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Abstract

This paper concerns learning and prediction with probabilis-
tic models where the domain sizes of latent variables have no
a priori upper-bound. Current approaches represent prior dis-
tributions over latent variables by stochastic processes such
as the Dirichlet process, and rely on Monte Carlo sampling to
estimate the model from data. We propose an alternative ap-
proach that searches over the domain size of latent variables,
and allows arbitrary priors over the their domain sizes. We
prove error bounds for expected probabilities, where the error
bounds diminish with increasing search scope. The search al-
gorithm can be truncated at any time. We empirically demon-
strate the approach for topic modelling of text documents.

Introduction
Latent variables are important for building models that can
compactly represent a domain. However, often we do not
know the domain size of latent variables a priori. Rather
than fixing the sizes of each latent variable, we want to have
a distribution over the sizes of these variables. The standard
representation is in terms of nonparametric statistical models
[Teh et al., 2006; Aldous, 1983; Antoniak, 1974; Ferguson,
1973; Griffiths and Ghahramani, 2006; Rasmussen, 2006],
where prior distributions for variables with unbounded do-
mains are represented as stochastic processes, e.g. Dirichlet
process [Ferguson, 1973], and the posterior model estimated
via Markov chain Monte Carlo sampling [Neal, 1998]. In
this paper we present an alternative way to represent and
compute probabilistic models with latent variable. Our ap-
proach permits arbitrary distributions over the domain sizes,
and learning is done with a search algorithm over domain
sizes which outputs a bound on the posterior probabilities.

We represent the domain size of latent variables as ran-
dom variables called size variables. Size variable domains
are the set of positive integers. Each latent variable with
unknown domain size has a distinguished size variable as a
parent. Let Y,Z,S be the sets of observed, latent, and size
random variables respectively. Define a size configuration
to be an assignment of a value to each size variable.

For learning, our approach uses a sightly different joint
probability model to those based on stochastic processes;

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

we model the joint distribution as p(Y,Z | S) p(S). Learn-
ing involves searching over the domain of S, and employing
marginal inference to compute the conditional p(Y,Z | s)
for each size configuration s visited. The main contribu-
tions of this approach are: (i) that the prior p(S) can be
any distribution over positive integers such as the Poisson
or geometric distribution, or a domain-specific distribution1;
(ii) different subsets of latent variables in the model can be
tied to different priors which can be interdependent; (iii) the
search algorithm can accept an arbitrary number of size vari-
ables, and is accompanied by expected likelihood bounds
that monotonically converge as more size configurations in
the domain of S are enumerated.

In our experiments, we consider topic modelling of text
documents, where we search over the number of latent top-
ics, and demonstrate the optimisation of the expected likeli-
hood bounds computed by the search algorithm.

Preliminaries
Upper-case letters denote random variables, e.g. X , and their
values represented in lower-case, e.g. x. Boldface is used for
sets of random variables and values, e.g. X and x. Where it is
clear from context, we abbreviate the assignment X = x as x.
In this paper we consider only discrete random variables (the
domain of random variables are discrete sets). The domain
(set of possible values) of a variable X is written as dom(X).
For a set of variables X, the domain is dom(X) – the cross
product of domains of variables in X.

Nonparametric Bayesian Models
Models that are not captured by a fixed set of parameters
are generally referred to as nonparametric models. Ex-
isting nonparametric models typically adopt the factorisa-
tion p(Y | Z,S) p(Z,S) of the joint distribution, where the
prior p(Z,S) is often described by a stochastic process. A
well-known example of this is the Dirichlet process mixture
model [Antoniak, 1974]; a mixture model with an a priori

1One difference from DPs, is that if we have, for example, 5
latent classes, these classes are uniformly distributed in that any
instance is equally likely to be in any class. In DPs, the classes
will not be equally likely. It is an empirical question as to which of
these prior assumptions are more appropriate, and the answer may
differ from domain to domain.
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unbounded number of component distributions that are gen-
erated according to a Dirichlet process [Ferguson, 1973].

Related models based on other stochastic processes such
as the Chinese restaurant process [Aldous, 1983] have also
been studied, and have been used widely for infinite mixture
models, as well as infinite relational models [Kemp et al.,
2006] for relational data. Another example is the Indian Buf-
fet process for infinite feature models [Griffiths and Ghahra-
mani, 2006]. Extensions of the Dirichlet process have also
been proposed, e.g. hierarchical Dirichlet process [Teh et
al., 2006] where a hierarchy of Chinese restaurant processes
generate the data.

The approach of [Blei and Jordan, 2005] bears similarity
to that of this paper, with truncated search of the number of
Dirichlet process mixture components whilst maintaining a
variational lower-bound on the probability of evidence. An-
other search and bound approach for Dirichlet process mix-
ture was given by [Daume III, 2007], where search is guided
by a heuristic estimate of the path cost, similar to A* search.
Our approach provides upper and lower bounds on the ex-
pected likelihood of evidence, which are not derived using
variational approximations, and the accompanying search
procedure does not rely on heuristics.

Expected Likelihood and Witnesses
In this paper we model p(Y,Z,S) in the form
p(Y,Z | S) p(S), parametrised in θ . The parametrisa-
tion θ specifies both the distribution over the size variables,
and the distribution of the other variables given the size
variables. The model in question is

p(Y,Z | S,θ) p(S | θ) (1)

Size variables in S can have unbounded domains, thus θ may
not have a finite representation. Given evidence y, we show
how finitely-representable approximations of the joint prob-
ability p(y,Z | S)p(S) can be computed by evaluating a fi-
nite subset of dom(S) (and this is done by search below).

For clarity, we assume in the remainder of this paper that
all latent variables in Z have a priori unbounded domains,
although in general some latent variables may have finite
domains. Results derived apply directly to the case when
some latent variables fixed finite domains.

Bounds on Expected Likelihoods
Given evidence y, we propose to generate some size config-
urations, where for each configuration s generated a model
of p(y,Z | s) is computed. Using the likelihoods induced
by these models and the prior probabilities of the remain-
ing unvisited configurations, we bound expected likelihoods
whose exact values involve averaging over all size configu-
rations.

First we want to be able to compare configurations of size
variables:
Definition 1. Suppose S = 〈S1, . . . ,Sk〉 is a tuple of the
size variables in a model. Let a = 〈a1, . . . ,ak〉 and b =
〈b1, . . . ,bk〉 be two configurations of size variables S, where
for each i, ai ∈ dom(Si) and bi ∈ dom(Si). Configuration a
precedes b, written as a� b, if ∀i,ai ≤ bi.

For each s ∈ dom(S) and a parametrization θ , let θs be
parameters of the model whose size variables have been as-
signed the value s. The expected likelihood of data y given
θs is then

p(y | s,θs) = ∑
z∈Γs

p(y,z | s,θs)

= ∑
z∈Γs

p(y | z,s,θs) p(z | s,θs)
(2)

where Γs is the domain of Z where the domain size of each
Z ∈ Z is specified in s.

For two size configuration s and t where s � t, we have
the following proposition:

Proposition 1. Let s and t be two configurations of size vari-
ables S such that s� t, and y be values for variables Y, then
for each parametrisation θs, there is a parametrization θt
such that

p(y | s,θs)≤ p(y | t,θt)≤ 1 (3)

Proof. Let the domain of latent variables under s and t be Γs
and Γt respectively. Given θs, we can choose parameters θt
such that

∀z ∈ Γs, p(y,z | t,θt) = p(y,z | s,θs)

∀z ∈ Γt−Γs, p(z | t,θt) = 0

Choosing θt accordingly results in a θt that nests θs, and
yields the equivalence p(y | t,θt) = p(y | θs,s). Any choice
of θt that yields a lower expected likelihood can be dis-
carded, since nesting is always possible given θs. Thus,
choosing a θt that nests θs yields the inequality p(y | θs,s)≤
p(y | θt, t). The upper-bound is true by definition of proba-
bility.

We want to generate bounds for the full expected likeli-
hood – the probability of y given parametrisation θ :

p(y | θ) = ∑
s

p(s | θ) ∑
z∈Γs

p(y,z | s,θ) (4)

Like the expected likelihood of Eq. (2), the full expected
likelihood is also an infinite sum. We approximate the full
expected likelihood by partially computing the sum, evaluat-
ing only sumands corresponding to a finite subset of config-
urations G of dom(S); called the generated set in this paper.
For each element s of G, we assume that we have derived pa-
rameters θs. Let θG be the set of parametrisations such that
the parameters for each element s of G are given by θs. For
each configuration t /∈ G the parameters of θt are such that
for all s ∈ G, where s � t, p(y | s,θs) ≤ p(y | t,θt). The
existence of θt is given by Prop. 1. For example, the max-
imum likelihood choice for θt is a special case (maximum
a posteriori parametrisations can also be used with careful
consideration of pseudo counts), although any choice that
improves upon the expected likelihood for a preceding con-
figuration in G is valid.

We use search to construct G, and using models corre-
sponding to configurations in G we bound the remaining



probability mass. To do so, we make use of the notion of
witnesses2:
Definition 2. Let G ⊂ dom(S) be a generated set of size
variable configurations. A witness function is a function
fW mapping from dom(S)−G into G, such that for all c ∈
dom(S)−G, fW (c)� c. The witness set for witness function
fW is the range of fW .

Note that given G, there may be many possible witness
functions for each assignment not in G. We wish to keep
the best witness functions – i.e. those that yield the highest
expected likelihoods – for all assignments not in G. As such,
the witness set need not include all of G.

The idea of our search approach is that maintains a gen-
erated set of size assignments for which it have computed
the parameters. For every size assignment not generated, it
uses a witness for that configuration to bound the probabil-
ity. The simplest instance of this idea uses a single witness
for all non-generated configurations. For a witness set W,
the min-witness configuration is

w⊥ = arg min
w∈W

p(y | w,θw) (5)

which provides an underestimate of the likelihood of the
data for all unvisited configurations.
Lemma 1. Let G be a generated set of configurations. For
all parametrisations θ ∈ θG, the full expected likelihood
p(y | θ) is bound as follows

F + p(y | w⊥,θ)H ≤ p(y | θ)≤ F +H (6)
where

F = ∑
s∈G

p(s | θ) p(y | s,θ)

H = ∑
t∈dom(S)−G

p(t | θ)
(7)

Proof. Suppose t ∈ dom(S)−G with a witness w, by Prop.
1, there exist a θt such that p(y | w,θw) ≤ p(y | t,θt). By
Eq. (5), p

(
y | w⊥,θw⊥

)
≤ p(y | w,θw) and so,

p
(
y | w⊥,θw⊥

)
≤ p(y | t,θt) (8)

To bound the full expected likelihood, we split Eq. (4)
according to G to yield a finite and infinite sum

p(y | θ) = ∑
s∈G

p(s | θ) p(y | s,θ)

+ ∑
t∈dom(S)−G

p(t | θ) p(y | t,θ)
(9)

Using the parametrisation θ , and applying Eq. (8), the sec-
ond summation (an infinite sum) can be bound:

p(y | w⊥,θ) ∑
t∈dom(S)−G

p(t | θ)

≤ ∑
t∈dom(S)−G

p(t | θ) p(y | t,θ)

≤ ∑
t∈dom(S)−G

p(t | θ)

(10)

2We use the term witness in a similar manner to that defined
for the witness algorithm for partially-observed Markov decision
processes [Cassandra and Littman, 1994]. Every size configuration
that is not generated (not in G) can refer to a witness that testifies
to its bounds.

Finally, applying the bounds of Eq. (10) to the infinite sum
in Eq. (9) directly yield Eq. (6).

A key property of Lemma 1 is that the bounds converge
monotonically with the size of G for two reasons:
• p(y | w⊥,θ) is monotonically non-decreasing due to

Prop. 1, and can be made to be increasing as long as not
all of the data is fit perfectly

• the sum H = ∑t∈dom(S)−G p(t | θ) monotonically de-
creases as long as no size has a prior probability of zero.
For model selection and prediction we wish to estimate

the posterior distribution over size configurations. Using
bounds on the full expected likelihood from Lem. 1, we
bound the posterior distribution over size configurations
Lemma 2. Given a generated set of size variable assign-
ments G and a parametrization θ ∈ θG, for all s ∈ dom(S)
it holds that

p(s | θ) p(y | s,θ)
F +H

≤ p(s | y,θ)≤ p(s | θ) p(y | s,θ)
F + p(y | w⊥,θ)H

(11)
where F,H and w⊥ are defined in Lem. 1.

Proof. Using Bayes’ rule,

p(s | y,θ) = p(s | θ) p(y | s,θ)
p(y | θ)

Applying Lem. 1 to the denominator p(y | θ) directly yields
Eq. (11).

Prediction
Let y′ be some unobserved values we wish to predict, the
predictive distribution is

p
(
y′ | y,θ

)
= ∑

s
p
(
y′ | s,y,θ

)
p(s | y,θ) (12)

which is an infinite sum with non-finite parametrisation θ .
Let θ ∈ θG, where G is defined prior to Def. 2. The posterior
term p(s | y,θ) in Eq. (12) can be bound by Lem. 2, then Eq.
(12) satisfies the bounds A≤ p(s | y,θ)≤ B where

A = ∑
s

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F +H

B = ∑
s

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F + p(y | w⊥,θ)H

Here A and B are infinite sums. Given a generated set of size
configuration G, the sums can be split into finite and infinite
components:

A = ∑
s∈G

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F +H

+ ∑
t∈dom(S)−G

p
(
y′ | t,y,θ

) p(t | θ) p(y | t,θ)
F +H

B = ∑
s∈G

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F + p(y | w⊥,θ)H

+ ∑
t∈dom(S)−G

p
(
y′ | t,y,θ

) p(t | θ) p(y | t,θ)
F + p(y | w⊥,θ)H



Whilst the expected likelihood p(y | s,θ) and the prediction
p(y′ | s,y,θ) are known for all s ∈G, they must be approxi-
mated for all s∈ dom(S)−G. The prediction term can be ap-
proximated by our prior belief on y′, and the expected likeli-
hood p(y′ | t,θ) can be bound using Prop. 1 with the witness
likelihood p(y | w⊥,θ). As such, A1 ≤ A≤ A2, where

A1 = ∑
s∈G

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F +H

+
p(y′ | θ) p(y | w⊥,θ)

F +H ∑
t∈dom(S)−G

p(t | θ)

A2 = ∑
s∈G

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F +H

+
p(y′ | θ)
F +H ∑

t∈dom(S)−G
p(t | θ)

Similarly, B1 ≤ B≤ B2 where

B1 = ∑
s∈G

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F + p(y | w⊥,θ)H

+
p(y′ | θ) p(y | w⊥,θ)
F + p(y | w⊥,θ)H ∑

t∈dom(S)−G
p(t | θ)

B2 = ∑
s∈G

p
(
y′ | s,y,θ

) p(s | θ) p(y | s,θ)
F + p(y | w⊥,θ)H

+
p(y′ | θ)

F + p(y | w⊥,θ)H ∑
t∈dom(S)−G

p(t | θ)

Finally, the predictive distribution (Eq. (12)) can be bound
as follows:

A1 +B1 ≤ p
(
y′ | y,θ

)
≤ A2 +B2 (13)

Note that as more configurations are generated, the infinite
sums diminish due to the decreasing mass of the size config-
uration prior, and that the denominators approach p(y | θ).
As such, the predictive distribution bounds converge to the
exact expression given by Eq. (12).

A Witness Algorithm for Learning
Our approach to estimating p(Y,Z | S)p(S) is to search over
dom(S), and for each size configuration s ∈ dom(S) gen-
erated, compute a model of p(Y,Z | s). Every step of the
search process adds to the generated set G, and using wit-
nesses in G and Lem. 1 we compute bounds on the full
expected likelihood p(y | θ). This approach to probability
computation is related to that proposed in [Poole, 1993].

As long as the minimal configuration (assigning 1 to every
size variable) has been generated, there are no restrictions on
which domain sizes are to be generated. However, we wish
the full expected likelihood bounds (Lem. 1) to be as tight
as possible. Since the expected likelihood induced by the
min-witness configuration controls the lower-bound of the
full expected likelihood, we can always select a min-witness
to improve upon by expanding a successor configuration for

which that min-witness is a witness, and choose parameters
that improve the expected likelihood, if possible3.

Before listing the algorithm, we illustrate the basic idea
with two examples. The first is a univariate case (Fig. 1)
where S = {S}. Figure 1 illustrates a search up to S = k, at

Figure 1: A trace of Alg. 1 for the case where there is only
one size variable, i.e. S= {S}. The witness set, min-witness,
and the generated configurations are listed for every step of
the search.

which point the generated set G contains all size configura-
tions up to S = {k} (the set of parameters computed thus far
is θ1, . . . ,θk). The witness set contains only S = k, where
all previously generated configurations are pruned from the
witness, but remain in the generated set, set as S = k is suf-
ficient to witness all configurations greater than k, and is the
min-witness. Expand upon the min-witness, and by Prop.
1, the lower-bound of the full expected likelihood is non-
decreasing.

In the second example there are two size variables. Our
search algorithm proceeds in a two-dimensional space as
illustrated in Fig. 2. Starting with the initial configura-

Figure 2: A trace of Alg. 1 for the case where |S| = 2.
At each step (from top to bottom), configurations are an-
notated with their expected likelihood scores in bold. The
witness set, min-witness, and the generated sets are shown
in columns on the right of the search graphs.

tion S = (1,1), the two-dimensional search successively ex-
pands successors of the min-witness (with expected likeli-
hood shown in bold next to the configurations). By Prop. 1,

3It is possible to choose parameters that improve the likelihood
as long as the data is not fit perfectly.



successor configurations have non-decreasing expected like-
lihood scores. In this example, where configuration (1,2) is
expanded in the third step, (1,1) is rendered redundant as
(2,1) or (1,2) are can witness all unexpanded configurations
previously witnessed by (1,1), and are of higher score than
that of (1,1). The configuration (2,1) can be pruned from
the witness set after (3,1) is expanded. All of the configura-
tions for which (3,1) is a predecessor can use (2,1) or (3,1)
as their witnesses.

The above examples follow Alg. 1, with function
choose config(W) as one that returns a successor of the
min-witness in W. The function prune witnesses(W)
maintains a minimal set of witnesses, by removing any wit-
ness w when there are higher scoring witnesses in W that
can witness the same unexplored configurations as w. Algo-
rithm 1 details the proposed procedure.

input : Data Y = y
output: θ̃ ,B
G = {w0}, where w0 = {xi : xi = 1, i = 1, . . . , |S|}
W = {w0}
B = {B0} /* Marg. likhd. bounds (Lem. (1)) */
while not terminate do

s = choose config(W)

Compute θs s.t. p(y | s,θs)≥ p
(
y | w⊥,θw⊥

)
Compute marg.likhd bounds B /* Lem. (1) */
Add s to G, θs to θ̃ , and B to B
W← prune witnesses(W)

end
Algorithm 1: Witness algorithm

Termination of Alg. 1 can be done at any time; that is,
when the width of the expected likelihood bounds (during
training) is sufficiently small. Alternatively, one can truncate
the search according to the available resources, e.g. comput-
ing space and/or time.

Subroutines used for computing parameters θs for each
configuration s visited can be chosen according to the prob-
lem in question. For instance, in searching over the number
of topics of a topic model, any algorithm for computing fi-
nite topic models can be used at each search step. Our em-
pirical demonstration pertains to topic models.

Topic Modelling
A well-studied topic model is Latent Dirichlet allocation
(LDA) [Blei et al., 2003]. In LDA, a text document con-
sisting of a set of words is modelled as a distribution over
a set of K latent topics, where each word in the document
is generated from a K-mixture of multinomial distributions
corresponding to K topics. The mixing distribution over top-
ics is specified as a K-dimensional Dirichlet distribution.
LDA parameters are estimated by inferring and marginal-
ising out the latent topics, e.g. by variational expectation-
maximisation [Blei et al., 2003]. Whilst LDA assumes a
fixed value for K, K is a size variable in this experiment,
and it is the only size variable. We apply Alg. 1 for search-
ing over values of K and compute the expected liklelihood

bounds described by Lem. 1 and Lem. 2.
A 10-fold cross-validation experiment was carried out

with the Cora text corpus[McCallum et al., 2000]. Let
Dtrain be the training documents, and Dtest be the held-out
documents. For each fold, the search was carried out for
K = 1, . . .150 topics. For each size configuration K = k,
we estimate parameters θk of a k-topic LDA model using
a variational expectation maximisation algorithm, modified
so that a k-topic LDA model can be learned by seeding
on a n < k-topic LDA model [Blei et al., 2003]4. (Note
that we could have simply computed a k-topic LDA by ran-
dom restarts until one with a better expected likelihood than
those for n < k-topics, but our approach allows us to eval-
uate the worst case of our algorithm; the nested parameters
case.) It outputs an approximation of the expected likelihood
p(Dtrain | k,θk) is an underestimate given the variational ap-
proximation in the algorithm.

At each step K = k, the witness configuration is K = k,
and the witness set consists of only K = k, and our learned
parametrisation θ includes all LDA parameters up to and in-
cluding θk. Our prior distribution over the number of topics
p(K) is a Poisson distribution with parameter λ , where we
evaluate λ = 5,10,40 for this experiment. We use a uniform
prior for the value of test documents. The bounds on the full
expected log-likelihood log p(Dtrain | θ) as stated in Lem. 1
– cross-validated over the 10 folds – are shown in Fig. 3.
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Figure 3: Bounds on log p(Dtrain | θ) (Lem. 1), evaluated
over K = 1, . . .150 LDA topics, using a Poisson prior over
K with parameters λ = 5,10,40.

Figure 3 shows that Lem. 1 bounds on the likelihood
p(Dtrain | θ) converges at a rate controlled by the prior dis-
tribution, where a smaller λ yields faster convergence. Al-
though the lower-bound is increasing, it does so slowly.
This is attributed to the LDA inference algorithm we use,
where a k + 1-topic LDA model seeded on a k-topic LDA
model yields diminishing improvements as k increases. Next
we show bounds on the posterior distribution log p(K |
Dtrain,θ), following Lem. 2.

4The base code is available at www.cs.princeton.edu/ blei/lda-c
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Figure 4: Bounds on log p(K |Dtrain,θ) (Lem. 2), where K is
the number of LDA topics. Different Poisson priors over K
are used, corresponding to Poisson parameters λ = 5,10,40.
The values of K in this experiment range from 1 to 150, but
this figure only shows up to K = 100 topics.

Depending on the prior distribution used, the bounds on
the posterior log-likelihood of the number of topics converge
at different points, where a smaller λ value again produces
earlier convergence. We can use the posterior bound width
to decide when to truncate the search. Searching beyond
the point of convergence (up to some error threshold) likely
yields models that over-fit the data, whilst truncating prema-
turely may yield poor fitting models.

Finally, our likelihood bounds and posterior bounds allow
us to make predictions by combining all LDA models gener-
ated during search (Eq. (13)). In Fig. 5 we show bounds on
the likelihood of unseen data Dtest for the combined predic-
tor, against that of the best LDA (with 148 topics). Here, the
best LDA is one that with achieves the best test set accuracy,
not training set accuracy. This approach intentionally biases
the experiment in favour of fixed-size LDAs. Accuracy is
given in log-likelihood5.

The result of Fig. (5) shows that the combined LDA
model, once converged, can achieve greater accuracy than
the single best LDA model in prediction; this concurs with
results from similar experiments in [Teh et al., 2006]. The
effect of the prior distribution on the convergence is again
evident, where smaller λ yields faster convergence. How-
ever, the steady-state log-likelihood can be improved by
choosing a λ that favours a higher number of topics, albeit
increasing λ indefinitely likely yields diminishing returns.

Conclusion
This paper presents a search-based approach as an alterna-
tive to current stochastic process based methods for proba-
bilistic models with a priori unbounded dimensionality. Our

5We show our results in log-likelihood, which is monotonic in
perplexity, a standard measure of accuracy in the topic modelling
and information retrieval community.
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Figure 5: Comparison of Bounds on log p(Dtest | Dtrain,θ),
shown against p(Dtest |Dtrain,k∗,θk∗) where K is the number
of LDA topics, and where k∗ is the number of topics for
the best LDA model. The sub-plots correspond to different
Poisson priors over K, for parameter values λ = 5,10,40.
Higher log-likelihood indicates greater accuracy.

algorithm searches in the domain of latent variable sizes, and
for each size configuration visited, learns parameters for a
model conditioned on the size. The method allows arbitrary
prior distributions over size of latent variables, and main-
tains bounds on the expected likelihood of data at each step
of the search. The bounds diminish as the scope of search
expands, and thus search can be terminated at any time. We
demonstrate our approach in the domain of text modelling,
searching over the number of topics in a latent Dirichlet al-
location model, and using LDA’s parameter learning algo-
rithm as a subroutine to the search. We demonstrate how
the bounds could be used to guide the learning process, and
on test data we showed that predictions obtained by combin-
ing all LDA models generated during search can yield close
to, if not better accuracy compared to the single best LDA
found by cross-validation.

In the future directions it would be interesting to evaluate
the proposed approach on more complex models with mul-
tiple size variables, e.g. we may want to perform cluster-
ing for collaborative filtering models, where the number of
clusters for users and items may be different and moreover
interdependent. An extension that allows the prior distribu-
tion over size variables to be uncertain is another interesting
step, which would allow for automated optimization of the
size prior given data.
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