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Abstract. This chapter overviews work on semantic science. The idea
is that, using rich ontologies, both observational data and theories that
make (probabilistic) predictions on data are published for the purposes
of improving or comparing the theories, and for making predictions in
new cases. This paper concentrates on issues and progress in having
machine accessible scientific theories that can be used in this way. This
paper presents the grand vision, issues that have arisen in building such
systems for the geological domain (minerals exploration and geohazards),
and sketches the formal foundations that underlie this vision. The aim is
to get to the stage where: any new scientific theory can be tested on all
available data; any new data can be used to evaluate all existing theories
that make predictions on that data; and when someone has a new case
they can use the best theories that make predictions on that case.

1 Introduction

The aim of the semantic web (Berners-Lee and Fischetti, 1999; Berners-Lee et al.,
2001) is that the world’s information is available in a machine-understandable
form. This chapter overviews what we call semantic science, the application of
semantic technology and reasoning under uncertainty to the practice of science.
Semantic science requires machine-understandable information of three sorts: on-
tologies to define vocabulary, data about observations of the world, and theories
that make predictions on such data.

Our idea of semantic science is that scientists can publish data and theories
that can inter-operate by virtue of using common ontologies. The theories can
be judged by how well they predict unseen data and can be used for new cases.

An ontology (Smith, 2003b) is a formal specification of the meaning of the
vocabulary used in an information system. Ontologies are needed so that infor-
mation sources can inter-operate at a semantic level.

There has been recent success in publishing scientific data that adheres to on-
tologies (McGuinness et al., 2007). Publishing data with respect to well-defined
ontologies can allow for semantic inter-operation of the data sets. Meaningful
queries can be made against multiple data sets that were collected separately.



Data repositories include the Community Data Portal (http://cdp.ucar.edu/) and
the Virtual Solar-Terrestrial Observatory (http://vsto.hao.ucar.edu/index.php).

Science operates by making refutable theories (Popper, 1959). These theo-
ries3 are judged by their predictions, by their usefulness, and by their elegance or
plausibility. Theories make (probabilistic) predictions about new cases. Theories
may require arbitrary computations to make predictions; indeed many real the-
ories need enormous computational resources. Semantic science aims to provide
an infrastructure to test theories on data, and to make theories available for new
cases.

Theories need to refer to ontologies as they need to inter-operate with data.
Theories specify what data they can make predictions about, and make predic-
tions that can be checked against the relevant data and applied to new cases.
It is the ontologies that allow the inter-operation of the data and the theories.
Theories can be tested against all of the relevant data sets, and data can be used
to discriminate theories.

Given access to the theories, and information about how they perform on the
available data sets, practitioners can use the best theories to make predictions
on new cases. This thus promises to form a new basis for expert systems.

We have been working on two instances of the semantic science framework in
two domains in earth sciences (Smyth et al., 2007), namely minerals exploration
in the MineMatch R© system (http://www.georeferenceonline.com/minematch/)
and landslides in the HazardMatchTM system. MineMatch contains about
25,000 descriptions of mineral occurrences (called instances) that are described
at various levels of abstraction and detail using multiple taxonomies, including
the British Geological Survey rock classification scheme (http://www.bgs.ac.uk/
bgsrcs/) and the Micronex taxonomy of minerals (http://micronex.golinfo.com).
We are currently moving to OWL representations of the ontologies. We also
work with more than 100 deposit models (these form the theories about where
to find particular minerals), including those described by the US Geological Sur-
vey (http://minerals.cr.usgs.gov/team/depmod.html) and the British Columbia
Geological Survey (http://www.em.gov.bc.ca/Mining/Geolsurv/MetallicMinerals/
MineralDepositProfiles/). Similarly, HazardMatch uses tens of thousands of spa-
tial instances (polygons) described using standard taxonomies of environmental
modeling such as rock type, geomorphology and geological age. There are cur-
rently about 10 models of different landslide types that are derived from pub-
lished models. We can compare the prediction of the models to known cases and
new cases.

Semantic science allows for a diversity of theories. Each theory will specify
what data it is prepared to make predictions about. Some theories may be com-
peting and some may be complementary. For example, there may be multiple
theories that predict whether a patient has cancer. If they make different predic-
tions in some cases, they can be compared by how well they predict the available

3 Theories are often called hypotheses, laws or models depending on how well estab-
lished they are. This distinction is redundant in the semantic science realm where
we can test how well these actually perform on data.



data. There may be other theories that make predictions about the type(s) of
cancer for patients with cancer. These theories are not applicable for patients
who don’t have cancer. When making predictions, a doctor may use an ensemble
of multiple complementary theories: e.g., one to predict whether the patient has
cancer and another to predict the type of cancer if cancer is present.

Theories can make predictions in different forms. A theory could make, e.g.,
a definitive prediction, a probabilistic prediction, a range prediction, or a quali-
tative prediction. Users can use whatever criteria they like to judge the theories,
and use whichever theory or mix of theories they like. For different evaluation
criteria, there will be ways to judge the theories on the criteria. We anticipate
that probabilistic predictions will be the most useful, as it is probabilities that
one gets from data, and probabilities are what is needed (with utilities) to make
decisions. However, there are many cases where users will be reluctant to use
probabilistic theories (see below). Scientists who wish to judge a theory by ele-
gance or simplicity, as well as fit to data, are free to do so; they can use published
data to determine its accuracy and whatever criteria they like to evaluate ele-
gance or simplicity.

We mean science in the broadest sense. We can imagine having theories
about what apartment someone would like, or theories about what companies
will make the best investments, or theories about diseases and symptoms. Search
engines such as Google are being used for diagnosis (Tang and Ng, 2006). It is
arguably better to be able to specify symptoms unambiguously using an ontology.
Measures such as pagerank (Page et al., 1999) measure popularity. Fortunately,
searches for diagnostic tend to return authoritative sites. Scientists, however,
should be suspicious of popularity and authority as a basis for prediction. We
should base our predictions on the empirical evidence. Building an infrastructure
for this is the aim of semantic science.
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Fig. 1. Ontologies, Data and Theories in Semantic Science



Figure 1 shows the relationship between ontologies, data and theories. The
data depends on the world and the ontology. The theories depend on the ontol-
ogy, indirectly on the world (if a human is designing the theory), and directly
on some of the data (as we would expect that the best theories would be based
on as much data as possible). Given a new case, a theory can be used to make
a prediction. The real world is more complicated, as there are many theories,
many ontologies, and lots of data, and they all evolve in time.

This work is complementary to providing services and other tools to scien-
tists, e.g., using the Semantic Grid (De Roure et al., 2005). We expect that the
semantic grid will be important for implementing the ideas in this paper.

This chapter is based on Poole et al. (2008).

2 Background

2.1 Ontologies

In philosophy, ontology is the study of what exists. In AI, ontology (Smith, 2003b)
has come to mean a specification of the meaning of the symbols (or of the data)
in an information system. In particular, an ontology makes a commitment to
what entities and relationships are being modelled, specifies what vocabulary
will be used for the entities and relationships, and gives axioms that restrict the
use of the vocabulary. The axioms have two purposes: to rule out uses of the
terms that are inconsistent with the intended interpretation, and to allow for
inference to derive conclusions that are implicit in the use of the vocabulary.

An ontology can be any specification, formal or informal, of the meaning of
the symbols. This can be in the head of the person who created the data, or can
be stated in some language. Without an ontology, we do not have information,
but just a sequence of bits. The simplest form of an ontology is a database
schema with informal natural language descriptions of the attributes and the
constants. Formal ontologies allow machine understandable specifications.

An ontology written in a language such as OWL (McGuinness and van
Harmelen, 2004) specifies individuals, classes and relationships and the vocab-
ulary used to express them. Sometimes classes and relationships are defined
in terms of more primitive classes and relationships, but ultimately they are
grounded out into primitive classes and relationships that are not actually de-
fined. For example, an ontology could specify that the term “building” will rep-
resent buildings. The ontology will not define a building, but will give some
properties that restrict the use of the term.

Ontologies date back to Aristotle (350 B.C.), who defined terms using what
has been called an Aristotelian definition (Berg, 1982; Smith, 2003a). An Aris-
totelian definition of A is of the form “An A is a B such that C”, where B is the
immediate super-class of A and C is a condition that defines how A is special.
Aristotle called the B the genus and C the differentia (Sowa, 2000, p. 4).

To build Aristotelian definitions, we will use what we call the multi-dimensional
design pattern (Alexander et al., 1977), where the differentia in the Aristotelian



definition are built from multiple properties. To define the conditions for a class,
we need to think about what properties distinguish this class from the other
subclasses of the super-class. Each of these properties defines a (local) dimen-
sion. The domain of each property is the most general class for which it makes
sense. In the multi-dimensional design pattern, classes are only defined in terms
of values of properties. The subclass relation can be derived from this.

There is not a fixed number of dimensions that distinguish all individuals.
Rather, dimensions come into existence at different levels of abstraction. For
example, the dimensions size and weight may appear for physical individuals, but
are not applicable for abstract concepts. “Number of units” may be a dimension
for apartment buildings but may not be applicable for other buildings such as
sewage plants, where other dimensions may be applicable.

This idea is due to Aristotle:

“If genera are different and co-ordinate, their differentiae are themselves
different in kind. Take as an instance the genus ’animal’ and the genus
’knowledge’. ’With feet’, ’two-footed’, ’winged’, ’aquatic’, are differentiae
of ’animal’; the species of knowledge are not distinguished by the same
differentiae. One species of knowledge does not differ from another in
being ’two-footed’.” (Aristotle, 350 B.C.)

Example 1. Geologists define rocks along three major dimensions: genesis (sedi-
mentary, igneous or metamorphic), composition and texture (Gillespie and Styles,
1999). Particular rocks, such as granite and limestone, are defined by particular
values in each dimension (or some subset of the dimensions). Rock taxonomies
built using this approach that commit to splitting rock sub-type based on these
dimensions in a certain order (usually genesis first, then composition, then tex-
ture) do not conveniently represent the sub-types that occur in real data (Struik
et al., 2002). For example, if the aforementioned order of splitting the taxonomy
is used, there is no convenient single place in the taxonomy for the class of rocks
with a particular texture, independent of its members’ genesis or composition.
The multi-dimensional ontologies seem to be the natural specification, and they
also integrate well with probabilities (see Section 4.2).

2.2 Data and Ontologies

Scientists produce lots of data, and science cannot be carried out without data.
By data, we mean information about a domain that is produced from sensing.

In linguistics the Sapir-Whorf Hypothesis (Sapir, 1929; Whorf, 1940), says
essentially that people’s perception and thought are determined by what can
be described in their language. The Sapir-Whorf Hypothesis is controversial in
linguistics, but a stronger version of this hypothesis should be uncontroversial
in information systems:

What is stored and communicated by an information system is con-
strained by the representation and the ontology used by the information
system.



The reason that this should be less controversial is that the representation
and the ontology represent the language of thought or mentalese (Fodor, 1975;
Pinker, 1994), not just the language of communication.

As an example, suppose the world produces a deterministic sequence of coin
tosses: head, tail, head, tail, head, tail, etc. If the representation and the ontology
does not specify the time of each observation or which is the next coin toss in
the sequence, that information will have been lost in translating the observation
into the internal representation. The best prediction would be to predict heads
with probability of 0.5. As another example, if some data adheres to an ontology
that specifies that a house is a residential building, then, by definition, all of the
observed houses are residential buildings, and so the data cannot refute the fact
that houses are residential buildings.

This hypothesis has a number of implications:

– An ontology mediates how perceptions of the world are stored and commu-
nicated.

– If there is no distinction in the ontology, there will be no distinction in the
data. For example, if an ontology does not have any sub-types of “granite”,
and does not record the information needed to distinguish between types of
granite, the data will not record any sub-types of granite and none can be
discovered.

– Ontologies must come before data. This may be confusing as much work is
done on building ontologies for existing data sets. This activity should be
seen as reconstructing the ontology that was used to create the data set.
Note that this does not imply that finding regularities in data cannot be
used to evolve ontologies; we are claiming that the ontology for each data
set comes logically before that data set. This frequently occurs in research
when a data set may record the output of a sensor where it is unknown
what the senor actually measures (i.e., the meaning of the sensor report is
unknown). The initial ontology will then specify the meaning is just a real
number, perhaps with some range and precision. Later ontologies may give
the output a name.

Some people have argued that uncertainty should be explicitly represented
in an ontology because of the inherent uncertainty in data (Pool et al., 2005; da
Costa et al., 2005; Laskey et al., 2007). While we believe that it is essential to
model the uncertainty in data, we don’t believe actual probability values should
be in the ontology4. The main reason is the ontology is logically prior to the data,
but the models of uncertainty in the data are logically posterior to the data: it is
only by seeing (some of) the data, that we can estimate the uncertainty (i.e., we
want the uncertainty to reflect the posterior distribution after we have seen some
data). Because the probabilities are posterior to the data, they should change

4 An ontology will contain the vocabulary to express probability distributions. We
need the vocabulary to express continuous and discrete conditional probability dis-
tributions, e.g., using PR-OWL (da Costa et al., 2005). The ontologies need to be
rich enough to express what scientists want to state in theories.



as data comes in, and so should not be part of the stable foundation of the
data that an ontology needs to be. Another way to think about it is that the
ontologies define the vocabulary; they do not make empirical claims. Saying that
a granite is an igneous, felsic, course rock is not an empirical claim, it just defines
what a granite is. Theories make empirical (testable) claims. A specification of
a probability is an empirical claim, even if the probability is theory-based (e.g.,
based on symmetries) and not data-summaries. Thus the probability should
not be in the ontology. Note that our claim that probabilities do not belong in
definitions is an empirical claim, and is not part of the definition of semantic
science.

2.3 Theories

We would argue that theories are best described in terms of probabilities (Polya,
1954) for two main reasons:

– Probabilities summarize the empirical content of data. In particular, we want
predictions that can be evaluated against the empirical evidence, and so can
be optimized with respect to the evidence. Probability distributions optimize
most of the common evaluation criteria, and other predictions (such as the
mean or the mode) can be derived from the probability distribution.

– Probabilities, together with utilities, are what is needed to make decisions.

Like data, theories need to adhere to ontologies. There are a number of
reasons:

– Theories make predictions on data that adhere to an ontology. To allow
semantic interoperability between the data and the theories, they should
adhere to a common ontology.

– People should be allowed to disagree about how the world works without
disagreeing about the meaning of the terms. If two people have different
theories, they should first agree on the terminology (for otherwise they would
not know they have a disagreement)—this forms the ontology—and then
they should give their theories. Their theories can then be compared to
determine what their disagreement is. It is by creating these disagreements,
and testing them on data, that science progresses.

Theories can expand the ontology by hypothesizing unobserved objects or prop-
erties (hidden variables) that help explain the observations. By expanding the
ontology, other theories can refer to the theoretical constructs, and they could
appear in data. For example, a theory could postulate that the data is better
explained by having a new form of cancer; other theories could refer to this type
of cancer and this new type of cancer could even be recorded in data. In this
way the theories and the vocabulary can evolve as science advances.

Semantic interoperability can only be achieved by adhering to common on-
tologies. A community needs to agree on an ontology to make sure they use the
same terminology for the same things. However, a community need not, and we



argue should not, agree on the probabilities, as people may have different prior
knowledge and have access to different data, and the probabilities should change
as more data comes in.

To make a prediction, we usually use many theories. Theories that individuals
produce are typically very narrow, only making predictions in very narrow cases.
The theories that are put together to make a predictions form a theory ensemble.
We judge individual theories by how well they fit into ensembles. An example of
a theory ensemble is “when the speed of the objects involved is less than 70%
of the speed of light, use Newtonian mechanics, otherwise use Einstein’s theory
of relativity”. This ensemble is another theory that may work better than either
of the composite theories in practice. Producing such ensembles is of a different
sort than producing the base theories, and so should be separated. Rather than
dismissing these theories as trivial, they form the basis of prediction for new
cases. Virtually all predictions in complex cases will rely on theory ensembles.

The structure of probabilistic theories does not necessarily follow the struc-
ture of the ontology. For example, an ontology of lung cancer should specify what
lung cancer is, but whether someone will have lung cancer depends on many fac-
tors of the particular case and not just on other parts of ontologies (e.g., whether
they have other cancers and their work history that includes when they worked
in bars that allowed smoking). As another example, the probability that a room
will be used as a living room depends not just on properties of that room, but
on the properties of other rooms in an apartment.

There are major challenges in building probabilistic theories using ontologies
based on languages such as OWL. The main challenge is that OWL sees the
world in terms of individuals, classes and properties, while probability theory
is in terms of random variables. Section 4.2 discusses how to construct random
variables from ontologies.

3 Pragmatic considerations

The MineMatch and HazardMatch systems we have been developing have mul-
tiple instances that describe entities and their properties at particular locations
on Earth, and models (theories) that make predictions about these locations.
The systems are used in various modes:

– In instance-to-models matching, one instance is compared to multiple mod-
els. Finding the most likely models for the instance can be used to determine
what is the most likely mineral to occur at a location or what types of land-
slides are predicted to occur at a particular place. In both of these cases, the
instance is a place whose description is compared to the models.

– In model-to-instances matching, one model is compared to multiple instances.
This can be used to find the location(s) that are most likely to have landslides
or contain particular minerals.

– In instance-to-instances matching, one instance is compared to multiple in-
stances to find which other instances are most like this instance.



– In model-to-models matching, one model is compared to multiple models to
find which other models are most like this model.

These applications have a number of features that we believe will be shared
by many scientific disciplines:

– The instances are heterogeneous, described at various levels of abstraction
(using more general or less general terms) and detail (described in terms
of parts and sub-parts or not). Similarly, the models use various levels of
abstraction and detail. Sometimes the distinctions that are in the instance
descriptions are not required by the models, and sometimes the instance
descriptions do not make distinctions that are needed by the models.

– The experts often do not publish probabilities in their models, and are reluc-
tant to have probabilities in the system. There are a number of reasons for
this. First, they may have very few data points for any model, so that the
probabilities will not be based on anything meaningful. Second, the people
who want to make decisions (those who want to decide whether to try to
mine an area profitably, or insurance companies that decide on insurance
premiums) will want to use their own prior probabilities, and may take into
account more information than is used in the system.

– The problem domains are afflicted by combinatorial complexity; there many
possible model combinations, and very large data collections for assessment.
It is difficult to find those few areas that are most likely to contain ore-grade
minerals or be susceptible to landslides, and to provide explanations that
can be used for further analysis.

– The models are “positive”; there are models of where to find a particular
mineral, but people do not publish models of where the mineral is absent.
Similarly for landslides; there are models of where particular types of land-
slides are likely to occur, but not models of where landslides are unlikely to
occur.

– The models are neither covering, disjoint nor independent. Often the models
are variants of each other. Starting from one model, people produce variants
of that model to suit their own purpose. A model does not include all of
the cases where the phenomenon it is modelling may occur; it only about a
specific context.

4 Foundations of Probabilistic Theories

In this section, we describe the logical and probabilistic foundations for building
theories, and relate them to pragmatic choices that we have used in our fielded
systems.

4.1 Role of Models in Decision Making

The Bayesian view of using models for decision making is that we would like
to make a probabilistic prediction of x for a new case based on a description



d of that case. Thus we want P (x|d). The role of the models is to provide a
framework for this prediction.

In terms of probabilities, we can use models as intermediaries:

P (x|d) =
∑

m∈Models

P (x|m ∧ d)P (m|d)

where Models is a set of mutually exclusive and covering hypotheses. Thus,
for each model, we need to decide what it predicts, and how likely it is based
on the description, d, of the current case. Typically models are rich enough to
convey the information about the rest of the description, and so we assume
P (x|m ∧ d) = P (x|m).

In Bayesian modelling, we try to determine what features best predict (in
unseen data) the phenomenon of interest, and then build probabilistic models
in terms of these features.

Typically, we do not have P (m|d) which specifies how likely the model is
given the description, but instead have predictions of the model, i.e., P (d|m).
These two quantities are related by Bayes’ theorem:

P (m|d) =
P (d|m)P (m)

P (d)

That is, we often have causal or consequential knowledge and want to do ev-
idential reasoning. For example, we model the symptoms of chicken pox with
P (fever|ch pox) but want P (ch pox|fever). These are related by Bayes’ theo-
rem:

P (ch pox|fever) =
P (fever|ch pox)× P (ch pox)

P (fever)

The reason that we want to store causal or consequential knowledge is that it
is more stable to changing contexts. You would expect the symptoms of chicken
pox to be stable; they would be the same whether the patient was at home, in a
school or in a hospital. However, the probability that someone with a fever has
chicken pox would be different in these three contexts, as the prevalence of fever
and chicken pox is different in these three contexts.

This has an impact on how diagnostic a feature is. Suppose fever and spots
are common given chicken pox, e.g., P (fever|ch pox) = 0.9, P (spots|ch pox) =
0.9. Suppose fever has many causes and spots has few. Then spots is more diag-
nostic of chicken pox, i.e., P (ch pox|spots) > P (ch pox|fever), as P (fever) >
P (spots).

Note also that the probabilities needed for the prediction, namely P (x|m) are
of the same form as P (d|m)—they all specify what the model predicts. Rather
than making a model to be for a particular feature, a model makes predictions
about all of its features.

4.2 Probabilities, Ontologies and Existence

There seems to be a fundamental mismatch between the random variable formal-
ization of probability theory and the formalization of modern ontologies in terms



of individuals, classes and properties. Probabilistic models typically assume we
know what random variables exist at modelling time, but what individuals exists
is often unknown at modelling time. Interestingly, a large body of research on
Bayesian modelling (e.g., Bayesian networks) and modern research into ontolo-
gies both have their roots in the expert systems of the 1970’s and 1980’s (Henrion
et al., 1991). Both fields have advanced our understanding of reasoning, and part
of our research is to bring these together.

We can reconcile these views by having properties of individuals correspond
to random variables. This complicates the probabilistic modelling as the individ-
uals typically only become known at run-time, and so the random variables are
unknown at modelling time. This has spurred a body of research in first-order
probabilistic models or relational probabilistic models (e.g., Poole (1993), Getoor
and Taskar (2007), Kersting and De Raedt (2007), Laskey (2008), Lukasiewicz
(2008)). It is even possible to be unsure about the existence of an individual,
and so unsure about the existence of a random variable (Poole, 2007).

When dealing with probabilities and individuals we need to deal with three
types of uncertainty:

– the probability of existence (Poole, 2007) — the probability that an individ-
ual that fits a description actually exists.

– the probability distribution over the types of an individual. This is compli-
cated when there are complex interrelations between classes that can be the
types of the individuals.

– the probability of property values. Functional properties give a random vari-
able for each individual with a non-zero probability of being in the class that
is the domain of the property. Non-functional properties have a Boolean ran-
dom variable for each value in the range and each individual with a non-zero
probability of being in the domain of the property.

Aristotelian definitions, where a class is defined in terms of its immediate super-
class and differentia, provide a way to reduce the second case to the third case.
The differentia are described in terms of property values with appropriate do-
mains. By having a probability distribution over the values of the properties
(perhaps conditioned on other variable assignments), we can induce a probabil-
ity distribution over the classes. Note that Aristotelian definitions are general:
any class hierarchy can be represented by Aristotelian definitions by introducing
new properties.

For example, a granite can be defined as a rock with the property genesis
having value igneous, property composition having value felsic, and texture is
coarse. By having a probability distribution over the values of genesis, a proba-
bility distribution over the value of composition, and a probability distribution
over the values of texture, we can determine the prior probability that a rock is
a granite.

Note that the probabilistic formulation is complicated by existence prereq-
uisites: only individuals that exist have properties, and only individuals in the
class that is domain of a property can have values for that property.



4.3 Bayesian modelling meets pragmatism

Bayesian modelling of scientific reasoning seems like the appropriate formulation
of the role of theories or models in science. However, the pragmatic considera-
tions discussed above lead us to not adopt it directly, although it remains the
gold standard. The theories (or models) in our fielded systems are based on qual-
itative probabilistic matching (Smyth and Poole, 2004; Poole and Smyth, 2005;
Lukasiewicz and Schellhase, 2007), with the following properties:
– Rather than using probabilities that experts do not want to give, and can-

not judge the output from, we use qualitative probabilities, using a 5-point
scale (always, usually, sometimes, rarely, never) that is derived from the ter-
minology used in published papers. These qualitative probabilities act like
log-probabilities, where the values add rather than multiply (Pearl, 1989;
Darwiche and Goldszmidt, 1994).

– The models need to be fleshed out for each instance. Models refer to mul-
tiple individuals, but they do not refer to the named individuals in the
instances. Models specify roles that can be filled by the instance individuals.
The predictions of the model for an instance can only be determined given a
role assignment that specifies which instance individuals fill the roles in the
model.

– Rather than averaging over all possibilities and role assignments, we choose
the most likely ones.

– We allow for diverse data about instances and models at multiple levels of
abstraction and detail. We also require prior probabilities of the descriptions;
we do not assume that we can get the probability of a description from the
set of models (as we could if the models were exclusive and covering).

– The explanations for the answers are as important as the answers themselves.

5 Conclusions

This paper has presented the big picture of what we see as semantic science
as well as the pragmatic considerations that have gone into our fielded systems
that are a first try at realizing our vision. This view of semantic science is
meant to complement other views that provide ontologically-based views of data
(McGuinness et al., 2007) and ontology-based services (De Roure et al., 2005).

There are many challenges in building the semantic science vision, including
how to construct theories, how to determine what theories are useful in making
predictions in a particular case, and in finding the data about which a theory
makes predictions. The growing interest in scientific ontologies, the desire for
scientists (and their funders) to make their data and theories as widely used as
possible, and the desire for users to have the best predictions, indicates that this
semantic science vision should succeed.
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