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Abstract

This paper studies the connections between relational probabilistic models and
reference classes, with specific focus on the ability of these models to generate
the correct answers to probabilistic queries. We distinguish between relational
models that represent only observed relations and those which additionally rep-
resent latent properties of individuals. We show how both types of relational
models can be understood in terms of reference classes, and that learning such
models correspond to different ways of identifying reference classes. Rather than
examining the impact of philosophical issues associated with reference classes on
relational learning, we directly assess whether relational models can represent
the correct probabilities of a simple generative process for relational data. We
show that models with only observed properties and relations can only repre-
sent the correct probabilities under restrictive conditions, whilst models that
also represent latent properties avoids such restrictions. As such, methods for
acquiring latent-property models are an attractive alternatives to traditional
ways of identifying reference classes. Our experiments on synthetic as well as
real-world domains support the analysis, demonstrating that models with latent
relations are significantly more accurate than those without latent relations.

Keywords: Relational learning, prediction, reference class, clustering,
latent-variable models

1. Introduction

The reference class problem [41] is a long-standing problem in philosophy,
where the works of Kyburg [22, 23, 21] have been influential. The goal in solv-
ing the reference class problem is a procedure for identifying the right reference
class ; one that predicts the correct probability for any probabilistic query. Cor-
rectness in prediction in turn validates knowledge upon which the predictions
were drawn.

Given some outcome of interest, say F , a reference class is a population
sample for measuring the rate – specifically a proportion – of F . Relative to a
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particular individual x, the right reference class is one proportion of F matches
the correct probability that F is true for x. Using this proportion as the prob-
ability that F is true for x is an act of direct inference (see [27, 29]). Direct
inference with reference classes is commonplace. For example, suppose it is
known that 20% of trains due at Central Station between the hours of 2pm to
4.30pm this month have arrived late. We wish to predict the probability that
the next train due at Central Station between 2pm and 4.30pm will be late. By
direct inference, we conclude that the answer is 0.2. The reference class is a
main tool in the theory of intuitive judgement [14] for correcting human bias in
decision making.

This goal of this paper is to understand models used in relational learning
(the inductive acquisition of (statistical) models about individuals and relations
amongst them) and assess whether they can represent the correct probabilities
to answer probabilistic queries. Our point of departure is that relational models
considered can be expressed in terms of reference classes, explained in Section
3 and 4. Given the ties with reference classes, the relational models in question
must confront questions concerning reference classes regarding, for example, the
justifiability and possibility of finding the right reference class [41, 22, 6, 23, 27,
21, 29].

In this work, we study how relational models can achieve the correct answers
to probabilistic queries directly, with respect to the underlying generative pro-
cess of data. As the true generative process of data is inaccessible, we assume
a particularly simple generative process. We use the parameters of the genera-
tive process to derive predictions by our models, and compare these predictions
to the correct probabilities that are also obtained from the generative process
(Section 5).

We consider two widely-studied classes of relational models: those built
from observed properties and relations only, and those which also include latent
properties of individuals.

Relational models that represent only observed properties and relations have
been well-studied [25, 33, 8, 4]. They are useful for generalising occurrences of
relations amongst individuals, as well as modelling how one relation can depend
on another. To illustrate, assume a social domain where a number of relations
amongst people are recorded [43], e.g. friendship (written as friends(X,Y )),
preferences (for example likes(X,Y )), or esteem (written as esteem(X,Y )). The
kind of relational models discussed here model dependency structures over such
relations. For instance the dependency “friends(X,Y ) depends on likes(X,Y )
and esteem(X,Y )” states that for all pairs of individuals (X,Y ), the value of
the friendship predicate for (X,Y ) depends on whether X likes Y and whether
X holds Y in esteem. We show that such relational models represent a set of
reference classes, where each reference class is defined by some logical description
using observed properties and relations. Inference using such models is akin to
direct inference (see [26, 29]).

The second class of relational models we consider additionally introduces
latent properties of individuals. In such models, latent properties are used to
explain relations. For example, latent properties of individual x and y are used
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to explain whether likes(x, y) holds. This approach has been useful in in network
analysis [35, 10, 11, 1] as well as collaborative filtering [47, 12, 28, 20], where
typically only one observed relation is given. Latent properties are commonly
interpreted as clusters, where a cluster consists of all individuals that share
the same latent property values. We explain in Section 4 that latent-property
models define reference classes in a way that allows disjunctions of equalities in
the language.

In Section 5, we show that relational models that do not represent latent
properties can only entail the correct probabilities under restrictive circum-
stances relating to the underlying generative process. Latent-property models,
on the other hand, can model the correct probabilities without such restrictions.
Empirically, using synthetic and real-world data, we demonstrate in Section 6
that latent-property models achieve significantly lower empirical loss1 (i.e. bet-
ter accuracy) in probability estimation on both training and test data.

2. Preliminaries

In this work we use both predicate logic and probability notations. This sec-
tion covers the notation necessary for expressing relational probabilistic models
and relational data.

2.1. Predicate Language

To begin with, constants are expressed in lower-case, e.g. joe or venus, and
are used to represent individuals. A type is associated with each individual,
e.g. joe is a person. We use D(τ) to represent a domain of type τ , which is
the set of individuals of type τ . Types are assumed disjoint – that for any pair
τi 6= τj , D(τi) ∩ D(τj) = ∅. A logical variable is written in upper-case (e.g. X

or Person) and denotes some individual. A logical variable is also typed, e.g.
Person denotes some member of D(τ).

A relation is given by
r : Ωr → Vr

where r is the name of the relation, Ωr = D(τ1)× . . . ,×D(τa) is the domain of
the relation, and Tr = (τ1, . . . , τa) is the type of the relation. Vr = {v1, . . . , vk}
is the range of the relation – an enumerated set of values not appearing in any
domain. Number a and k are positive integers denoting the arity and size of
r; relation r is thus referred to as a k-valued a-ary relation. When a = 1,
r is a unary relation. In this paper, a unary relation is also referred to as a
property. When Vr = {F,T}, where F,T are Boolean values, r is a Boolean
relation. (Note that this description of a relation is more general than defined
in standard predicate logic, as we are interested in representing multi-valued
relations in addition to Boolean relations.)

1Empirical loss is an asymptotically consistent measure of discrepancies of probability
estimates. That is, the minimiser of loss, in the limit of infinite data, is the expected value of
the outcome of interest which is, in turn, the true probability of the outcome.
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An atom is an expression of the form r(σ1, . . . , σa) where each σi is either a
constant or logical variable. The types of σ1, . . . , σa must match the type of r.
If all of σ1, . . . , σa are constants, r(σ1, . . . , σa) is a ground atom.

A literal specifies the value of an atom, e.g. r(X1, . . . , Xa) = v where v ∈ Vr.
A literal that contains no logical variables, a ground literal, is a proposition.
For a Boolean relation r, the literal r(X1, . . . , Xa) = T is written simply as
r(X1, . . . , Xa), and r(X1, . . . , Xa) = F is written as ¬r(X1, . . . , Xa). A literal is
also a formula.

Formulae with multiple literals are formed using connectives ∧ and/or ∨.
Connecting literals using only ∧ forms a conjunctive formula or conjunction, e.g.
¬pass(Student) ∧ difficulty(Course) = high. A disjunctive formula or disjunc-
tion is formed using only ∨, e.g. ¬pass(Student) = high∨¬difficulty(Course) =
high.

A substitution is a set θ = {X1\x1, . . . , Xk\xk} where Xi are distinct logical
variables and xi are constants. When applied to a formula f , each occurrence
of Xi in f is replaced with xi. We denote the application of substitution of θ to
f as fθ. For example, suppose f is a(X) = u ∧ ¬b(X,Y ) and θ = {X\x, Y \y},
to fθ is then a(x) = u ∧ ¬b(x, y). If there are no logical variables fθ, θ is
called a grounding substitution. We also allow substitutions for (sets of) atoms,
e.g. for b(X,Y )θ is b(x, y), and for the set g given by {a(X), b(X,Y )}, gθ is
{a(x), b(x, y)}.

Given some formula f containing logical variablesX1, . . . , Xn, where eachXi

has type τi, let the domain of f be Ωf = D(τi)× . . . ,×D(τn). The substitution
space of f , Γf , is the set of all possible grounding substitutions for f , given by

Γf = {{X1\x1, . . . , Xn\xn} : (x1, . . . , xn) ∈ Ωf}

For example, if formula f is a(X) ∧ b(X,Y ), where Ωf = D(τX)×D(τY ), then
Γf is {{X\x, Y \y} : (x, y) ∈ Ωf}.

2.2. Relational Data
A dataset for relation r is a non-empty set Dr = {d1, . . . , dm}. Each di

is a tuple of the form 〈x1, . . . , xa, v〉 where (x1, . . . , xa) ∈ Ωr and v ∈ Vr. If
〈x1, . . . , xa, v〉 ∈ Dr and 〈x1, . . . , xa, v

′〉 ∈ Dr, then v = v′. A database is a set
of datasets, where no more than one dataset for each relation. The following
defines what a database entails.

(i) D |= T

(ii) D |= (r(x1, . . . , xa) = v) iff 〈x1, . . . , xa, v〉 ∈ Dr

(iii) D |= α ∧ β iff D |= α ∧ D |= β

(iv) D |= α ∨ β iff D |= α ∨ D |= β

(1)

where α, β are formulae. We say that r is an observed relation if Dr 6= ∅, and is
a latent relation otherwise.

Counts can be obtained from a database D via logical formulae. The count
of cases satisfying formula f with respect to D is given by

#D (f) =
∑

θ∈Γf

I (D |= fθ) (2)
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where I(s) is a characteristic function; returns 1 if s holds, and 0 otherwise.

2.3. Probability

Relational probabilistic models are expressed in languages that combine first-
order logic (FOL) and probability. Each ground atom in the model is treated as
a random variable, and a proposition (ground literal) is an instantiation of the
random variable. Free logical variables are assumed to be universally quantified
unless stated otherwise. The notation P (a(x) = v) denotes the probability of
the proposition a(x) = v. Since all relations have discrete ranges, all random
variables are therefore discrete in this work.

3. Modelling with Observed Relations

This section gives an account of reference classes, relational models defined
with only observed relations, and how the latter can be understood in terms of
reference classes.

3.1. Reference Classes

A reference class is a set of tuples of individuals (an individual is a 1-tuple).
Logical formulae are commonly used to define reference classes [22, 27, 21, 2]
where the tuples of individuals in the reference class satisfy the given formula.
For example, the description “tall and athletic” is used to define a set of tall
and athletic individuals.

Let X = {X1, . . . , Xk} be a set of logical variables, and f a formula where
all variables in f appear in X . A reference class can be defined as

C
D

X (f) = {〈x1, . . . , xk〉 : D |= f{X1\x1, . . . , Xk\xk}} (3)

where {X1\x1, . . . , Xk\xk} is a substitution. We abbreviate C
D

X by C(f) when
X and D can be understood from context. The following discusses examples of
reference classes.

Example 1. Assume database D = {Dtall,Dathletic}, and logical variable set
X = {Person}. The formula tall(Person) (where tall is Boolean) defines the
reference class C(tall(Person)) that consists of the set of tall individuals. Simi-
larly, the formula tall(Person)∧athletic(Person) yields a more specific reference
class C(tall(Person) ∧ athletic(Person)).

Whilst the formula tall(Person) is logically equivalent to (tall(Person) ∧
athletic(Person))∨(tall(Person)∧¬athletic(Person)), the reference class C(tall(Person))
is not the same as

C(tall(Person) ∧ athletic(Person)) ∪ C(tall(Person) ∧ ¬athletic(Person))

because C(tall(Person)∧athletic(Person)) and C(tall(Person)∧¬athletic(Person))
include only individuals for whom athletic is observed in the database, whereas
C(tall(Person)) also includes tall individuals for whom athletic is not observed.

A special reference class C(T) is obtained when the formula T is used. For
this example, C(T) represents the set of all individuals in D(person), regardless
of what properties are observed about them.
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Consider a case where reference classes consist of non-singleton tuples of
individuals, e.g. for relational domains.

Example 2. Assume database D = {Dtechnical,Dmathematical,Dpass}, logical vari-
ables X = {Student, Course}, and Boolean relations

technical : D(student)→ {F,T}

mathematical : D(course)→ {F,T}pass : D(student)×D(course)→ {F,T}

which represent whether a student is technically minded, whether a course is
mathematical, and whether a student passes a course, respectively. The follow-
ing reference classes can be defined

(i) C (T) – the set of all student-course tuples.

(ii) C (technical(S)) – the set of all student-course tuples with technically-
minded students.

(iii) C (mathematical(C)) – the set of all student-course tuples with courses
that involve mathematics.

(iv) C (technical(S) ∧mathematical(C)) – the set of all student-course tuples
with technically-minded students and courses that involve mathematics.

Reference classes can be constructed to predict the probability of particular
propositions. The proposition of interest is a query.

Example 3. We construct reference classes to predict the probability of the
query pass(t.smith,math120) = T.

Let eq student : D(student)×D(student)→ {F,T} and eq course : D(course)×
D(course)→ {F,T} be equality relations for student and courses respectively2,
e.g. where eq student(S, S′) = T if and only if S and S′ are the same individual,
and similarly for eq course(C,C ′). The following reference classes are possible.

(i) C (T) – the set of all student-course tuples.

(ii) C (eq student(S, t.smith)) – the set of all student-course tuples where the
student is t.smith.

(iii) C (eq course(C,math120)) – the set of all student-course tuples where the
course is math120.

(iv) C (eq student(S, t.smith), eq course(C,math120)) – the set containing the
tuple 〈t.smith,math120〉.

2An equality relation is defined separately for students and courses in the interest of main-
taining the type formalism for relations.
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Here we assume that relations eq student(·) and eq course(·) are built-in – as
often done in programming languages – and not explicitly defined in the input
database as an observed relation. They are observed relations as they are well-
defined for every member of D(student) and D(course).

The reference class C (eq student(S, t.smith) ∧ eq course(C,math120)) is in-
teresting, because it consists of a single tuple 〈t.smith,math120〉, which also
appears in the query. If the proposition queried is observed (i.e. entailed by D)
then the reference class returns 0 or 1 depending on the observed value. That
is, if pass(t.smith,math120) is observed to be false according to D, then the
answer to our query is 0. If the proposition if not observed, then the reference
class is empty and cannot define an answer.

The purpose of defining a reference class is to measure the proportion that
some outcome of interest holds. Assume atom h denotes our outcome of interest,
and we wish to measure the proportion of h = v in some reference class CD

X (f),
the proportion – which we call the reference class statistic – is given by

P(h = v | f) =
|C(f ∧ h = v)|

∑

u

|C(f ∧ h = u)|
=

#D (f ∧ h = v)
∑

u

#D (f ∧ h = u)
(4)

Example 4. Continuing from Example 2, suppose we are interested in mea-
suring the pass rate of technically-minded students over all courses, i.e. we seek
the proportion for which pass(Student, Course) = T holds in the reference class
C

D

X (technical(Student)) (D and X are given in Example 2). The proportion
sought is

P(pass(Student, Course) | technical(Student))

=
#D (technical(Student) ∧ pass(Student, Course))

#D (technical(Student) ∧ pass(Student, Course))+
#D (technical(Student) ∧ ¬pass(Student, Course))

3.2. Relational Probabilistic Models

A key goal in relational learning is to learn a model that generalises examples
in a given domain [25, 33, 36, 8, 4]. Such models generalise the given examples by
abstracting over domain individuals. We illustrate with the following example.

Example 5. In the education domain of Example 2, suppose the database D

contains the following set of examples






























pass(j.smith, cs100), technical(j.smith),
¬pass(m.jones, bio120), technical(m.jones),
pass(s.wang,math120), technical(s.wang),
¬pass(x.ahn,math120), ¬technical(x.ahn),
pass(k.stevens, latin120), ¬technical(k.stevens),
pass(x.ahn, phil101), . . .































(5)

The relational probabilistic models in question can model the probability
that pass(Student, Course) is true for any student-course pair. Similarly, it can
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model the probability of technical(Student) being true for any student, as well as
how pass(Student, Course) may probabilistically depend on technical(Student)
or vice versa. In other words, the relational probabilistic models discussed here
represent generalisations of relations and their dependencies over individuals.

Learning programs in first-order logic (FOL) is one approach to obtain such
models, and underpins research in ILP [33, 36]. The limited ability of FOL for
handling quantitative uncertainty, however, led to languages that extend the
semantics of FOL to include probability semantics [9, 16, 38, 32, 39, 44, 7, 30,
42], with proposals for learning in these languages also emerging [7, 17, 18].
We refer models in these languages as relational probabilistic models, which
we will focus on in the rest of this paper. We further specialise for relational
probabilistic models that combine FOL and Bayesian networks of Pearl [37], e.g.
[38, 32, 39, 44, 7, 16, 30], which represents the majority of relational probabilistic
models proposed, with the notable exception of Markov logic [42].

A relational probabilistic model consists of tuples of the form 〈θ, h← b〉
– which we call a probabilistic clause – where h is the head literal and b is a
conjunction called the body. h← b is a logical clause and parameter θ represents
the conditional probability P (h | b). The discussion that follows explains how
each probabilistic clause relates to reference classes.

Depending on the settings of logical variables in the head and body, a (prob-
abilistic) clause can be constrained or non-constrained [36]. In the following we
show how these relate to reference classes.

3.2.1. The Constrained Case

When all logical variables that appear in b also appear in h, the clause
is constrained. Let X = {V1, . . . , Vn} be logical variables appearing in the
clause, and {τ1, . . . , τn} the respective types, the domain of the clause is then
D(τ1) × . . . × D(τn). Tuples in the domain that satisfy b – with respect to the
database D – represent the reference class CD

X (b).

Example 6. Consider the constrained clause (using the domain illustrated in
Example 2)

〈θ, pass(Student, Course)← technical(Student)〉

where relative to database D, the body defines the set of student-course pairs
that involve only technically-minded students, and in turn represents the refer-
ence class CD

{Student,Course}(technical(Student)).

Parameter θ directly represents the conditional probability P (h | b). For dis-
crete models, θ’s maximum likelihood value is the proportion of student-course
pairs in C(technical(Student)) such that pass(Student, Course) is true, as in
Equation 4, and represents the reference class statistic P(pass(Student, Course) |
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technical(Student)).

θ =

#D

(

pass(Student, Course)∧
technical(Student)

)

#D

(

pass(Student, Course)∧
technical(Student)

)

+#D

(

¬pass(Student, Course)∧
technical(Student)

)

Figure 1 illustrates how different reference classes and statistics can be ob-
tained, using the data shown in Equation 5. In particular, each conditioning
step (from top to bottom) specialises the body of a clause and yields a narrower
reference class. Reference classes at the leaves of the tree are the most specific.

s.wang math120

m.jones bio120

j.smith cs100

x.ahn math120

x.ahn phil101

k.stevens latin120

cs100j.smith

s.wang math120

m.jones bio120

x.ahn math120

x.ahn phil101

k.stevens latin120

Figure 1: The simple student-course domain, where pass(Student, Course) is a Boolean re-
lation denoting whether Student passes Course. The property technical(Student) is also
Boolean, denoting whether Student is technically-minded. Observed cases of Equation 5 in
Example 5 are split depending on the value of technical(Student). Each table represents a
reference class and associated data, and corresponding probabilistic clauses are show below
each table.

3.2.2. The Non-constrained Case

When there are logical variables in b that are not in h, the probabilistic
clause is non-constrained, and θ is calculated depending on how the additional
body variables are quantified.

Example 7. Consider the probabilistic clause

〈θ, pass(Student, Course)← passed mod(Student, Course,Mod)〉 (6)

where passed mod(Student, Course,Mod) is an observed Boolean relation in-
dicating whether a student has passed a course module indicated by logical
variable Mod.
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The probability that a given student passes a given course depends on which
modules of that course the student has passed. Specifically, assuming there are
n modules per course, θ parameterises the conditional probability table

P

(

passed(Student, Course) |

{

passed mod(Student, Course,modi) = vi
: i = 1, . . . , n

})

where vi ∈ {F,T}. The immediate problem is that the size of this conditional
probability table is exponential in n, which quickly becomes representationally
infeasible. A common approach is to assume that each condition is independent
of another3, leading to a more feasible representation, i.e.















φ (passed(Student, Course) | passed mod(Student, Course,mod1) = v1)
φ (passed(Student, Course) | passed mod(Student, Course,mod2) = v2)
. . .

φ (passed(Student, Course) | passed mod(Student, Course,modn) = vn)















(7)
where each member of the set expresses a conditional probability, and has a size
that is independent of n. Suppose the conditional probabilities in Equation 7
have parameters θ(1), . . . , θ(n) respectively, θ for Equation 6 can be obtained by
combining θ(1), . . . , θ(n), which is commonly done combination functions such
as the noisy-OR (see [13, 16]).

At this point, observe that each member of the conditional probability set
in Equation 7 can be modelled by a constrained probabilistic clause. Since each
constrained probabilistic clause represents a reference class and its statistic, a
range-restricted probabilistic clause represents a set of reference classes and a
combined statistic computed from the individual reference class statistics.

3.2.3. Learning

The above shows that relational probabilistic models represent a set of ref-
erence classes and associated statistics, and that inference using such models
amount to direct inference. For identifying the right reference class, the speci-
ficity principle has been at the centre of philosophical discussions [41]. Here we
comment on how existing methods for learning relational probabilistic models
relate to the specificity principle for reference classes.

Learning relational probabilistic models boil down to learning the clausal
structure and parameter of each probabilistic clause. For a probabilistic clause
〈θ, h← b〉, parameter learning pertains to learning θ when given h← b. Struc-
ture learning refers to learning h ← b – namely, find the best conjunction b –
such that the model best fits the data. Two approaches are possible for structure
learning: top-down [40, 25] or bottom up [31].

The top-down approach can be visualised in Figure 1, where the initial
dataset is split successively by conditioning on a new relation at each step.

3Assuming independent conditional influences also referred to as causal independence [51],
where any joint influence of multiple conditions are neglected.

10



The relation chosen at each step is done in a greedy manner. The top-down
process is a general-to-specific search. The bottom-up approach reverses this
process: starting with the most specific clauses, successively compute the best
generalising clause, thus performing a specific-to-general search. In top-down
and bottom-up approaches, the goal is to find the best clause that fits the
data whilst adhering to some regularisation constraint to avoid over-fitting (see
[33, 25, 4]).

The relational learning procedures described can be seen as implementations
of the specificity principle, in the sense that they seek the most specific reference
class [41, 22, 21, 27]. The difference is that these procedures adhere to heuristic
regularisation constraints to avoid over-fitting. The regularisation principle also
ensures that even when a large set of relations are available to construct very
specific clauses (specific reference classes), such specific clauses will be avoided
if they violate the regularisation constraint. Also, narrow reference classes with
insufficient statistics due to small sample sizes can also be avoided.

4. Modelling with Latent Properties of Individuals

It is often the case in the analysis of user preferences (e.g. in collaborative
filtering [12, 28, 20]) and social systems [15, 49, 10, 1, 48] that latent prop-
erties of individuals are introduced to explain the observed relations amongst
individuals. Modelling latent properties for individuals is better known as clus-
tering ; i.e. setting the value of a latent property for an particular individual is
tantamount to assigning that individual to a cluster, where possible values of
the latent property represent distinct clusters. Clustering domain individuals
in turn induces clusters of observed data for properties and relations.

We distinguish between two types of clustering models for relational data –
hard-clustering and soft-clustering models.

4.1. Hard-clustering

Consider latent property α : D(τ) → {F,T}. Hard-clustering with α hard-
assigns each x ∈ D(τ) to one of two clusters denoted respectively by α(x) = F

and α(x) = T. Namely, it induces two clusters {x : x ∈ D(τ), α(x) = T} and
{x : x ∈ D(τ), α(x) = F}. Latent properties of individuals are often used to
explain observed relations. Relational clustering models in the machine learning
literature are often hard-clustering models [12, 15, 49, 10, 1, 11, 20].

Revisiting the student-course example (Example 2), we consider a model
involving the observed relation pass(Student, Course) as being probabilistically
dependent on some latent property α(Student) of students and some latent
property β(Course) of courses. Treating the latent properties as if they are
observed – i.e. that latent property values are observed for every individual
– observed examples for pass(Student, Course) are split by conditioning on
α(Student) and β(Course) (shown in Figure 2 below) in a similar way to that
shown in Figure 1.
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k.stevens latin120

s.wang math120

j.smith cs100

s.wang math120

j.smith cs100

k.stevens latin120

s.wang math120

m.jones bio120

j.smith cs100

x.ahn math120

x.ahn phil101

k.stevens latin120

Figure 2: A simple student-course domain, where pass(Student, Course) is a Boolean rela-
tion denoting whether Student passes Course. α(Student) and β(Course) represent latent
(Boolean) properties of students and courses respectively. The illustration splits observed ex-
amples of pass(Student, Course) given by Equation 5 by conditioning on values of the latent
properties of individuals. The subtree for ¬α(Student) is not shown. Each table represents a
reference class and associated data. Corresponding probabilistic clauses are show below each
table.

As α(Student) and β(Course) are not observed, their values must be in-
ferred from the available data, using algorithms such as EM (expectation max-
imisation)4 [5]. In Figure 2, it is assumed that latent property values for each
individual have already been inferred.

Conditioning on latent properties produces reference classes and their statis-
tics in the same way as conditioning on observed properties and relations (com-
pare Figure 1 and 2). The key difference is that, in a latent-property model,
an additional inference step is required to compute values of latent properties
prior to conditioning. An interesting aspect of latent-property models is that
the latent property values can be generated to optimise the model’s fit to data.

Another important attribute of latent properties is that they introduce dis-
junctions of equalities to the modelling language, thereby eliciting a richer space
of reference classes than that from observed properties and relations only. To

4For non-trivial models where there are many correlated latent random variables, approxi-
mate inference techniques based on Monte Carlo sampling and variational Bayes are common
(see [19] for a general overview).
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illustrate, consider the probabilistic clause

〈θ, r(X,Y )← α(X) ∧ β(Y )〉 (8)

where r has type (τ1, τ2). Suppose that an inference procedure is used to obtain
the estimated value of α(x) for all x ∈ D(τ1) and the value of β(y) for all
y ∈ D(τ2). Let Sα = {x : x ∈ D(τ1), α(x) = T} denote the set containing all
α(x) whose inferred value is T, and Sβ = {y : y ∈ D(τ2), β(y) = T} the set of all
β(y) whose inferred value is T. Then, r(X,Y )← α(X)∧β(Y ) can be expressed
directly in terms of disjunctions of equalities as follows

r(X,Y )←
∨

x∈Sα

eq 1(X,x) ∧
∨

y∈Sβ

eq 2(Y, y) (9)

where eq 1(·) and eq 2(·) are equality relations (first introduced in Example 3)
for elements of type τ1 and τ2 respectively. Note that Equation 9 is logically
equivalent to

r(X,Y )←
∨

x∈Sα,y∈Sβ

eq 1(X,x) ∧ eq 2(Y, y) (10)

Referring again to the student-course example (Example 2), the probabilistic
clause

〈1.0, pass(Student, Course)← α(Student) ∧ β(Course)〉

is equivalent to

〈 1.0, pass(Student, Course)←
(eq student(Student, j.smith) ∨ eq student(Student, s.wang))∧
(eq course(Course, cs100) ∨ eq course(Course,math120))

〉

and also

〈

1.0, pass(Student, Course)←
(eq student(Student, j.smith) ∧ eq course(Course, cs100))∨
(eq student(Student, j.smith) ∧ eq course(Course,math120))∨
(eq student(Student, s.wang) ∧ eq course(Course, cs100))∨
(eq student(Student, s.wang) ∧ eq course(Course,math120))

〉

where members of disjunctions are taken from Figure 2.
Note that models using only observed properties and relations can also be

written in terms of disjunctions of equalities. However, observed properties
only represent particular disjunctions that are entailed by the database. For
instance, the probabilistic clause pass(Student, Course) ← technical(Student)
can be expressed in terms of disjunctions of equalities, i.e.

pass(Student, Course)←
∨

s∈Stechnical

eq student(Student, s)

where the set Stechnical = {s : s ∈ D(student),D |= technical(s)} is determined by
D. Latent properties, on the other hand, are more general as they can represent
arbitrary disjunctions of domain individuals.
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The use of latent properties in the hard-clustering context, after values for all
ground instances of latent properties are inferred, produces reference classes in
the same manner as models with only observed relations. The inclusion of latent
properties augments the modelling language with disjunctions of equalities and
permits a richer set of reference classes.

4.2. Soft-clustering

Where hard-clustering places an individual to one cluster, soft-clustering
specifies the probability that an individual belongs to each cluster. In terms of
latent properties, a hard-clustering model specifies that P (α(x) = v) for some
individual x is either 0 or 1, whereas a soft-clustering model allows non-extreme
probabilities. A soft-clustering relational model corresponds to a weighted en-
semble of hard-clustering relational models.

Consider the probabilistic clause shown in Equation 8 and assume that
r(X,Y ), α(X), and β(Y ) are Boolean. Latent property α(X) represents two
clusters, and individuals of D(τ1) are assigned to one cluster or the other in a
hard-clustering model, and similarly for β(Y ). There are 2|D(τ1)| possible ways
to cluster all members of D(τ1) to the two given clusters, and similarly there
are 2|D(τ2)| ways to cluster members of D(τ2). A joint assignment specifies the
clustering of each member of D(τ1) and D(τ2), where there are 2|D(τ1)|+|D(τ2)|

possible joint assignments. Each possible assignment yields a hard clustering,
there are therefore 2|D(τ1)|+|D(τ2)| possible hard clusterings.

To explain soft-clustering, consider the probabilistic clause

〈θ, pass(Student, Course)← α(Student) ∧ β(Course)〉 (11)

where we assume that pass, α and β are Boolean. Let Λ be the space of all joint
assignments of individuals in D(student) and D(course) to clusters, i.e. each
w ∈ Λ is a unique specification of the value of α(s) for each s ∈ D(student)
and β(c) for each c ∈ D(course). A soft-clustering model specifies a proba-
bility function Q over Λ, such that

∑

w∈Λ Q(w) = 1. The weight of any joint
assignment w is represented by probability Q(w).

In practise, where there are many domain individuals, representing Q is in-
feasible. For the student-course domain, Qmust represent 2|D(student)|+|D(course)|

probabilities. A common simplification is to assume probabilistic indepen-
dence5, e.g. that α(j.smith) is probabilistically independent from other la-
tent properties for other individuals. Under this assumption, Q represents the
probability of α(s) for each s ∈ D(student) and β(c) for each c ∈ D(course)
separately. The representation size is now (|D(student)| + |D(course)|). The
probability of any joint assignment is then a product of individual probabilities.
For example, if the joint assignment w specifies that α(s) = β(c) = T for all

5There is a large body of work on approximations for large probabilistic models with many
correlated latent variables. Notable examples include [50], and see [19] for a good overview.
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s ∈ D(student) and c ∈ D(course), then

Q(w) =





∏

s∈D(student)

Q (α(s) = T)









∏

c∈D(course)

Q (β(c) = T)





Note that if all probabilities returned by Q are extreme (i.e. 0 or 1), then
we obtain a hard-clustering model. For instance, the student-course example as
illustrated in Figure 2 begins with a hard-clustering corresponding to the joint
assignment

α(x.ahn) = F ∧ β(bio120) = F ∧
α(m.jones) = F ∧ β(cs100) = T ∧
α(j.smith) = T ∧ β(latin120) = F ∧
α(k.stevens) = T ∧ β(math120) = T ∧
α(s.wang) = T ∧ β(phil101) = F

which can be achieved by setting Q as follows

Q(α(x.ahn) = T) = 0, Q(β(bio120) = T) = 0,
Q(α(m.jones) = T) = 0, Q(β(cs100) = T) = 1,
Q(α(j.smith) = T) = 1, Q(β(latin120) = T) = 0,
Q(α(k.stevens) = T) = 1, Q(β(math120) = T) = 1,
Q(α(s.wang) = T) = 1, Q(β(phil101) = T) = 0

The probability function Q is used to define soft counts that are required for
computing parameter θ. We describe soft counts as follows.

Definition 1. Assume probability function Q, and a ground literal r(x1, . . . , xn) =
v such that D 6|= (r(x1, . . . , xn) = v). A soft characteristic function is

Î(r(x1, . . . , xn) = v,Q)

=











1 if r observed and D |= (r(x1, . . . , xn) = v)

0 if r observed and D |= (r(x1, . . . , xn) = v′) ∧ v 6= v′

Q(ri(x1, . . . , xn) = v) otherwise

(12)

Assume a formula f = f1 ∧ . . . ∧ fn, a substitution θ ∈ Γf and probability
function Q defined for all fθ′ where θ′ ∈ Γf , then a soft characteristic function
for fθ is

Ĩ(fθ,Q) = Î(f1θ,Q) · Î(f2θ,Q) · · · Î(fnθ,Q)

Finally, a soft count is given by

#̃D (f,Q) =
∑

θ∈Γf

Ĩ (fθ,Q) (13)

(Note that if D |= fi, i = 1, . . . , n, then Equation 13 is equivalent to the normal
count (Equation 2).)
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Using soft counts (Equation 13), the probability parameter θ of Equation 11
is given by

θpass|α,β =
#̃D (pass(Student, Course) ∧ α(Student) ∧ β(Course), Q)

∑

v

#̃D (pass(Student, Course) = v ∧ α(Student) ∧ β(Course), Q)

(14)
If Q has only extreme probability values, then Equation 14 is equivalent to
Equation 4.

Equation 14 is the proportion that pass(Student, Course) is true in the set
of student-course pairs where α(Student) ∧ β(Course) is true, with respect
Q. Given Q, it can be seen that the reference class in question is specified
by α(Student) ∧ β(Course), and the reference class statistic (Equation 14) is
obtained by counting weighted cases of pass(Student, Course).

Answers to probabilistic queries using a soft-clustering model are weighted
sums of reference class statistics. To illustrate, suppose we seek the probability
that pass(j.smith, cs100) holds. Whilst in the preceding discussion we have only
covered the reference class specified by α(Student)∧β(Course), we require the
remaining reference classes, namely those given by α(Student) ∧ ¬β(Course),
¬α(Student)∧β(Course), and ¬α(Student)∧¬β(Course). With these reference
classes are associated statistics θpass|α,β , θpass|α,¬β , θpass|¬α,β , and θpass|¬α,¬β , all
of which can be computed like in Equation 14. Given the probability function
Q, the answer to the query pass(j.smith, cs100) is then

P̂ (pass(j.smith, cs100)) = θpass|α,βQ(α(j.smith))Q(β(cs100)) +
θpass|α,¬βQ(α(j.smith))Q(¬β(cs100)) +
θpass|¬α,βQ(¬α(j.smith))Q(β(cs100)) +
θpass|¬α,¬βQ(¬α(j.smith))Q(¬β(cs100))

where P̂ (·) denote an estimate of the true probability. This shows that infer-
ence using our soft-clustering model produces a weighted-sum of reference class
statistics.

To summarise, we showed here that a soft-clustering model represents the set
of hard-clustering models corresponding unique joint assignments of individuals
to clusters defined by the latent properties, and specifies the weight (a probabil-
ity) for each model. Since each hard-clustering model is shown to correspond to
a reference class (and reference class statistic), soft-clustering models therefore
represent a weighted-sum of reference classes. Reference class statistics obtained
for the soft-clustering model uses soft counts, whereas deterministic counts are
used in hard-clustering models. Inference with a soft-clustering model performs
a weighted combination of reference class statistics defined by latent properties,
whereas a hard-clustering model predicts by selecting a reference class statistic
according to which clusters the queried individuals are assigned.

In the next section, we compare inferences made by relational models with
only observed relations and those with additional latent properties, in the con-
text of recovering the true underlying probabilities of propositions.

16



5. Understanding Relational Inference

As mentioned in the introduction, we seek to directly evaluate a given re-
lational model’s ability to produce the correct probability for given queries.
Our approach involves assuming that the generative process of data is known,
which enables us to express inferences from our models in terms of the correct
probabilities, i.e. those represented by the generative process.

For our analysis we deliberately focus on a simple relational domain con-
sisting of one observed relation whose examples are generated by two latent
properties. We first describe the generative process that underlies this simple
domain, then analyse in Section 5.3 relational models that contain only observed
relations. In Section 5.4 we examine relational models that also model latent
properties.

5.1. Generative Model

Our generative process reflects the common intuition that relations amongst
individuals are attributed to (hidden) properties of participating individuals.
The generative process of interest is defined as follows.

Definition 2. We assume a Boolean relation r : D(τ1)×D(τ2)→ {F,T}, where
domains D(τ1),D(τ2) are known, and two unary Boolean relations a : D(τ1)→
{F,T} and b : D(τ2)→ {F,T}. We define a probabilistic model G over the set of
all atoms of each relation. G is a Bayesian network with representing the joint
distribution

J =
∏

(x,y)∈D(τ1)×D(τ2)

p (a(x)) p (b(y)) p (r(x, y) | a(x), b(y)) (15)

where p(a(x)) is a Bernoulli distribution with parameter γa for all x ∈ D(τ1),
p(b(y)) is a Bernoulli distribution with parameter γb for all y ∈ D(τ2), and
p(r(x, y) | a(x), b(y)) is a conditional distribution specified parameters γr|a,b,
γr|¬a,b, γr|a,¬b, and γr|¬a,¬b, corresponding to the four possible value settings of
a(x) and b(y). The Bayesian network is illustrated in Figure 3.

5.2. Sampling from G

Relation r(X,Y ) is an observed relation, whilst a(X) and b(Y ) are latent
relations. We describe here how our database D = {Dr} is obtained by sampling
G.

For for every x ∈ D(τ1), randomly generate the value for a(x) by sampling
the Bernoulli distribution with parameter γa. Similarly, for every y ∈ D(τ2),
randomly generate the value for b(y) by sampling the Bernoulli distribution with
parameter γb. Then, for every pair (x, y) ∈ D(τ1)×D(τ2), where a(x) = u and
b(y) = v are previously sampled values, randomly generate a value for r(x, y)
according to a Bernoulli distribution with parameter γr|a=u,b=v.
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Figure 3: The generative model G for a simple relational domain shown as a parametrised
Bayesian network (in plate notation). Conditional probability tables are shown explicitly.
Logical variables X,Y have different types.

Since for all (x, y), a(x) and b(y) are either true or false as a result of sampling
G, the correct probability that underlies some particular case r(x, y) is given by

µxy = P (r(x, y)) =



















γr|a,b if a(x) ∧ b(y)

γr|¬a,b if ¬a(x) ∧ b(y)

γr|a,¬b if a(x) ∧ ¬b(y)

γr|¬a,¬b if ¬a(x) ∧ ¬b(y)

(16)

which will be referred to when assessing how our models can reproduce the
correct probability for answering queries.

5.3. Inference with Observed-relation Models

Assuming that the available data is generated according to G (Definition 2),
this section examines inference with models representing only observed relations.
Henceforth we call these models observed-relation models.

The aim is to determine whether observed-relation models can produce the
correct answer for probabilistic queries. Let r(x, y) represent the query whose
probability is of interest. For the simple domain considered, three possible
observed-relation models can be used to answer the query. They are reference
classes CD

{X,Y }(T), C
D

{X,Y }(eq 1(X,x)), and C
D

{X,Y }(eq 2(Y, y)), where we have

used Boolean relations eq 1(·) and eq 2(·) to represent equality amongst domain
individuals. In the rest of this section we drop the superscript and subscript for
reference classes.

The first step towards establishing whether our reference classes can yield
the right probabilities is to show that corresponding reference class statistics
P(r | T), P(r | eq 1(X,x)), and P(r | eq 2(Y, y)) are approximations of marginal
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probabilities of G. Marginalising out both a(X) and b(Y ) from G leads to the
first marginal

P (r(X,Y )) =
∑

u

∑

v

P (r(X,Y )|a(X) = u, b(Y ) = v)P (a(X) = u)P (b(Y ) = v)

=
γr|a∧bγaγb + γr|¬a∧b(1− γa)γb +
γr|a∧¬bγa(1− γb) + γr|¬a∧¬b(1− γa)(1− γb)

(17)
where u, v ∈ {F,T}. Marginalising out only b(Y ) yields

P (r(X,Y )|a(X)) = γr|a∧bγb + γr|a∧¬b(1− γb) (18)

P (r(X,Y )|¬a(X)) = γr|¬a∧bγb + γr|¬a∧¬b(1− γb) (19)

Finally, marginalising out only a(X) gives

P (r(X,Y )|b(Y )) = γr|a∧bγa + γr|¬a∧b(1− γa) (20)

P (r(X,Y )|¬b(Y )) = γr|a∧¬bγa + γr|¬a∧¬b(1− γa) (21)

To show that P(r | T), P(r | eq 1(X,x)), and P(r | eq 2(Y, y)) approx-
imate Equation 17 to Equation 21, observe that each datum in the dataset
Dr is sampled from G with four different conditional distributions: p(r(X,Y ) |
¬a(X),¬b(Y )), p(r(X,Y ) | ¬a(X), b(Y )), p(r(X,Y ) | a(X),¬b(Y )) and p(r(X,Y ) |
a(X), b(Y )). Grouping the data according to their generative distributions we
may rewrite Dr as a union of the partitions, namely Dr = D¬a,¬b ∪ D¬a,b ∪
Da,¬b ∪Da,b.

For partition Da,b, there are n
+
a,b cases where r(X,Y ) = T, and n−

a,b cases for

r(X,Y ) = F. The total number of cases is na,b = |Da,b| = n+
a,b + n−

a,b. Similar
counts are defined for other partitions of Dr. Given these counts, we can then
express reference class estimate P(r = w | T), which implicates all of Dr, as
follows

P(r | T) =
n+
¬a,¬b + n+

a,¬b + n+
¬a,b + n+

a,b

N

=
n+
¬a,¬b

n¬a,¬b

n¬a,¬b

N
+

n+
a,¬b

na,¬b

na,¬b

N
+

n+
¬a,b

n¬a,b

n¬a,b

N
+

n+
a,b

na,b

na,b

N

(22)

By matching terms in Equation 22 with those in Equation 17, one can see that
reference class proportion P(r | T) is simply an empirical approximation of
Equation 17.

The reference class C(eq 1(X,x)) consists of tuples 〈x′, y′〉 such that eq 1(x′, x)∧
¬eq 2(y′, y) is true (i.e. we exclude the queried pair 〈x, y〉). Every r(x′, y′) = T

occurs with probability γa=u,b=v, where a(x′) = u and b(y′) = v happens to be
true as a result of the generative process. Let n(x) = |C(eq 1(X,x))| be the
number of cases in C(eq 1(X,x)), n+(x) the number of cases with value T, and
n−(x) the number of cases with value F. We further split C(eq 1(X,x)) into
two sets corresponding to b(Y ) = T and b(Y ) = F respectively. We then have
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counts nb(x), n+
b (x), n−

b (x), and n¬b(x), n+
¬b(x), and n−

¬b(x). The reference
class statistic P(r | eq 1(X,x)) can be expressed as

P (r | eq 1(X,x)) =
n+
b (x) + n+

¬b(x)

n(x)
=

n+
b (x)

nb(x)

nb(x)

n(x)
+

n+
¬b(x)

n¬b(x)

n¬b(x)

n(x)

=

n+
b (x)

nb(x)

nb(x)

N

n(x)

N

+

n+
¬b(x)

n¬b(x)

n¬b(x)

N

n(x)

N

=

n+
b (x)

nb(x)

n(x)

N

nb

N

n(x)

N

+

n+
¬b(x)

n¬b(x)

n¬b(x)

N

n¬b

N

n(x)

N

=
n+
b (x)

nb(x)

nb

N
+

n+
¬b(x)

n¬b(x)

n¬b

N

(23)

where nb is the total number of cases where b(Y ) is true, and that

nb(x)

N
=

n(x)

N

nb

N

holds because for each case r(x′, y′) generated, the occurrence of x′ and b(y′) = T

are probabilistically independent. Following the same steps, for the symmetric
case P(r | eq 2(Y, y)) we obtain

P (r | eq 2(Y, y)) =
n+
a (y)

na(y)

na

N
+

n+
¬a(y)

n¬a(y)

n¬a

N
(24)

Using Equation 22 to 24, we wish to determine when reference class statistics
can model the correct probability.

Theorem 1. Let r(X,Y ) be a Boolean relation where X,Y are of types τ1 and
τ2 respectively. Suppose r(X,Y ) is the sole observed relation with respect to a
database D = {Dr} generated using the generative model G (see Definition 2).
Assume that γa ∈ (0, 1) and γb ∈ (0, 1) (i.e., they are non-extreme probability
values), then

(i) ∀(x, y), lim
N→∞

P(r | T) = µxy iff
γr|a∧b = γr|a∧¬b =
γr|¬a∧b = γr|¬a∧¬b

(ii) ∀(x, y), lim
N→∞

P(r | eq 1(X,x)) = µxy iff

(

γr|a∧b = γr|a∧¬b

)

∧
(

γr|¬a∧b = γr|¬a∧¬b

)

(iii) ∀(x, y), lim
N→∞

P(r | eq 2(Y, y)) = µxy iff

(

γr|a∧b = γr|¬a∧b

)

∧
(

γr|a∧¬b = γr|¬a∧¬b

)

(25)
where (x, y) is a pair in D(τ1)×D(τ2), and γ· are parameters of the generative
model G.
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Proof. For all (x, y) ∈ D(τ1) × D(τ2), µxy is the probability γr|a=u∧b=v, repre-
senting the true probability of r(x, y) = T where a(x) = u∧ b(y) = v is entailed
by database D. Let N = |Dr| be the number of observed cases of Dr.

We assess how reference class statistic P(r | T) can represent µxy in the limit
as N approaches ∞. Firstly, P(r | T) has the limiting value

lim
N→∞

P(r | T) = γr|a∧bγaγb + γr|a∧¬bγaγ¬b + γr|¬a∧bγ¬aγb + γr|¬a∧¬bγ¬aγ¬b

Now solve limN→∞ P(r | T) = µxy, i.e.

γr|a∧bγaγb + γr|a∧¬bγaγ¬b + γr|¬a∧bγ¬aγb + γr|¬a∧¬bγ¬aγ¬b = µxy (26)

Equation 26 is ill-posed; there are an unbounded number of solutions. How-
ever, for Equation 26 to hold for all (x, y) ∈ D(τ1) × D(τ2), where µxy can be
one of γr|a∧b, γr|a∧¬b, γr|¬a∧b, or γr|¬a∧¬b, it must be the case that

γr|a∧b = γr|a∧¬b = γr|¬a∧b = γr|¬a∧¬b

which yields condition (i) of Equation 25.
To prove (ii) in Equation 25, note that the value of P(r | eq 1(X,x)) (Equa-

tion 23) as N →∞ is

lim
N→∞

P(r | eq 1(X,x)) =

{

γr|a∧bγb + γr|a∧¬bγ¬b if a (x) = T

γr|¬a∧bγb + γr|¬a∧¬bγ¬b if a (x) = F
(27)

Next we solve limN→∞ P(r | eq 1(X,x)) = µxy. Suppose a(x) = T happens
to be true as a result of the generative process, and assume µxy = γr|a∧b, we
solve

lim
N→∞

P(r | eq 1(X,x)) = γr|a∧b

γr|a∧bγb + γr|a∧¬bγ¬b = γr|a∧b

(γb − 1)γr|a∧b = (γb − 1)γr|a∧¬b

∴ γr|a∧b = γr|a∧¬b

This shows that since γb is a non-extreme probability, it follows that limN→∞ P(r |
eq 1(X,x)) = µxy if and only if γr|a∧b = γr|a∧¬b. Similarly, if a(x) = F happens
to be true and µxy = γr|¬a∧b, we solve

lim
N→∞

P(r | eq 1(X,x)) = γr|¬a∧b

γr|¬a∧bγb + γr|¬a∧¬bγ¬b = γr|¬a∧b

(γb − 1)γr|¬a∧b = (γb − 1)γr|¬a∧¬b

∴ γr|¬a∧b = γr|¬a∧¬b

which implies that limN→∞ P(r | eq 1(X,x)) = µxy if and only if γr|¬a∧b =
γr|¬a∧¬b.

As the actual value of a(x) in the world is not observed, it is therefore
not known whether µxy = γr|a∧b or µxy = γr|¬a∧b. Therefore, limN→∞ P(r |
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eq 1(X,x)) = µ is guaranteed for all (x, y) ∈ D(τ1) × D(τ2) if and only if
(γr|a∧b = γr|a∧¬b) ∧ (γr|¬a∧b = γr|¬a∧¬b), and thus proving (ii) in Equation 25.

To prove (iii) in Equation 25, note that P(r | eq 2(Y, y)) has the limiting
value

lim
N→∞

P(r | eq 2(Y, y)) =

{

γr|a∧bγa + γr|¬a∧bγ¬a , if b (y) = T

γr|a∧¬bγa + γr|¬a∧¬bγ¬a , if b (y) = F
(28)

Since P(r | eq 2(Y, y)) is a symmetric case of P(r | eq 1(X,x)), the same
arguments used to derive condition (ii) of Equation 25 can followed to show
that limN→∞ P(r | eq 2(Y, y)) = µ if and only if (γr|a∧b = γr|¬a∧b) ∧ (γr|a∧¬b =
γr|¬a∧¬b), thereby proving condition (iii) of Equation 25.

Theorem 1 shows that, assuming G is the actual process of the data, refer-
ence class statistics P(r | T), P(r | eq 1(X,x)) and P(r | eq 2(Y, y)) can represent
the true probability of r(x, y) = T in the limit under specific conditions about
G. Figures 4 and 5 provide an instructive view of Theorem 1, showing several
configurations of parameters of G. In these illustrations, the true probabilities
(conditional probabilities γr|·,· in G) for the query are shown inside of the boxes,
whilst marginal probabilities of G are shown outside the boxes. The marginal
probabilities are calculated under the assumption that γa = γb = 0.5 for sim-
plicity.

In the first case, Figure 4, no conditions stated in Theorem 1 hold. As such,
none of the marginal probabilities (outside of the box) correspond to any of
the true probabilities (inside the box). Since we have shown that the marginal
probabilities are the limiting values of our three reference classes, we conclude
that these reference classes cannot represent the correct probabilities, even in
the limit of infinite data.
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��	 ��
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Figure 4: An example parameter configuration of generative model G: numbers inside of the
boxes are conditional probability parameters for r(X,Y ) (the correct probabilities), and those
outside of the boxes are marginal probabilities obtained by marginalising out a(X) and b(Y )
separately, where γa = γb = 0.5 is assumed. The marginal probabilities are limiting values of
reference class statistics indicated adjacently.

Figure 5(a) again shows an example where Theorem 1 is not met. However,
it is interesting as the most general reference class statistic P(r | T) yields
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the correct probability for those cases corresponding to ¬a(X) ∧ ¬b(Y ) and
a(X) ∧ b(Y ). Although this is true, P(r | T) does not represent the correct
probability for all cases of r(X,Y ). P(r | T) will yield the correct probability
for all queries if condition (i) of Theorem 1 is met. An interesting case occurs in
Figure 5(b), where parameters of the generative model is configured such that
all reference class statistics produce the same answer, but are all incorrect.
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(d)

Figure 5: Example parameter configurations of generative model G: numbers inside of the
boxes are conditional probability parameters for r(X,Y ) (the correct probabilities), and those
outside of the boxes are marginal probabilities obtained by marginalising out a(X) and b(Y )
separately, where γa = γb = 0.5 is assumed. The marginal probabilities are limiting values of
reference class statistics indicated adjacently.

Figure 5(c) shows an example where condition (ii) holds, allowing reference
class statistic P(r | eq 1(X,x)) to entail the correct probability in the limit.
Figure 5(c) also reflects condition (iii) of Theorem 1 as it is symmetric to con-
dition (ii). Figure 5(d) shows a special case where the generative probabilities
are such that P(r | eq 1(X,x)) can represent the correct probability for cases
where ¬a(X) is true in the world. Since the value of a(X) is not observed,
P(r | eq 1(X,x)) will be incorrect for cases where ¬a(X) is true.
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Overall, conditions (i) ∼ (iii) are restrictive, as the success of reference class
statistics P(r | T), P(r | eq 1(X,x)), and P(r | eq 2(Y, y)) depend crucially on
parameter configurations of G. Namely, the reference class statistics can be used
to obtain the right probability if and only if G satifies the conditions stated in
Theorem 1, and fails otherwise. Put simply, for domains where G does not meet
any of the stated conditions, the use of reference classes will lead to incorrect
probabilities in inference.

It could be argued that our definition of G over-simplifies real-world relational
domains; where realistic generative processes are much more complex. Whilst
this is true, our analysis shows that even such simple domains, reference classes
can fail to entail the true probability in inference.

5.4. Inference with Latent-property Models

Here we examine whether latent-property models can produce the correct
answers for probabilistic queries in domain where G (Definition 2) is the under-
lying generative model. The database D = {Dr} is generated from G, where Dr

is the set of all observed ground instances of r(X,Y ). Let r(x, y) = T denote
some query proposition of interest.

The latent-property model in question represents the observed relation r(X,Y )
as well as latent properties α(X) and β(Y ), where r(X,Y ) probabilistically de-
pends on α(X) and β(Y ). We assume that α(X) and β(Y ) are Boolean. The
model also contains parameters θr|α=u,β=v for all u, v ∈ {F,T}, each of which is
given by

θr|α=u,β=v =
#̃D (r(X,Y ) ∧ α(X) = u ∧ β(Y ) = v,Q)

∑

z

#̃D (r(X,Y ) = z ∧ α(X) = u ∧ β(Y ) = v,Q)
(29)

and a probability function Q representing the posterior values of latent prop-
erties, i.e. Q define a probability distribution for all ground instances of α(X)
and β(Y ). (See Section 4 for a discussion of latent property models.)

Assume that the correct probability of the query is µxy = P (r(x, y) = T)
(Equation 16). Then, to assess whether our latent-property model can reproduce
µxy, we drectly examine the answer given by the latent-property model (see
Section 4.2):

P̂ (r(x, y)) = θr|α,βQ(α(x))Q(β(y)) +
θr|α,¬βQ(α(x))Q(¬β(y)) +
θr|¬α,βQ(¬α(x))Q(β(y)) +
θr|¬α,¬βQ(¬α(x))Q(¬β(y))

(30)

where P̂ (·) denotes a probability as given by our model.
First we consider a hard-clustering model, where Q returns 0 or 1. By

comparing terms in Equation 30 and Equation 16, our hard-clustering model
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predicts the correct probability, i.e. P̂ (r(x, y)) = µxy, if the following are true

(i) θr|α=u,β=v = γr|a=u,b=v

(ii) Q(α(x) = u) =

{

1 if a(x) = u

0 otherwise

(iii) Q(β(y) = v) =

{

1 if b(y) = v

0 otherwise

(31)

Conditions (ii) and (iii) ensure that Q selects the correct statistic θ(·) (Equa-
tion 30) to be the prediction. These two conditions also ensure that each θ(·)
is calculated correctly, i.e. that condition (i) is also satisfied. Namely, Q parti-
tions the data into four disjoint sets, i.e. Dr = Dα,β ∪Dα,¬β ∪D¬α,β ∪D¬α,¬β ,
and conditions (ii) and (iii) ensure that the induced partitions are the same
as those given by G. For each partition Dα=u∧β=v, the associated proportion
θr|α=u∧β=v (Equation 29) is an empirical estimate (maximum likelihood) of the
conditional probability P (r(X,Y ) | α(X) = u, β(Y )). Since the induced par-
titions are correct, the proportion is also a maximum likelihood estimate of
the true conditional probability P (r(X,Y ) | a(X) = u, b(Y ) = v) = γr|a=u,b=v.
Thus, as the number of data points grow, θr|α=u∧β=v approaches γr|a=u,b=v and
satisfies (i).

Inferring the probability function Q to satisfy conditions (ii) and (iii) of
Equation 31 can be a difficult task. For instance, computing the most likely
value of α(x) requires marginalising over the values of all other ground in-
stances of α(X) and those of β(y), where the marginalisation is particularly
costly when there are dense correlations amongst all of the latent properties.
To alleviate the computation cost, approximate inference methods such as vari-
ational Bayes are preferred for computing approximate posterior probabilities
for each ground instance of α and β (e.g. in [12, 46] for similar models). An-
other approach is to perform Markov chain Monte Carlo sampling, adopted in
well-known latent-property models such as the infinite relational model [49] and
the infinite hidden relational model [15]. Despite the computational hurdles,
hard-clustering models do not preclude the correct probability for queries.

For soft-clustering models to entail the correct probability µxy, we require
that

(i) θr|α=u,β=v = γr|a=u,b=v

(ii) Q(α(x) = u) = P (α(x) = u | D)

(iii) Q(β(y) = v) = P (β(y) = v | D)

(32)

That is, Q represents the exact marginal posterior distribution for each latent
property. As such, Equation 30 becomes a Bayes optimal predictor, and ap-
proach the correct probability in the limit of infinite data. Again, similar to the
hard-clustering case, computing the exact posterior probabilities confronted by
a major computational bottleneck due to the dense correlation over many latent
variables. Approximate inference techniques are therefore necessary. Same as
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hard-clustering models, the correct probability for queries are within the search
space of soft-clustering models.

The above shows that both the hard-clustering and soft-clustering type of
latent-property models can entail the correct probability of a given query, if the
posterior value (probabilities, in the soft-clustering case) can be inferred exactly.
Whilst exact inference of latent property values is in general computationally
prohibitive, the main point is that latent-property models do not preclude the
correct probability as observed-relation models do. Whether latent-property
models are better models of the correct probabilities in practise depends on the
learning algorithms used and the problem at hand. This question is addressed
empirically in experiments described in Section 6.

6. Experiments

We evaluate predictive accuracy using simple domains containing only one
observed relation, and report empirical loss, specifically log-loss (or negative
log-likelihood), where lower loss values indicates higher accuracy. Since we are
interested in measuring discrepancies in probability estimates, empirical loss is
an appropriate measure because in the limit of infinite data, the true probability
underlying the data is the minimiser of loss [45].

Although Section 5 shows that latent-property models can achieve the cor-
rect probabilities with less restrictive conditions than reference classes, our ex-
periments aim to quantify this advantage in practise. To do so we compare the
losses incurred by reference classes and two implementations of latent-property
models from literature. The reference classes we use are sufficient to repre-
sent the kind of observed-relation models described in Section 3 for the simple
domains we consider.

Our first experiment uses synthetic data simulated from G (Definition 2).
We validate by generating many examples of G with randomly generated latent
properties and parameters. Results obtained in our synthetic domains quan-
tify how much we gain by incorporating the right modelling assumptions, i.e.
modelling latent properties. It serves as a baseline result for comparing with
real-world domains; that when latent properties are important in the real world,
we can hypothesise that similar gains can be achieved as was in synthetic do-
mains.

In the second experiment, we use real-world relational data from the WebKB
project6 which describes hyperlinks between web pages from five academic world
wide web domains.

Thirdly, we use a movie-rating dataset from the EachMovie project7, which
provides ratings by a approximately 60,000 users for 1,600 movies.

6http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/index.html
7http://www.grouplens.org/node/76
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6.1. Models

6.1.1. Observed-relation Predictors

In the kind of single-relation domains we consider here, we again use the
three reference class predictors P(r | T), P(r | eq 1(X,x)) and P(r | eq 2(Y, y)),
where r represents the sole observed relation, e.g. hyperlink in the WebKB
domain. The query is denoted by r(x, y) = T.

Since there is only one observed relation in the domains of interest, relational
probabilistic models described in Section 3.2 amount to the reference class C(T),
and thus the reference class statistic P(r | T) is sufficient to represent such
models in our experiments.

We construct two prediction methods with our reference classes. The first of
which, called REF, simply chooses the best of the three reference class predic-
tions after the log-loss is computed. As such, REF is an inadmissible predictor,
but is a gold standard for single reference class predictions, and any method
that can outperform REF can outperform all other reference class predictors in
the set.

A second class of reference class predictors, called POOL, combines all three
reference classes by linear interpolation (e.g. weighted combination with weights
summing to 1). However, we again construct a gold standard for this type of
reference class predictors by adopting the following scheme. Suppose for each
test case r(x, y) that the true probability P (r(x, y)) = η is known (this is true
for synthetic data). Let δmin be the minimum of P(r | T), P(r | eq 1(X,x)) and
P(r | eq 2(Y, y)), and δmax the maximum. Then, if η ∈ [δmin, δmax], we assume
a perfect interpolator POOL outputs η. If η 6∈ [δmin, δmax], then REF is used.
In the case that the true probability is unknown, P (r(x, y)) ∈ {0, 1} (e.g. in
real-world experiments), POOL again defaults to REF.

6.1.2. Latent-property Models

We use two examples of latent property models: the infinite relational model
(IRM) [15] and one based on Definition 2 which we call the latent relational
model (LRM) for these experiments.

The IRM models latent properties to explain relational data and is a non-
parametric model that stochastically generates the number of values for latent
properties, as well as the value of latent properties for each individual. The
IRM is a hard-clustering model, as the IRM generates deterministic values for
latent properties.

Given a query r(x, y) = w, an IRM prediction is based on the latent property
values of x and y respectively. Suppose that α1(x) = u and α2(y) = v in the IRM
(or, x belongs to cluster u and y belongs to cluster v in the IRM nomenclature),
the probability ascribed to r(x, y) = w is the empirical proportion given by
Equation 4.

The LRM used here is of the same structure as the generative model de-
scribed by in Definition 2 where the latent properties are assumed Boolean. Pre-
dictions generated by LRM follow Equation 30. We consider a soft-clustering
LRM here, where the marginal probability function over latent properties as
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well as all model parameters are learned using an approximate EM algorithm
proposed by [3] or that used in [46].

6.2. Protocol

6.2.1. Synthetic Relations

We simulate 2000 datasets, each generated by sampling a generative model in
the form of G (see Section 5). Parameters of the generative model are generated
randomly. There are two types, τ1 and τ2, where both |D(τ1)| and |D(τ2)| are
restricted to be between 50 to 150. The two latent properties a(X) and b(Y )
can have between 2 and 10 values. Each generated dataset contain observed
cases for the observed relation r(X,Y ) only. A supervised learning framework
is assumed, where 90% of the observed cases are used for training, whilst 10%
are reserved for testing.

Training of the IRM uses Markov chain Monte Carlo sampling with default
parameters specified in the accompanying software8, whilst the LRM train-
ing is done over 30 restarts at 100 iterations per restart, or until convergence,
whichever comes first. The best LRM over the restarts is returned.

6.2.2. WebKB

The WebKB contains web-page hyperlinks in the domain of five universi-
ties. The data consists of instances of the relation link(URL1, URL2) as well
as features based on the words appearing in each web page. Word features are
omitted and we use only the hyperlink data in these experiments.

Models REF, IRM and LRM are used for this experiment. The IRM and
LRM were trained using the same settings as described in the previous experi-
ment. 2000 randomly sampled groups of 200 web pages are generated from the
original data, each forming a standalone dataset. In each sample, 90% of data
are used for training, and 10% for prediction.

6.2.3. Movie Ratings

We repeat our previous WebKB experiment with the EachMovie dataset9.
The rating values in this dataset range from 1 to 5, but we threshold these
labels to be Boolean-valued by the global mean of all ratings. We take 500
independent sub-samples of the rating data and run independent experiments
on each subsample. 90% of ratings in each sample are used for training, whilst
10% are used for testing.

6.3. Results

6.3.1. Synthetic Relations

The results from our 2000 experiments are binned according to the percent-
age of observed tuples to the maximum number of possible tuples for r(X,Y ).

8http://www.psy.cmu.edu/ ckemp/code/irm.html
9http://www.grouplens.org/node/76
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In other words, we group the experiments by the amount of data generated for
each experiment. Figure 6 shows a plot of log-losses of REF, POOL and IRM
and LRM, where each point in the graph represents the average log-loss in one
bin of experiments using one predictor. Each bin contains 250 to 300 data sets.
Standard error is also shown.

The outcome indicate a significant advantage towards the LRM and IRM
(i.e. lower log-loss). The log-loss of both and the LRM and IRM improves with
the number of data points, indicating an ability to exploit information as they
becomes available. The reference class approaches REF and POOL, on the other
hand, appears to be insensitive to the amount of observed data. The ability of
LRMs to minimise loss when more information becomes available suggests that
sufficient statistics encoded in the LRMs are better approximations of those in
the underlying model than REF and POOL. The advantage of the LRM over
the IRM is likely due to the soft-clustering nature of LRMs compared to the
hard-clustering nature of IRM.

6.3.2. WebKB

We take the average log-loss over the 2000 experiments with REF, and IRM,
shown in Table 1

ALG. Ltrain Ltest

REF 0.0216± 0.000402 0.0210± 0.000549
IRM 0.0179± 0.000268 0.0190± 0.000475
LRM 0.0181± 0.000260 0.0185± 0.000431

Table 1: Average log-loss over 2000 sampled datasets from the WebKB domain for REF, IRM
and LRM on both the training and test sets.

The first observation is that each method performs well overall, scoring low
log-losses. (Note random guessing of values will yield log-loss of 1, using log
of base 2, whilst the best possible score is 0). This indicates that the sampled
datasets present easy prediction problems, due to the sparse linkage patterns
in these sets. The fact that IRM and LRM again achieves significantly (in the
statistical sense) better log-loss than REF emphasises the value of modelling
latent properties, particular in these simple data samples where relative limited
information is available. In turn, this suggests that the IRM and LRM are
effective in exploiting information that is available. The separation between
LRM and IRM are notstatistically significant in this case.

6.3.3. Movie Ratings

Tables 2 lists the training and test performance of each method measured in
log-loss.

The EachMovie domain contains a more complex relational structure than
the WebKB dataset, and the linkage density (e.g. ratings per user) is greater
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(a) Training set.

(b) Test set.

Figure 6: Log-loss for the IRM, LRM, and reference class predictions REF and POOL. Losses
measured on (a) training data and (b) test data are shown for 2000 sets of simulated datasets.
Each point in the figure corresponds to an average loss for bins of 200 ∼ 300 datasets (with
standard error shown). The bins are sorted in increasing order of percentage of observed data.
Lower log-loss indicates higher accuracy.
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ALG. Ltrain Ltest

REF 0.7373± 0.00844 0.7340± 0.00852
IRM 0.0173± 0.00819 0.4359± 0.01261
LRM 0.4728± 0.00818 0.5372± 0.00888

Table 2: Average log-loss over 500 sampled datasets from the EachMovie domain for REF,
IRM and LRM on both the training and test sets.

than that of WebKB (links per web page). As such, it represents a more difficult
relational prediction problem, which is reflected in the overall increase of losses.
The IRM’s ability to exploit latent clusters of individuals likely contributes to
its superior score, as on average it returned between 3 and 8 clusters of users
(and movies), compared to all other methods tested. The LRM learned using
LRM is restricted to modelling two clusters for users and movies and yields
higher loss, but still maintains its advantage relative to REF.

It is possible that the generative assumptions used in our analyses (which
mirrors those behind LRMs) may hold in the world, thus contributing to LRMs’
higher accuracy relative to reference classes. However, it is unlikely that the
generative assumptions embodied in LRMs fully reflect the complexities of the
true generative model in the world, thus highlighting the potential of modelling
with latent properties.

7. Discussion and Related Work

We have explicated the connection between reference classes and models
used in relational learning. Further, we showed how inference and learning with
probabilistic relational models relate to methods discussed in philosophy for
reference classes. This work discusses the impact of problems associated with
reference classes on relational learning, motivated by works of Henry Kyburg on
reference classes and uncertain reasoning in artificial intelligence and machine
learning [22, 23, 21, 24].

As relational probabilistic models can be expressed in terms of reference
classes (in Section 3 and 4) philosophical issues affecting reference classes thus
affect relational probabilistic models. Instead of revisiting philosophical issues
brought about by reference classes, we opt to directly assess whether our rela-
tional probabilistic models can represent the correct probabilities for probabilis-
tic queries, under an assumed generative model of the relational domain.

Our analysis showed that when there are properties about individuals that
are hidden from observation, relational probabilistic models built solely from ob-
served relations are only capable of representing the correct probabilities under
restrictive conditions on the underlying generative process. On the other hand,
explicitly postulating about the hidden properties can overcome this shortcom-
ing.
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Although our analysis has focused on domains with only one observed re-
lation (where real-world domains often have many observed relations), one can
argue that this setting is representative of the case when all available observed
relations have been conditioned on. For instance, the root of the tree in Figures
1 and 2 can just as well represent the data remaining after the observed relations
have been exhausted.

Empirically, we found that that modelling latent properties about individuals
yield significantly better accuracy in inference – on both training and test data
– compared to models that do not. Related contributions also support these
empirical results, e.g. [46, 34, 49], which were carried out in the same kind
of single-relation domains we have considered. In these works, comparisons are
essentially made between two models only: one that represents the most general
reference class, e.g. C(T), and one that models latent properties. By contriving
gold-standard reference class models in our experiments and showing that they
are surpassed by latent-property models, our experimental results implicate a
broader range of reference classes than those considered in the existing work
mentioned.

Due to the link between reference classes and latent-property models, the
inclusion of latent properties should be seen as an alternative way of construct-
ing reference classes that goes beyond the traditional approach of including
only observed properties and relations. As observations are never complete, it
is questionable whether the most specific reference class (constructed from ob-
served properties and relations only) may entail the correct probability. Latent
properties can be seen as a way to fill in the missing knowledge and, as explained
in Section 5, and we show it can lead to the correct probability where using only
observed properties and relations can preclude this possibility.
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