Type Uncertainty in Ontologically-Grounded
Qualitative Probabilistic Matching

David Poole! and Clinton Smyth?

1 Department of Computer Science, University of British Columbia
http://www.cs.ubc.ca/spider/poole/
2 GeoReference Online Ltd., Vancouver, BC, Canada
http://www.georeferenceonline.com

Abstract. This paper is part of a project to match real-world descriptions of in-
stances of objects to models of objects. We use a rich ontology to describe in-
stances and models at multiple levels of detail and multiple levels of abstraction.
The models are described using qualitative probabilities. This paper is about the
problem of type uncertainty; what if we have a qualitative distribution over the
types. For example allowing a model to specify that a meeting is always sched-
uled in a building, usually in a civic building, and never a shopping mall can help
an agent find a meeting even if it is unsure about the address.

1 Introduction

In a recent paper [1], we described a system for matching instances and models of real-
world phenomena. These instances and models have been described by different people
using controlled vocabularies (using an ontology) which allow descriptions of model
and instances at varied levels of abstraction (using more general or less general terms)
and detail (describing objects in terms of parts and subparts or not).

In one practical domain, geological surveys of various countries or provinces pub-
lish descriptions of mineral occurrences (e.g., twelve thousand in British Columbia) at
widely varying levels of abstraction and detail. Other people spend careers developing
models of archetypical mineral deposits that can help determine where certain miner-
als can be found®. These models are often at different levels of abstraction and detail
from the mineral occurrence descriptions. The problem that we consider is to determine
which mineral deposits fit which models, so that explorers can focus their exploration.
This is a case where humans have to make decisions, but they are overwhelmed by
the combinatorics. The aim of the computer system is to find the best fitting models to
a mineral occurrence or to find the best fitting mineral occurrences to a model. As it
is humans who are making the decisions, it is more important to have good explana-
tion facilities and to return multiple potential matches than to return the “best” match
according to the computer. Computers help by narrowing down the search space and
explaining and justifying the potential matches.

3 See http://www.yukonmineraltargets.com/ for examples using about 2000 mineral occurrences
(“‘anomaly clusters”) in the Yukon, matched against 80 models. It shows the best matching
instances for each model and the best matching models for each instance.

II

The main problems are the integration of (qualitative) probabilities with rich ontolo-
gies and reasoning about multiple objects with multiple subparts. For this paper we’ll
use the OWL [2] notation where appropriate.

In previous work [1], we make the assumption that different descriptions refer to
different objects. This assumption is relaxed in this paper. In particular, we allow for
uncertainty in the types and allow for qualitative distributions over hierarchically struc-
tured classes. By type we mean membership in a class, where the classes are organised
hierarchically and are specified as part of an ontology.

This work is quite different to other work on combining probability and ontologies
(e.g., P-Classic [3]) because we are using the ontologies to construct a rich hypothesis
space rather than (or as well as) having probabilities over subclasses in the ontologies.

2 Qualitative Probabilistic Matching

The general problem is, given a model and an instance, to determine a qualitative value
for P(modell|instance) that can be used by a human to make decisions. This section
gives an overview of our previous paper [1].

We decided to use qualitative order-of-magnitude probabilities based on the kappa
calculus [4, 5]. The kappa calculus can be described in terms of surprise; the kappa val-
ues correspond to the level of surprise. When probabilities multiply, the corresponding
kappa values add, and summing in probability corresponds to minimisation in the kappa
calculus.

The kappa calculus can be seen as a crude approximation to probability [6]. This
is useful when the probabilities are not available as it gives a rough answer and leaves
only a few of the possible matches for a human to evaluate; the implausible matches
can be ignored by the human. Note that we use the kappa calculus for the first-level of
approximation; we use some finer distinctions to distinguish matches that may have the
same values in the kappa calculus. These are described when used.

2.1 Ontologies

We assume that we have an ontology that specifies the vocabulary and partly specifies
the meaning of some of the terms (in terms of how some of the terms relate to each
other and some restrictions on allowed values). For this paper, we assume that we are
given an ontology that specifies:

a class hierarchy. Formally a class is a set. The top class is “Thing”. We use

subClassO f to denote the subclass relation. We assume that the class hierarchy

is a tree; siblings in the class hierarchy form disjoint sets of individuals.

— aproperty hierarchy. Like OWL-DL, we assume that objects, classes and properties
are distinct. Each property is either a datatype property or an object property.

— domains and ranges for properties.

— declarations that properties are functional.

I

Example 1. As part of the ontology, we can specify a class hierarchy, part of which may
be written as tuples:

(boardroom, subClassO f, meeting_room)
(meeting_room, subClassO f, room)
(room, subClassOf, enclosed_space)

We can also specify properties and property attributes, such as:

(held_in, subPropertyO f, has_location_in)
(held_in, domain, meeting)
(held_in, range, room)

2.2 Describing Instances

Instances are things in the world that are described using the vocabulary of the ontology.
Instances are given (internal) names.

We make the open world assumption: we do not assume that we are told everything
about an individual, and so do not conclude anything from the lack of information. If we
want to say that something is not true, we need to say explicitly that its value is absent,
or say that there are no other values. Instances have property values that are marked as
“present” or “absent”.

We use the term object to denote both an instance object and model object. The
room at the North-East Corner of 123 Pretty St, Vancouver, may be an instance of a
kitchen. A room in the model of houses that Joe likes may be a model of a kitchen.

Instances are described using tuples of the form:

(Object, Property, Value, TruthStatus, Re ference, Comment, Entered By)

where Frequency is either present or absent. Reference, Comment and EnteredBy spec-
ify the source of the information and human-readable comments. The rest of this paper
ignores these fields, but it is important for us to attribute the source of all knowledge.

If Property is a datatype property, Value is a primitive data type (such as a string or
a number or a pair of numbers representing a range). If Property is an object property,
Value is (a reference to) an object.

Example 2. Assume we are using the ontology partly specified in Example 1. Consider
the following instance of a meeting which we will call m:

(mq, held_in, rmCS123, present)
(mq, organised_by, david, present)
(myq, start_time, 5 : 00pm, present)
(myq, attended_ by, bill, absent)

This meeting refers to a room rm(C'S123, which can similarly be described:

(rmCS123, type, boardroom, present)
(rm(CS123, located_in, C'Sbuilding, present)
(rm(CS8123, capacity, 50, present)
(rmCS123, contains, lectern, absent)

v

2.3 Describing Models

Models are specified using tuples of the form:
(Object, Property, Value, Frequency, Re ference, Comment, Entered By)

where the attributes are as before, and Frequency specifies the qualitative probability
that the Object will have Value for Property in the current model. After feedback from
domain experts, we use a 5-value frequency scale* to describe models. Suppose p rep-
resents the proposition “Object has V alue for Property”, the frequency is one of:

— always: you are very surprised if p is false.

— usually: you are somewhat surprised if p is false.

— sometimes: you aren’t surprised if p is true or if it’s false
— rarely: you are somewhat surprised if p is true.

— never: you are very surprised if p is true.

These provide a language for inputting uncertainty. We output a numerical value in the
range [0,100] where 100 is the score for the best possible match and O is for the worst
possible match. Internally we use a reasonably arbitrary numerical scale.

Example 3. We can specify a model of a particular type of meeting that we should
attend. It is usually in a boardroom, always organised by an administrator, usually at-
tended by a department head. This can be specified using tuples:

(ImportantMeeting, held_in, RoomO f Important Meeting, usually)
(RoomO f Important Meeting, type, boardroom, always)

(ImportantMeeting, organised_ by, OrganizerO f Important M eeting, always)
(OrganizerO f Important Meeting, type, administrator, always)
(ImportantMeeting, attended_by, ADepartment Head, usually)
(ADepartmentHead, type, department_head, always)

2.4 Matching

If not for different levels of abstraction and different levels of detail, to compute the
qualitative counterpart of P(instance|model), we add the surprises of the instance
with respect to the qualitative probabilities specified in the model. The main contribu-
tion of [1] was to show how the kappa calculus could be combined with rich ontologies
that let us describe models and instances at various levels of abstraction and detail.

As we are adding surprises, and returning the topmost (least surprising) match, the
zero point is arbitrary. We can define zero to be the level of the empty match® (i.e., a

* None of the theory or results in this paper depends on using this scale, but we will use it in all
of our examples. In practice, we have found that experts are happy using this scale, and find it
very natural.

5 This is not the always of modal logic. Even though our experts described things as “always”
true, we allow for exceptions due to errors in descriptions.

® This is for the case of the open-world assumption, where we don’t assume that a complete
description is given. We do allow someone to specify that “silence implies absence”; that a
part or property that is not described is false. In this case an empty description does not have
value zero. It is positive as we expect nothing else and found nothing else.

v

match with an empty description), then we have positive rewards when there is a better
match than this and negative rewards (penalties) for those matches that are worse than
this.

For each model qualitative probability and for each instance value “present” or “ab-
sent”’, we will have a numerical reward or penalty. Thus, for example, we will talk about
the always-present reward (which gives the reward received when a model property that
has qualitative probability “always” matches an corresponding instance property that is
present) or a usually-absent penalty (when the model property is “usually” present, but
it is absent in the instance). For example, if a model specifies a room that is always a
bedroom and usually pink and we have an instance that is a bedroom that is not pink
(i.e., bedroom is present and pink is absent), we get both the always-present reward and
the usually-absent penalty.

Given an abstraction hierarchy of classes, it is important to distinguish the descrip-
tion of an instance from the instance itself. For example, if something is described as
a building, it must be some sort of building (generic buildings don’t exist). One of
the differences between an instance and a model is, when given a general concept,
such as “building”, in an instance we don’t know what sort of building it is, but if the
same term is used in a model, we don’t care what sort of building it is [1]. When we
want the probability of an instance, we don’t want the probability of the description.
The probability of a more abstract description is more likely than the that of a more
specific instance. For or example, a house is a kind of building, so for any evidence
e, P(buildingle) > P(house|e). However if the model specifies a house is always
present, and instance 1 is described as a building and instance 2 is described as a house,
then instance 2 definitely fits the model, but it is less likely that instance 1 fits the model.

Our previous paper [1] made two assumptions that we relax in this paper:

— The type of objects was known.
— In a single description, different descriptions of parts (or other property values)
pertain to different parts (or property values).

3 Type Uncertainty

In many real examples, we may have uncertainty about the type of an object. We would
like to have a qualitative distribution over which class an object is a member of. For
example, the model may specify that a place that can take the role of a home office is
always a room, usually a bedroom and rarely a master bedroom.

We also need to distinguish between one object satisfying multiple type restrictions
and multiple objects satisfying them. Consider the following two contrasting examples:

Example 4. Suppose we had a a model of “a room that Sam likes” that says the room
is “usually red and never pink”. This could mean either

— it has a single colour that is usually a non-pink shade of red, or

— there could be multiple colours; as long as one is red and one is non-pink they
would be happy. So a blue and pink would be good; they just don’t want all-pink or
no shade of red.

VI

In the first case, the description is referring to a single colour and in the second to
multiple colours.

Example 5. Suppose we have a model for a house that always contains a bathroom and
always contains a room that is not a bathroom. In this case, we don’t want this to refer
to the same room (there is no room that is both a bathroom and is not a bathroom), but
rather to two rooms.

We need a way to specify we are referring to a single colour or room or to multiple
colours or rooms.

In summary, we need a representation to specify what objects are assumed to exist
and what type distributions are over the objects. The same issues arise when specifying
functional properties (as in colour above). We motivate the problems in terms of types,
but then treat type as a (functional) property in the algorithm.

In order to understand the issues, we will give a detailed example of a specific
example of matching the type description of an instance and a type description of model
type. This example will be used a prototype for the general case.

Example 6. Consider the class hierarchy of Figure 1. Some of the relations that are true

Fig. 1. A class hierarchy. Different exceptional regions for model M are numbered (see Example
6).

VII

include:
(House, subClassO f, Residential Building)

(Residential Building, subClassO f, Building)
(Building, subClassO f, Engineered Artifact)

For this discussion, we do not intend that these are immediate subclasses. There may
be many intermediate classes (e.g., that are classes that are subclasses of “Engineered
Artifact” and super classes of “Building”). At the root of the tree is Thing which is the
topmost class.

Suppose a model that specifies that the location of some activity is:

always a Building and rarely a House.

Call this model M;.

Given a simple description of an instance where we only give a single class that is
present, let’s determine how surprised we are that the location is at that instance. The
description could be any position in the taxonomy, and the instance could be any leaf
that is a descendant of the class that is said to be present. The figure shows the five
qualitatively different regions of the taxonomy that the description of an instance could
be in:

— Region 1. If the description is in region 1, the cousins of Building (the values in
the same tree that are neither descendants nor ancestors of Building), the instance
is not a Building.

— Region 2. The description is an ancestor of Building so the instance is perhaps a
Building, but could be a non-building.

— Region 3. The instance is a Building and not a House.

— Region 4. The instance is a Building and perhaps a House.

— Region 5. The instance is a House.

Consider how surprised we would be that an object in each of these locations would be
an instance of the model “always a Building and rarely a House”.

If the instance description is in region 1, the instance would receive the always-
absent penalty. The model says the instance is always a building and the instance is not
a building.

Suppose description dq of the instance is in region 2, for example it is the description
Engineered Artifact. We don’t know if the instance is a Building or not. To understand
the qualitative probability, consider the probability of the model M, given the descrip-
tion ds:

P(M;|d2) = P(M;|Building A dg) * P(Building|ds)
+P(M|=Building A dz) * P(—~Building|ds)
P(M;|Building Ndy) = P(My|Building) as Building Ads is logically equivalent to
Building. P(M,|-Building A d2) = P(M;|—-Building)as the model doesn’t specify
anything more general that Building. Thus
P(M,|d2) = P(M;i|Building) * P(Building|ds)
+P(M;|-Building) x P(—~Building|ds)

VIII

In terms of the kappa-calculus (taking logs, ignoring adding by zero, and minimis-
ing):
k(Mylde) = min(k(Building|dz), k(M| Building))

assuming that

- k(=Buildinglds) = 0; we are not surprised that the Engineered Artifact is not a
building. We would be surprised if it is a building as there are many more sorts of
engineered artifacts than buildings.

- K(M;y|Building) = 0; we are not surprised that a building matches the model M
as the model M, specifies the object is always a building.

Thus the “surprise” that the engineered artifact fits the model comes from either the
surprise that the Engineered Artifact is a building or the surprise that a non-building
matches the model. Our level of surprise is the minimum of these two.

We could have surprise information as part of our ontology. For each element in
the taxonomy, we would have a value of how surprising each child is. For example, we
could infer the surprise of Building given the description Engineered Artifact.

If we didn’t have the information in the taxonomy, we can make some simplifying
assumptions to estimate this value. Suppose the description ds is m levels in the hier-
archy above Building, and suppose that the average branching factor of b, and that the
children of any node have approximately equal probability. Then P(Building|ds) =~
(1/b)™. Taking logarithms, we see that the surprise that the instance is a Building should
be linear in m.

We do not use the kappa calculus directly, as this would entail having a surprise
that there is no description. We’d rather just ignore non-existent descriptions. This can
be done by defining the surprise value of a empty description as zero. We get positive
rewards for being less surprised than this and negative rewards (penalties) for being
more surprised. Given that we know something exists, not specifying a value is the
same as stating it has the top value (Thing in the above taxonomy). This then gives us
a way to calibrate the surprise. The value is zero when the description is Thing. If the
description is not Thing, but in region 2, then it should have a positive reward, as it is
more likely a Building than if it were a Thing. Under the assumptions made above’, this
should be linear in the depth.

If the assumption that children are approximately equal is not a reasonable assump-
tion, it is possible to specify the surprise values for each child in the taxonomy as part
of the ontology. For example, specifying how surprised you are that residential building
is a house. Note that in this case it is possible to specify a model that is surprised by a
normal condition; in this case, the model should also be surprised by a empty descrip-
tion. For example, if things are usually engineered artifacts, but a model specifies that
fits to the model are rarely engineered artifacts, then the model should be surprised by
a description of an object just as Thing.

7 The main assumption is that surprises are not specified as part of the taxonomy and that all
children are approximately equal. This means all children along the path from Thing are ap-
proximately equal, not that a child is equal to all of its sibling.

IX

If the instance is in region 35, it gets the rarely-present penalty. We know the instance
is a type of house; the model specifies that we should be surprised the location is a
house.

In order to understand the reward of an instance in region 3, it is instructive to
consider some more models. Suppose model M is “always a Building”, model M; is
“always a Building and rarely a house” and model My is “always a Shopping Centre”.
Then we have My subsumes M; (given that Shopping Centre is a subclass of Building
that is disjoint with house) and M; subsumes M. If the instance is a Strip Mall (a
subclass of Shopping Centre), it matches all three models. As M, and M> give the same
match; an always-present reward, it seems reasonable to also give the match with M;
the same reward. The match with M; should thus not also get a rarely-absent reward.

Instances in region 4, are known to be buildings and they could be houses. If we do
a similar probabilistic analysis to region 2, with d, a description on region 4, we get:

P(M,|ds) = P(My|House A Building) + P(House|dy)
+P(Mi|-House A Building) x P(—House|dy)

(as P(Building|ds) = 1). If you just consider the second part of the sum, you are not
surprised that the model is true for a building that is not a house (it is “always” true),
you are also not surprised that a building in region 4 is not a house. Thus in terms of the
kappa values, this has kappa value 0. That is, k(M;|d4) = 0.

However, this is considered to be a worse match than for an instance in region 3, and
so gets a small penalty that is proportional to the depth of the description. This value
is designed to be dominated by the kappa values so that it only distinguished instances
that have the same kappa values.

4 Matching Algorithm

Under these assumptions, there is a canonical form for the value(s) of the type of an
instance. Because the declarations are implicitly conjoined, you can assume there is
exactly one “present” class for any functional property (including type) and a number
of absent classes that are subclasses of the present class. This is because you can always
assume that the top element is present, and if a class and a subclass are both present,
you can remove the superclass as present and preserve the meaning. There can’t be two
classes that are both “present” if one is not a subclass of the other if the hierarchies are
trees (as there are no elements in common between the classes).

Similarly we can assume that for the value of a type of model object, there is at
most one always, at most one usually, that frequencies go down in the hierarchy, there
are no children of never or cousins of always. The only cousins of a usually are nevers.
[Note that sometimes is used when we have a complete knowledge assumption; it will
be ignored in this section.]

Figure 2 gives an algorithm to determine the score for matching the type descrip-
tions of an instance object and a model object. Suppose [is an instance object that
is to be matched with a model object M. We use the notation [.present to be the
position in the hierarchy of the value of the instance that is declared to be present.

X

Similarly M.always is the position in the hierarchy of the value declared to be always
true in model M. Conditions involving M.always are assumed to be false if nothing
is declared to be always true in model M. Below and above refer to positions in the
hierarchy (above is more general), and a node is below itself and is above itself.

One non-obvious aspect of this algorithm is when the model has an “always” above
a “usually”. In this case, if an instance has present below the the always, but a cousin of
the usually, it gets just the usually-absent penalty, and no reward for the always-present.
This is reasonable as, if the always was not there, this would be equivalent to having
always at the top. If the instance has present above the usually, it has a reward that is
linear in the depth of the present instance, independent of the position of the always.

procedure scoreMatch
Inputs:
Model Description M
Instance Description 1
Returns:
Score
begin
if (I.present is below a M.never)
return never-present reward
else if (/.present is cousin of M.always)
return never-present reward
else if (/.present is below a M.rarely)
return rarely-present reward
else if (/.present is cousin of M.usually)
return rarely-present reward
else if (/.absent is above M.always)
return always-absent reward
else if (/.absent is above M.usually)
return usually-absent reward
else if (I.present is below M.usually)
return usually-present reward
else if (/.present is above M.usually)
return o X usually-present reward
where « is depth of I.present / depth of M.usually
else if (I.present is above M.always)
return o X always-present reward
where « is depth of I.present / depth of M.always
end

Fig. 2. Determining Reward from Type description of Instance / and Model M

XI

5 Matching Parts

In order to be able to match complex description, we need to consider the case where
the value may be an object that has proerties with values. In the case when the model
and the instance both have have complex descriptions, we need to determine the corre-
spondencies between these complex descriptions. If the instance has multiple instances
of the property (and the property is not functional), we need to determine which model
values correspond to which instance values.

Example 7. Consider the value of the organized_by property of M, in Figure 3. If there

Object|Property Value Frequency
My has_location | L1 usually
M, |starts_at T always
M, organized_by| P, always

Py type Admin_staff usually
P type Dept_head rarely

P type Financial_officer|never

Fig. 3. An example model of a research meeting

exists a person who fits the description of Pj, there should be a reward, and if there
doesn’t there should be a penalty. If there are multiple people, we need to choose the
most appropraite one to fill the role.

To understand how this works, it is constructive to consider a full probabilistic anal-
ysis of the probability of model M; given instance I;:

P(Mi|I) = P(M1|(3P1) A) P((3P1)[1)
+P(My|(=3P1) A L) P((=3P1)|11)
= P(M:1|(3P1))P((3P)| 1)
+P(Mi[(=3P))P((=3P1)| 1)

where 3P; is shorthand for there exists a P, that matches the description of P; in Fig-
ure 3. The model gives the qualitative value P(M;|(3P;)). To compute the qualitative
values of P((3P;)|I1) we find the best match of P; to the values of organized_by in I;.

Taking the qualitative version of this formula, we replace multiplication by addition
and the addition by minimum in the kappa calculus or maximum in our system. The
works if we expect (3P;) to be true (the frequency of organized_by in M is always or
usually) and we find that we have positive support for (3P,).

Unfortunately, the other cases are not as straightforward. We cannot readily compute
k((=3Py)|I,) as if (3P;) has no surprise, then its negation has some surprise, but we
don’t know how much, and if (3P;) has some surprise, then its negation has no surprise.
We have chosen a simple scheme that gives intuitive results, as follows.

XII

If the model specifies we are surprised that (3P;) (the frequency is “rarely”) and
we are not surprised that it true in the instance (i.e., (3P;)|I; is positive), we get the
surprise of the rarely (the rarely-present reward).

If the qualitative probability of (3P;) in I; is negative, we give the appropriate
always-absent, usually-absent, .. .never-absent reward.

For example, if the instance had multiple organisers, we need to determine which
one best fulfils the role specified in the model. In terms of the kappa calculus, the
distribution over which instance fulfils the role becomes a minimisation of surprised
(maximisation of scores). We do this by choosing the one with the highest score. Then
we consider the model frequency and how surprised we are than an organiser of the
appropriate type exists.

6 Conclusion

This paper has grown out of a project to build knowledge-based decision tools in vari-
ous domains such as minerals exploration, geological hazards (landslides, earthquakes),
land-use planning. We needed qualitative reasoning and rich ontologies. We don’t have
the probabilistic knowledge or the utilities to do full decision theory, but have developed
a system that uses a small but natural set of qualitative probabilities that can integrate
with the ontologies being developed and with the sort of knowledge about instances
and models that can be obtained. This paper outlined how we are handling cases where
a functional relation has qualitative probabilistic constraints on what values it can take
(some are more surprising than others). We have made some pragmatic choices that
seem to work in practice, but there is much more theoretical and empirical work that
needs to be carried out.

Acknowledgements

Thanks to Erica Huang for valuable feedback and comments on this paper.

References

1. Smyth, C., Poole, D.: Qualitative probabilistic matching with hierarchical descriptions. In:
KR-04, Whistler, BC, Canada (2004)

2. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview. W3C Recom-
mendation 10 February 2004, W3C (2004)

3. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In:
Proc. 14th National Conference on Artificial Intelligence, Providence, RI (1997) 390-397

4. Spohn, W.: A general non-probabilistic theory of inductive reasoning. In: Proc. Fourth Work-
shop on Uncertainty in Artificial Intelligence. (1988) 315-322

5. Pearl, J.: Probabilistic semantics for nonmonotonic reasoning: A survey. In Brachman, R.J.,
Levesque, H.J., Reiter, R., eds.: Proc. First International Conf. on Principles of Knowledge
Representation and Reasoning, Toronto (1989) 505-516

6. Darwiche, A., Goldszmidt, M.: On the relation between kappa calculus and probabilistic
reasoning. In: Proc. Tenth Conf. on Uncertainty in Artificial Intelligence (UAI-94). (1994)
145-153

