the information refinement algorithm is a pro-
cess which builds policies in the form of decision trees. A
policy is represented by a collection of decision trees, one
for each decision node in the influence diagram. These de-
cision trees prescribe actions for contexts which may not
make use of all the information available to the decision
maker.

The initial policy makes use of none of the information
which is available to the decision maker at the time a de-
cision must be made. The available information consists
of the agent’s observations and previous actions. Each re-
finement step increases the policy’s use of available infor-
mation; by conditioning action on available information,
the process can determine actions which are better suited to
more specific situations. The policy is refined by choosing
a leaf from one of these trees and applying a single refine-
ment to the leaf, keeping the rest of the policy fixed.

The information refinement algorithm is an anytime algo-
rithm. There is no a priori order in which the trees are re-
fined; this is a departure from standard dynamic program-
ming techniques for buildingan optimal policy. Domain in-
dependent heuristics guide the algorithm, applying refine-
ments to decision trees in the problem.

The algorithm always has a current best policy available,
which it refines until the decision maker interrupts the pro-
cess to act. The expected object value of the current best
policy is known throughout the anytime process, but the in-
crease in value that may arise in future refinement is not
known in advance.

The technique is able to find reasonably good policies for
very large problems [Horsch, 1998]. Ignoring computa-
tional costs, the value of the policies tends to increase as
computational resources are invested in the process. Our
approach is able to make decisions with reasonably high ex-
pected value with reasonably small computational costs, on
problems large enough to make traditional methods infeasi-
ble.
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Figure 1: The comprehensive value of computation for a separable cost function.

3 FLEXIBLE INFORMATION
REFINEMENT

In this section we consider the anytime algorithm for infor-
mation refinement. We show how we have made use of in-
formation available during information refinement to esti-
mate the value of computation.

One of the problems faced in our particular situation is that
a refinement is not guaranteed to increase the object value of
the policy. The value of computation of a single refinement
is not necessarily zero, even if it results in no net increase
in object value. The investment of computational resources
may pay off in future refinement steps.

For example, consider the problem of learning a decision
tree representation for the Exor function on two Boolean
random variables. Both variables are necessary to repre-
sent the Exor function, but individually, neither one pro-
vides any information. In the information refinement algo-
rithm, a similar situation arises when no single additional
observation increases the value of the current best policy,
but observing two (or more) variables would do so.

Thus, the myopic information refinement algorithm is
prone to plateaus in which the expected object value does
not change as the policy is refined. These plateaus in the
object value profile lead to local maxima in the comprehen-
sive value profile if computational costs increase.

Because of the incremental nature of information refine-
ment, we define the incremental value of computation for
each refinement as the expected object value of the next re-
finement. This value, IV C, depends on knowing the re-
sults of future computation. Because there is no random-
ness in the information refinement process, IV C is deter-

mined by the input problem and the information refinement
algorithm. Since we do not know IV C, we make a simple
estimate for it.

At any point in the refinement process, there are a finite
number of possible contexts in the current policy refine-
ments which might be refined. Each of these may lead to
some increase in object value, although perhaps not imme-
diately. The total object value latent in these possible re-
finements is EV �

I
�EVI ; that is, the optimal expected ob-

ject value minus the current object value. This value is dis-
tributed throughout the possible refinements with some un-
known distribution. We make the simple assumption that
the total latent object value is distributed uniformly over the
possible refinements. The latent value in any single refine-
ment step is

LV R � �EV �

I �EVI��n

where n is the number of contexts which can be refined in
the current policy. We use LV R as an estimate for IV C.

It may seem that we have traded one unknown quantity,
IV C, for another, EV �

I
(EVI is known). In the next sec-

tion, we will estimate EV �

I
based on data gathered by ap-

plying information refinement to single stage influence di-
agrams.

4 EMPIRICAL RESULTS

We applied information refinement to one hundred ran-
domly constructed single decision influence diagrams. The
data we collected was used to learn a linear model to predict
an estimate for expected value. This model was applied to
much larger influence diagrams. We describe our experi-
ment in detail below.
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Figure 2: This template influence diagram has one decision
node and n informational predecessors.

4.1 SAMPLE INFLUENCE DIAGRAMS

The influence diagrams are randomly sampled from a class
of diagrams with very specific properties, which we discuss
here. A template problem for this class of influence diagram
is pictured in Figure 2. For brevity, this class is called the
“1-ID(n)” class, where n is the number of chance nodes.

We use this class of influence diagram because the sam-
ple space of all influence diagrams is very large. We also
wish to avoid creating essentially random problems with no
properties in common with “real” problems. Many of our
choices for sampling from this class are based on simplic-
ity, all other things being equal.

The 1-ID(n) class has the property that all the chance nodes
are parents of the decision node and the value node. As
well, chance nodes in the 1-ID(n) class are conditionally in-
dependent.

We point out that any influence diagram with a single deci-
sion node can be reduced to one in which the only chance
nodes are information predecessors (by summing out all
the chance nodes which are not information predecessors
(using variable elimination, for example [Zhang & Poole,
1996]).

The conditional independence between information prede-
cessors is used to keep the sample space as simple as possi-
ble. As well, we consider only binary-valued chance nodes,
and a binary-valued decision node.

The 1-ID(n) class permits some interesting variation in
terms of the probability distributions for the chance nodes.
For this experiment, the prior probability distribution for
each chance node was selected at random from a uniform
distribution: for each chance node Ci in the influence dia-
gram, one parameter xi was drawn from ��� �� with a uni-
form distribution. The conditional probability table for the
chance node given to the chance node is �xi� �� xi�.

The 1-ID(n) class also permits some variation in terms of
the dependency of the value function on its inputs, i.e., the
chance nodes plus the decision node. In these influence di-
agrams, a value function has n� � inputs, but may not de-
pend functionally on all of these inputs. In particular, there
may be combinations of a subset of the inputs which render

the remainder irrelevant. For example, a decision maker’s
preference may depend on chance node A when B is true,
but may not depend on A when B is false.

In order to construct value functions with varying depen-
dencies on its inputs, the following procedure was used.
The value function is constructed as a tree, with the inputs
as internal nodes, and real values as leaves. The parent
nodes of the value node were represented in a list. With
probability b, the first of these nodes would be used to split
the value tree at the current position; with probability��b,
the first node was discarded. This procedure was repeated
for every node in the list. The decision node was always
used as the last split (i.e., with probability 1), meaning that
the actions of the agent always always had an effect on the
value. The leaves of the value tree were selected from ��� ��
with a uniform probability distribution.

By varying the parameter b, value functions with more or
less dependence on its inputs can be constructed. In the ex-
periment described here, the value b � ����	
 was used.
This results in value functions (when represented as trees)
which are expected to have 200 internal nodes. When n �
�, as in our experiment, a value function could have as many
as 511 internal nodes. Thus, the value functions used in this
part of the experiment are expected to have a significant de-
gree of structure. The information refinement process ex-
ploits this kind of structure.

4.2 THE TRAINING DATA

One hundred influence diagrams with the properties de-
scribed above were constructed, and information refine-
ment was applied to each. The process uses heuristic in-
formation as guidance; in the experiment described here,
we used a heuristic which we call “the second best ac-
tion heuristic,” which has been described in previous work
[Horsch & Poole, 1998]. It is used to determine which part
of the policy to refine, and is based on the observation that
if there is a large difference in expected value between the
best action and the second best action in any context, it is
probably the case that a refinement to the context will not
lead to significant improvements to the value of the policy.
The heuristic value H for a context is computed as follows:

H � p
v

v�

where p is the marginal probability of the given context, v�

is the expected value of the best action in the given context,
and v is the expected value of the second best action in the
context. We note that H will tend to decrease: as contexts
get more specific, pwill decrease. As well, H need not con-
verge to zero, as there need not be an action that results in
an expected value of v � �.

The following quantities were recorded at each step of the
information refinement process: the object value of the cur-
rent best policy, EVI ; the heuristic value for the current



refinement step H; the number of possible myopic refine-
ments which can be made at the current step. The experi-
ment also determined the optimal expected value, EV �

I
for

each influence diagram.

The data collected for each influence diagram in the sample
set contains a profile for each step in the refinement process.
The points in the profile are not independent in a probabilis-
tic sense. One data point was extracted from each profile,
so that the data would be independent. We chose to extract
the point in the profile after the tenth refinement step. The
profiles at the tenth step have not yet converged; we want
to avoid training on data from the regions of the profile at
which the process has converged. The tenth step was cho-
sen because the process converges to the optimal policy for
these problems after about 60 refinement steps on average.

Three linear models were fit to the data, and a least squares
estimate was made for the parameters of polynomial sur-
faces of degree 1, 2 and 3. The dependent variable was the
maximum expected object value, the quantity we wish to
predict; the independent variables were the heuristic mea-
sure, H, which guides the refinement process, and the ob-
ject value of the current policy EVI .

The three models were examined informally for evidence of
over-fitting, and the surfaces of degree 2 and 3 were rejected
by geometric considerations. While the sum of squares er-
ror for these surfaces was quite small for the training data,
the surfaces did not make reasonable extrapolations outside
the range of the data. The high degree surfaces extended
into negative values, and positive values greater than 1.

The remaining model, a plane in 3-space, had the following
form:

EV �

I
� c� � c�EVI � c�H

where

c� � �����

c� � ���
��

c� � ������

Observe that EVI , the object value of the current best pol-
icy, is the biggest factor in the prediction of the value of the
optimal policy. This agrees with our intuitions: at the start
of the refinement process, the current policy is relatively far
from optimal, and the heuristic value should be high. As the
refinement process proceeds, the current policy converges
to optimal, and the heuristic value decreases.

The sum of squares error was quite small: 0.0634, over 100
data points. We applied this model to all the data in all the
profiles collected from the single stage influence diagrams.
The sum of squares error for the 25300 data points from all
the profiles was very small as well: 29.4.

4.3 TESTING THE MODEL

The simple linear model obtained in the previous section
was applied to 16 multi-stage influence diagrams. Each of
these influence diagrams model an agent navigating a maze;
we modelled 4 different agents, which vary in the noisiness
of actuators and sensors, and four different mazes, which
vary in topology. The decision problem is to determine a
policy which gets the agent to a goal location in the maze,
starting from anywhere in the maze.

Each is a ten stage influence diagram, which implies that the
agent must arrive at the goal within ten steps to achieve the
reward of 1 (the maximum value); being in any other loca-
tion is worth nothing to the agent. The information avail-
able to the agent is in the form of 4 sensors, one for each
compass direction. The agent cannot directly observe its
position.

The information space of these problems contains about ��

states. For two of the 16 problems, an optimal policy is
known; in both problems, the agent has noiseless sensors
and actuators, and a policy was constructed which guaran-
tees the agent will arrive at the goal position from any other
position in the maze. However, for the remaining 14 prob-
lems, an optimal policy is not known. These problems are
described in more detail in [Horsch, 1998].

The information refinement procedure was applied for 30
refinement steps on each influence diagram. The average
time required for these steps was 20.6 minutes.

The linear model (determined in the previous section based
on the 1-ID(n) data) predicted optimal policy values which
were on average 0.19 higher than the current policy at each
refinement step; (std. dev. 0.047). We emphasize that this is
not an error measurement; the optimal policy may be higher
than any policy we have constructed. The average differ-
ence between the estimated value of the optimal policy, and
the best known policy for these problems is 0.027 (std. dev.
0.14); the estimate is often low at the beginning of the re-
finement process, and increases with time.

On the two influence diagrams whose optimal policy is
known to be 1.0, the initial estimates of the optimal ex-
pected value were 0.334 and 0.327; after 30 refinement
steps, the estimates were 1.07 and 1.08, respectively. Ta-
ble 4.3 summarizes the results for all 16 influence diagrams
(see the rows labelled (1-ID(n)).

The difference between the estimates and the known values
may be due to the fact that the optimal policy is unknown
(and the best policies found are about this far from optimal).
On the other hand, the estimates may be inaccurate with re-
spect to these problems because the training data is not a
good model for the larger influence diagrams.

To investigate these possibilities further, we constructed 40
new influence diagrams similar to the 16 test problems.



Agent 1 Agent 2 Agent 3 Agent 4

Maze 1
1-ID(n):
Similar:

Best Known:

1.07
1.04

1.0

0.874
0.824
0.767

0.971
0.931
0.883

0.801
0.745
0.685

Maze 2
1-ID(n):
Similar:

Best Known:

0.677
0.599
0.500

0.629
0.549
0.453

0.691
0.617
0.530

0.559
0.475
0.381

Maze 3
1-ID(n):
Similar:

Best Known:

0.879
0.821
0.741

0.726
0.660
0.584

0.785
0.719
0.635

0.625
0.545
0.450

Maze 4
1-ID(n):
Similar:

Best Known:

1.08
1.05
1.00

0.933
0.885
0.822

0.951
0.903
0.838

0.821
0.761
0.686

Table 1: A summary of the estimated expected value of the optimal policy for the test set of 16 large influence diagrams.
The estimates were based on the 1-ID(n) data, and also on problems similar to the test set. The final estimates are shown,
and the value of the best known policy is provided for comparison.

The new problems were smaller instances of the test set (a
smaller maze size, and only 5 stages). Information refine-
ment was applied to these smaller influence diagrams and
data were collected as for the 1-ID(n) problems. We fit a
linear model to the data, and the model had the following
form:

EV �

I � c� � c�EVI � c�H

where

c� � ������

c� � ��	�

c� � �����


We applied this model to the 16 larger influence diagrams,
as before. Table 4.3 summarizes the results (see the rows
labelled Similar). In general, the estimates of EV �

I
are

smaller using problems similar to the test set than the 1-
ID(n) problems.

4.4 USING THE MODEL

We were interested in using our model to estimate the com-
prehensive value of computation. We used the estimate of
the object value of the optimal policy at each refinement
step to determine the incremental cost of computation, as
outlined above. Figure 3 shows a typical result. In this
plot, we plot value as a functionof the number of refinement
steps in our process. The object value of the current best
policy is increasing. We also have provided a cost model for
this example, that increases exponentially with the number
of refinement steps. The comprehensive value of the pol-
icy consists of the difference between the object value and
its cost at each step. We note that the object value and the
comprehensive value profiles are retrospective; a decision
maker faced with a resource bounded problem will not see
the entire profile, but only that part which it has computed
during information refinement. The comprehensive value is

maximized at 3 refinement steps for this particular problem
and the given cost function.

The figure also shows the two estimates of the value of the
optimal policy. Note how the estimates are higher than the
current object value throughout the profile. As indicated
above, the object value of the optimal policy is not known
for this problem. After 30 refinement steps, the 1-ID(n)
data predicts an optimal value of roughly 0.73; the data
based on the smaller mazer walking problems predicts an
optimal value of about 0.66. Neither of these estimates are
unreasonable for this problem. The best known policy (af-
ter 40 refinement steps) is 0.681.

Figure 4 shows the latent value of refinement as predicted
by the two data sets (Section 3. Latent value is computed
using the estimate of the value of the optimal policy, as de-
scribed in Section 3. This quantity is decreasing, and is
an estimate intended to model the value of future refine-
ments made possible by the current refinement step. Note
the small scale of the values, which reflects the fact that
the difference between the current object value and the es-
timated optimal value is assumed to be distributed evenly
across the possible refinements.

The graph also shows the differential value for each refine-
ment step. This value represents the difference between
the latent value of refinement and the cost of performing
a single refinement step. When this difference is positive,
the comprehensive value of the next step is expected to in-
crease; when it is negative, the comprehensive value is ex-
pected to decrease.

As the graph shows, our estimate of LV R does not predict
the maximum comprehensive value for this problem. At 10
refinement steps, the differential value predicted by the 1-
ID(n) data set goes negative. This comes 7 steps after the
global maximum in comprehensive value attained. The dif-
ferential value based on the smaller maze walking problems
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Figure 3: Value functions for one of the 16 large influence diagrams. Also shown are the object value of the current best
policy, and the estimated optimal value functions based on the two data sets. A prototypical cost function is given, and the
comprehensive value of the current best policy is derived using this cost function.

predicts a zero after 6 refinement steps. In this example,
our models over-estimates the incremental value of refine-
ment, and therefore the differential value reaches zero after
the comprehensive value is maximized. We are investigat-
ing this issue further.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have looked at the problem of using avail-
able information to estimate when to interrupt an anytime
algorithm. Our approach estimated the expected value of
the optimal policy from empirical data, and from this, de-
rived an estimate of the value of an investment of computa-
tional resources.

Our investigation is specific to the information refinement
process. We derived two models for the dependence of ex-
pected value of an optimal policy, which is not known dur-
ing the information refinement process, on measures which
are known during the process. The first model was based
on data collected while applying information refinement on
a large number of simple influence diagrams which could
be solved optimally.

This model was applied to a test set of influence diagrams
for which finding an optimal policy is infeasible. The esti-
mated value of the optimal policies for the larger influence
diagrams was consistently higher than the value for the best
known policy during information refinement. However, the

estimated values were not unreasonably high.

A second model was based on problems which were simi-
lar to the test set; these were smaller than the test set, but
still too large to solve for the optimal policy. Again, the es-
timated value of the optimal policy was consistently higher
than the best known policy, but not unreasonable.

We believe that these preliminary results are encouraging.
We have shown that a reasonably predictive model can be
derived from information which is available to the decision
maker during the information refinement process. This data
can be collected by a decision making agent, and used to
improve future comprehensive performance. More sophis-
ticated learning techniques could be used to provide more
accurate estimates.
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