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ABSTRACT2

The aim of statistical relational learning is to learn statistical models from relational or graph-3
structured data. Three main statistical relational learning paradigms include weighted rule4
learning, random walks on graphs, and tensor factorization. These paradigms have been mostly5
developed and studied in isolation for many years, with few works attempting at understanding6
the relationship among them or combining them. In this paper, we study the relationship between7
the path ranking algorithm (PRA), one of the most well-known relational learning methods in8
the graph random walk paradigm, and relational logistic regression (RLR), one of the recent9
developments in weighted rule learning. We provide a simple way to normalize relations and10
prove that relational logistic regression using normalized relations generalizes the path ranking11
algorithm. This result provides a better understanding of relational learning, especially for the12
weighted rule learning and graph random walk paradigms. It opens up the possibility of using the13
more flexible RLR rules within PRA models and even generalizing both by including normalized14
and unnormalized relations in the same model.15

Keywords: Statistical Relational Artificial Intelligence, Relational Learning, Weighted Rule Learning, Graph Random Walk, Relational16
Logistic Regression, Path Ranking Algorithm17

1 INTRODUCTION

Traditional machine learning algorithms learn mappings from a feature vector indicating categorical and18
numerical features to an output prediction of some form. Statistical relational learning (Getoor and Taskar,19
2007), or statistical relational AI (StarAI) (De Raedt et al., 2016), aims at probabilistic reasoning and20
learning when there are (possibly various types of) relationships among the objects. The relational models21
developed in StarAI community have been successfully applied to several applications such as knowledge22
graph completion (Lao et al., 2011; Nickel et al., 2012; Bordes et al., 2013; Pujara et al., 2013; Trouillon23
et al., 2016), entity resolution (Singla and Domingos, 2006; Bhattacharya and Getoor, 2007; Pujara and24
Getoor, 2016; Fatemi, 2017), tasks in scientific literature (Lao and Cohen, 2010b), stance classification25
(Sridhar et al., 2015; Ebrahimi et al., 2016), question answering (Khot et al., 2015; Dries et al., 2017), etc.26

During the past decade and more, three paradigms of statistical relational models have appeared. The27
first paradigm is the weighted rule learning where first-order rules are learned from data and a weight is28
assigned to each rule indicating a score for the rule. The main difference among these models is in the types29
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of rules they allow and their interpretation of the weights. The models in this paradigm include Problog30
(De Raedt et al., 2007), Markov logic (Domingos et al., 2008), probabilistic interaction logic (Hommersom31
and Lucas, 2011), probabilistic soft logic (Kimmig et al., 2012), and relational logistic regression (Kazemi32
et al., 2014). Recent33

The second paradigm is the random walk on graphs, where several random walks are performed on34
a graph each starting at a random node and probabilistically transitioning to neighbouring nodes. The35
probability of each node being the answer to a query is proportional to the probability of the random walks36
ending up at that node. The main difference among these models is in the way they walk on the graph37
and how they interpret obtained results from the walks. Examples of relational learning algorithms based38
on random walk on graphs include PageRank (Page et al., 1999), FactRank (Jain and Pantel, 2010), path39
ranking algorithm (Lao and Cohen, 2010b; Lao et al., 2011), and HeteRec (Yu et al., 2014).40

The third paradigm is the tensor factorization paradigm, where for each object and relation an embedding41
is learned. The probability of two objects participating in a relation is a simple function of the objects’42
and relation’s embeddings (e.g., the sum of the element-wise product of the three embeddings). The main43
difference among these models is in the type of embeddings and the function they use. Examples of models44
in this paradigm include YAGO (Nickel et al., 2012), TransE (Bordes et al., 2013), and ComplEx (Trouillon45
et al., 2016).46

The models in each paradigm have their own advantages and disadvantages. Kimmig et al. (2015)47
survey the models based on weighted rule learning. Nickel et al. (2016) survey models in all paradigms48
for knowledge graph completion. Kazemi et al. (2017) compare several models in these paradigms for49
relational aggregation. None of these surveys, however, aims at understanding the relationship among these50
paradigms. In fact, these paradigms have been mostly developed and studied in isolation with few works51
aiming at understanding the relationship among them or combining them (Riedel et al., 2013; Nickel et al.,52
2014; Lin et al., 2015).53

With several relational paradigms/models developed during the past decade and more, understanding54
the relationship among them and pruning the ones that either do not work well or are subsets of the other55
models is crucial. In this paper, we study the relationship between two relational learning paradigms: graph56
random walk and weighted rule learning. In particular, we study the relationship among path ranking57
algorithm (PRA) (Lao and Cohen, 2010b) and relational logistic regression (RLR) (Kazemi et al., 2014).58
The former is one of the most well-known relational learning tools in graph random walk paradigm, and59
the latter is one of the recent developments in weighted rule learning paradigm. By imposing restrictions60
on the rules that can be included in models, we identify a subset of RLR models that we call RC-RLR.61
Then we provide a simple way to normalize relations and prove that PRA models correspond to RC-RLR62
models using normalized relations. Other strategies for walking randomly on the graph (e.g., data-driven63
path finding (Lao et al., 2011)) can then be viewed as structure learning methods for RC-RLR. Our result64
can be extended to several other weighted rule learning and graph random walk models.65

The relationship between weighted rules and graph random walks has not been discovered before. For66
instance, Nickel et al. (2016) describe them as two separate classes of models for learning from relational67
data in their survey. Lao et al. (2011) compare their instance of PRA to a model based on weighted rules68
empirically, reporting their PRA model outperforms the weighted rule model, but not realizing that their69
PRA model could be a subset of the weighted rule model if they had normalized the relations.70
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Our result is beneficial for both graph random walk and weighted rule learning paradigms, as well as for71
researchers working on theory and applications of statistical relational learning. Below is a list of potential72
benefits our result provides:73

• It provides a clearer intuition and understanding on two relational learning paradigms thus facilitating74
further improvements of both.75

• It opens up the possibility of using the more flexible RLR rules within PRA models.76

• It opens up the possibility of generalizing both PRA and RLR models by using normalized and77
unnormalized relations in the same model.78

• It sheds light on the shortcomings of graph random walk algorithms and points out potential ways to79
improve them.80

• One of the claimed advantages of models based on weighted rule learning compared to other relational81
models is that they can be easily explained to a broad range of people (Nickel et al., 2016). Our result82
improves the explainability of models learned through graph random walk, by providing a weighted83
rule interpretation for them.84

• It identifies a sub-class of weighted rules that can be evaluated efficiently and have a high modelling85
power as they have been successfully applied to several applications. The evaluation of these weighted86
rules can be even further improved using sampling techniques developed within graph random walk87
community (e.g., see Fogaras et al. (2005); Lao and Cohen (2010a); Lao et al. (2011)). Several structure88
learning algorithms (corresponding to random walk strategies) have been already developed for this89
sub-class.90

• It facilitates leveraging new insights and techniques developed within each paradigm (e.g., weighted91
rule models that leverage deep learning techniques (Šourek et al., 2015; Kazemi and Poole, 2018), or92
reinforcement learning based approaches to graph walk (Das et al., 2017)) to the other paradigm.93

• For those interested in the applications of relation learning, our result facilitates decision making on94
selecting the paradigm or the relational model to be used in their application.95

2 BACKGROUND AND NOTATIONS

In this section, first we define some basic terminology. Then we introduce a running example which will96
be used throughout the paper. Then we describe relational logistic regression and path ranking algorithm97
for relational learning. While semantically identical, our descriptions of these two models may be slightly98
different from the descriptions in the original articles as we aim at describing the two algorithms in a way99
that simplifies our proofs.100

2.1 Terminologies101

Throughout the paper, we assume True is represented by 1 and False is represented by 0.102

A population is a finite set of objects (or individuals). A logical variable (logvar) is typed with a103
population. We represent logvars with lower-case letters. The population associated with a logvar x is ∆x.104
The cardinality of ∆x is |∆x|. For every object, we assume there exists a unique constant denoting that105
object. A lower-case letter in bold represents a tuple of logvars and an upper-case letter in bold represents106
a tuple of constants. An atom is of the form V(t1, . . . , tk) where V is a functor and each ti is a logvar or107
a constant. When range(V) ∈ {0, 1}, V is a predicate. A unary atom contains exactly one logvar and a108
binary atom contains exactly two logvars. We write a substitution as θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉}109
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Figure 1. (a) A relation showing citations among papers (papers on the Y axis cite papers on the X axis),
(b) The relation in part (a) after row-wise count normalization.

where each xi is a different logvar and each ti is a logvar or a constant in ∆xi . A grounding of an atom110
V(x1, . . . , xk) is a substitution θ = {〈x1, . . . , xk〉/〈X1, . . . , Xk〉} mapping each of its logvars xi to an111
object in ∆xi . Given a set A of atoms, we denote by G(A) the set of all possible groundings for the atoms112
in A. A value assignment for a set of groundings G(A) maps each grounding V(X) ∈ G(A) to a value in113
range(V).114

A literal is an atom or its negation. A formula ϕ is a literal, a disjunction ϕ1 ∨ ϕ2 of formulae or a115
conjunction ϕ1 ∧ ϕ2 of formulae. Our formulae correspond to open formulae in negation normal form in116
logic. An instance of a formula ϕ is obtained by replacing each logvar x in ϕ by one of the objects in ∆x.117
Applying a substitution θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉} on a formula ϕ (written as ϕθ) replaces each xi118
in ϕ with ti. A weighted formula (WF) is a pair 〈w,ϕ〉 where w is a weight and ϕ is a formula.119

A binary predicate S(x, y) can be viewed as a function whose domain is ∆x and whose range is 2∆y :120
each X ∈ ∆x is mapped to {Y : S(X, Y )}. Following Lao and Cohen (2010b), we consider S−1 as the121
inverse of S whose domain is ∆y and whose range is 2∆x , such that S−1(x, y) holds iff S(y, x) holds. A122

path relation PR is of the form x0
R1−→ x1

R2−→ . . .
Rl−→ xl where R1, R2, . . . , Rl are predicates, x0, . . . , xl123

are different logvars, domain(Ri) = ∆xi−1 and range(Ri) = ∆xi . We define domain(PR) = ∆x0124
and range(PR) = ∆xl . Applying a substitution θ = {〈x1, . . . , xk〉/〈t1, . . . , tk〉} on a path relation PR125
(written as PRθ) replaces each xi in PR with ti. A weighted path relation (WPR) is a pair 〈w,PR〉126
where w is a weight and PR is a path relation.127

2.2 Running Example128

As a running example, we use the reference recommendation problem: finding relevant citations for a new129
paper. We consider three populations: the population of new papers for which relevant citations are to be130
found, the population of existing papers whose citations are known, and the population of publication years.131
The atoms that will be used for this problem throughout the paper are the following. WillCite(q, p) is the132
atom to be predicted and indicates whether a query/new paper q will cite an existing paper p. Cited(p1, p2)133
shows whether or not an existing paper p1 has cited another existing paper p2. PubIn(p, y) shows that p has134
been published in year y. ImBef(y1, y2) indicates that y2 is the year immediately before y1. The reference135
recommendation problem can be viewed as follows: given a query paper Q, find a subset of existing papers136
that Q will cite (i.e. find any paper P such that WillCite(Q,P ) holds).137
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2.3 Relational Logistic Regression138

Relational logistic regression (Kazemi et al., 2014) defines conditional probabilities based on weighted139
rules. It can be viewed as the directed analogue of logistic regression, and as the directed analogue of140
Markov logic (Domingos et al., 2008).141

Let V(x) be an atom whose probability depends on a set A of atoms, ψ be a set of WFs containing only142
atoms from A, Î be a value assignment for the groundings in G(A), X be an assignment of objects to x,143
and {x/X} be a substitution mapping logvars x to objects X.144

Relational logistic regression (RLR) defines the probability of V(X) given Î as follows:

Probψ(V(X) = True | Î) = σ
( ∑
〈w,ϕ〉∈ψ

w ∗ η(ϕ{x/X}, Î)
)

(1)

where η(ϕ{x/X}, Î) is the number of instances of ϕ{x/X} that are True with respect to Î and σ is the145
sigmoid function. RLR makes the closed-world assumption: any ground atom that has not been observed146
to be True is False. Note that η(True, Î) = 1.147

Following Kazemi et al. (2014) and Fatemi et al. (2016), we assume that formulae in WFs have no148
disjunction and replace conjunction with multiplication. Then atoms whose functors have a continuous149
range can be also allowed in formulae. For instance if a value assignment maps R(X) to 1, S(X) to 0.9150
and T(X) to 0.3, then the formula R(X) ∗ S(X) ∗ T(X) evaluates to 1 ∗ 0.9 ∗ 0.3 = 0.27.151

EXAMPLE 1. An RLR model may use the following WFs to define the conditional probability of152
WillCite(q, p) in our running example:153

WF0 : 〈w0,True〉
154

WF1 :
〈
w1,PubIn(q, y) ∗ ImBef(y, y′) ∗ PubIn(p, y′)

〉
155

WF2 :
〈
w2,PubIn(q, y) ∗ PubIn(p′, y) ∗ Cited(p′, p)

〉
156

WF3 : 〈w3,Cited(p1, p2) ∗ Cited(p2, p)〉

WF0 is a bias. WF1 considers existing papers that have been published a year before the query paper. A157
positive weight for this WF indicates that papers published a year before the query paper are more likely to158
be cited. WF2 considers existing papers cited by the other papers published in the same year as the query159
paper. A positive weight for this WF indicates that as the number of times a paper has been cited by the160
other papers published in the same year as the query paper grows, the chances of the query paper citing161
that paper increases. WF3 considers existing papers that have been cited by other papers that have been162
themselves cited by other papers. Note that the score of the last WF only depends on the paper being cited,163
not the paper citing.164

Consider the citations among existing papers in Fig. 1(a) and let the publication year for all the six165
papers be 2017. Suppose we have a query paper Q which is to be published in 2017 and we want to find166
the probability of WillCite(Q,Paper2) according to the WFs above. Applying the substitution {〈q, p〉/167
〈Q,Paper2〉} to the above four WFs gives the following four WFs respectively:168

WF0 : 〈w0,True〉
169

WF1 :
〈
w1,PubIn(Q, y) ∗ ImBef(y, y′) ∗ PubIn(Paper2, y

′)
〉
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WF2 :
〈
w2,PubIn(Q, y) ∗ PubIn(p′, y) ∗ Cited(p′, Paper2)

〉
170

WF3 : 〈w3,Cited(p1, p2) ∗ Cited(p2, Paper2)〉

Then we evaluate each WF. The first one evaluates to w0. The second evaluates to 0 as Q is being171
published in 2017 and Paper2 has also been published in 2017. The third WF evaluates to w2 ∗ 2 as there172
are 2 papers that have been published in the same year as Q and cite Paper2. And the last WF evaluates173
to w3 ∗ 4 as Paper5 and Paper6 (that cite Paper2) are each cited by two other papers. Therefore, the174
conditional probability of WillCite(Q,Paper2) is as follows:175

σ(w0 + w2 ∗ 2 + w3 ∗ 4)

2.4 Path Ranking Algorithm176

Let V(s, e) be a target binary predicate, i.e. for a query object S ∈ ∆s, we would like to find the177
probability of any E ∈ e having the relation V with S. Path ranking algorithm (PRA) (Lao and Cohen,178
2010b) defines this probability using a set of WPRs Ψ. The first logvar of each path relation in Ψ is either s179
or a logvar other than s and e, the last logvar is always e, and the middle logvars are neither s nor e.180

In PRA, each path relation PR = x0
R1−→ x1

R2−→ . . .
Rl−→ e defines a distribution over the objects in181

∆e. This distribution corresponds to the probability of following PR and landing at each of the objects182
in ∆e, and is computed as follows. Firstly, a uniform distribution D0 is considered on the objects in ∆x0 ,183
corresponding to the probability of landing at each of these objects if the object is selected randomly. For184
instance if there are α objects in ∆x0 , D0 for all objects is 1

α . Then, the distribution D1 over the objects185
in ∆x1 is calculated by marginalizing over the variables in D0 and following a random step on R1. For186
instance for an object X1 ∈ ∆x1 , assume R1(x0, X1) holds only for two objects X0 and X ′0 in ∆x0 . Also187
assume X0 and X ′0 have the R1 relation with β and γ objects in x1 respectively. Then the probability of188
landing at X1 is 1

α ∗
1
β + 1

α ∗
1
γ . The following distributions D2, . . . , Dl can be computed similarly. Dl189

gives the probability of landing at any object in ∆e.190

Let θ = {〈s, e〉/〈S,E〉}. In order to find Prob(V(S,E)), for each path relation PR ∈ Ψ, PRA calculates191
the probability of landing at E according to PRθ (denoted by h(PRθ)), and calculates Prob(V(S,E)) by192
taking the sigmoid of the weighted sum of these probabilities as follows:193

Prob(V(S,E)) = σ(
∑

〈w,PR〉∈Ψ

w · h(PRθ)) (2)

Algorithm 1 shows a recursive algorithm for calculating h(PR) for a path relation PR. The first194
if statement specifies that the walk starts randomly at any object in ∆x0 . uniform(∆x0) indicates a195
uniform probability over the objects in ∆x0 . This is the termination criterion of the recursion. When196

PR = x0
R1−→ x1

R2−→ . . .
Rl−→ xl is not empty (l 6= 0), first the probability of landing at any object E′197

in the range of PR′ = x0
R1−→ x1

R2−→ . . .
Rl−1−−−→ xl−1 is calculated using a recursive call to h(PR′) and198

stored in pLandl−1. The probability of landing at any object E in range of PR by randomly walking199
on PR can then be calculated as the sum of the probabilities of landing at each object E′ by randomly200
walking on PR′ multiplied by the probability of reaching E from E′ by a random walk according to the201
predicate Rl. The two nested for loops calculate the probability of landing at any object E ∈ range(PR)202
according to Rl. Rl(E′, E) indicates whether there is a link from E′ to E (otherwise the probability of203
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Algorithm 1 h(PR)

Input: Relation path PR = x0
R1−→ x1

R2−→ . . .
Rl−→ xl

Output: Probability of landing at any object in ∆xl when starting randomly at any object in ∆x0 and
walking on PR.

1: if l = 0 then
2: return uniform(∆x0)

3: PR′ = x0
R1−→ x1

R2−→ . . .
Rl−1−−−→ xl−1

4: pLandl−1 = h(PR′)
5: for E ∈ range(PR) do
6: pLandl(E) = 0
7: for E′ ∈ range(PR′) do
8: CRl

(E′) = #E ∈ range(PR) s.t. Rl(E′, E) = 1
9: for E ∈ range(PR) do

10: pWalk(E′, E) = Rl(E
′,E)

CRl
(E′)

11: pLandl(E) += pLandl−1(E′) ∗ pWalk(E′, E)
12: return pLandl

transitioning from E′ to E according to Rl is 0) and CRl
is a normalization constant indicating the number204

of possible transitions from E′ according to Rl. pWalk(E′, E) indicates the probability of walking from205
E′ to E if one of the objects connected to E′ through Rl is selected uniformly at random, which equals206
Rl(E

′,E)
CRl

. pLandl stores the probability of landing at any object E in the range of (PR) following PR, and207

is returned as the output of the function.208

EXAMPLE 2. A PRA model may use the following WPRs to define the conditional probability of209
WillCite(q, p) in our running example:210

WPR0 : 〈w0, p〉
211

WPR1 :

〈
w1, q

PubIn−−−→ y
ImBef−−−→ y′

PubIn−1−−−−−→ p

〉
212

WPR2 :

〈
w2, q

PubIn−−−→ y
PubIn−1−−−−−→ p′

Cited−−−→ p

〉
213

WPR3 :
〈
w3, p1

Cited−−−→ p2
Cited−−−→ p

〉
WPR0 is a bias, WPR1 considers the papers published a year before the query paper, WPR2 considers214

papers cited by other papers published in the same year as the query paper, and WPR3 mimics PageRank215
algorithm for finding important papers in terms of citations (cf. Lao and Cohen (2010b) for more detail).216
Consider the citations among existing papers in Fig. 1(a) and let the publication year for all the six papers217
be 2017. Suppose we have a query paper Q which is to be published in 2017 and we want to find the218
probability of WillCite(Q,Paper2) according to the PRA model above. Applying the substitution {〈q, p〉/219
〈Q,Paper2〉} to the above WPRs gives the following WPRs respectively:220

WPR0 : 〈w0, Paper2〉
221

WPR1 :

〈
w1, Q

PubIn−−−→ y
ImBef−−−→ y′

PubIn−1−−−−−→ Paper2

〉
Frontiers 7
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WPR2 :

〈
w2, Q

PubIn−−−→ y
PubIn−1−−−−−→ p′

Cited−−−→ Paper2

〉
222

WPR3 :
〈
w3, p1

Cited−−−→ p2
Cited−−−→ Paper2

〉
WPR0 evaluates to w0. WPR1 evaluates to 0. WPR2 evaluates to w2∗(1

6 ∗
1
4 + 1

6 ∗
1
2) = w2∗0.125 as for223

the path y PubIn−1−−−−−→ p′ there is 1
6 probability for randomly walking to either Paper5 or Paper6 and then there224

is 1
4 probability to walk randomly from Paper5 to Paper2 and 1

2 probability to walk randomly from Paper6225
to Paper2 according to Cited relation. WPR3 evaluates to w3∗ 1

6 ∗(
1
2 ∗

1
4 + 1

3 ∗(
1
4 + 1

2)+ 1
4 ∗

1
2) ≈ w3∗0.083.226

The 1
6 outside parenthesis is the probability of randomly starting at any paper, 1

2 ∗
1
4 is the probability227

of transitioning from Paper3 to Paper5 and then to Paper2, and so forth. Therefore, the conditional228
probability of WillCite(Q,Paper2) is as follows:229

σ(w0 + w2 ∗ 0.125 + w3 ∗ 0.083)

3 RLR WITH NORMALIZED RELATIONS GENERALIZES PRA

In order to prove that RLR with normalized relations generalizes PRA, we first define relation chains and230
describe some of their properties.231

3.1 Relations Chain232

DEFINITION 1. We define a relations chain as a list of binary atoms V1(x0, x1), . . . ,Vm(xm−1, xm)233
such that for each Vi and Vi+1, the second logvar of Vi is the same as the first logvar of Vi+1, x0, . . . , xm234
are different logvars, and Vi and Vj can be the same or different predicates.235

EXAMPLE 3. V1(x, y),V2(y, z) is a relations chain, and V1(x, y),V2(z, y) and V1(x, y),V2(y, z),V3(z, x)236
are not relations chains.237

DEFINITION 2. A first-order formula corresponds to a relations chain if all its literals are binary238
predicates and non-negated, and there exists an ordering of the literals that is a relations chain.239

EXAMPLE 4. The first-order formula V1(x1, x2) ∗ V2(x3, x1) corresponds to a relations chain as the240
order V2(x3, x1), V1(x1, x2) is a relations chain.241

It follows from RLR definition that re-ordering the literals in each of its WFs does not change the242
distribution. For any WF whose formula corresponds to a relations chain, we assume hereafter that its243
literals have been re-ordered to match the order of the corresponding relations chain.244

DEFINITION 3. Let V(x, y) be a target atom. Relations chain RLR (RC-RLR) is a subset of RLR for245
defining a conditional probability distribution for V(x, y) where:246

• formulae of WFs correspond to relations chains,247

• for each WF, the second logvar of the last atom is y,248

• x may only appear as the first logvar of the first atom,249

• y may only appear as the second logvar of the last atom.250

For RLR models, in order to evaluate a formula, one may have nested loops over logvars of the formula251
that do not appear in the target atom, or conjoin all literals one by one and then count. WFs of RC-RLR,252
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Algorithm 2 Eval(ϕ)

Input: Formula ϕ = R1(x0, x1) ∗ R2(x1, x2) ∗ · · · ∗ Rl(xl−1, xl).
Output: Evaluation of ϕ.

1: if l = 0 then
2: return ones(|∆x0 |)
3: ϕ′ = R1(x0, x1) ∗ R2(x1, x2) ∗ · · · ∗ Rl−1(xl−2, xl−1)
4: evall−1 = Eval(ϕ′)
5: for E ∈ ∆xl do
6: evall(E) = 0
7: for E′ ∈ ∆xl−1 do
8: for E ∈ ∆xl do
9: canWalk(E′, E) = Rl(E

′, E)
10: evall(E) += evall−1(E′) ∗ canWalk(E′, E)
11: return evall

however, can be evaluated in a special way. In order to evaluate a formula in RC-RLR, starting from the253
end (or beginning), the effect of each literal can be calculated and then the literal can be removed from the254
formula. Algorithm 2 indicates how a formula corresponding to a relations chain can be evaluated. This255
evaluation grows with the product of the number of literals in the formula and the number of observed data256
which makes it highly scalable.257

When l = 0, the formula corresponds to True and evaluates to 1 for any X0 ∈ x0. Therefore, in258
this case the algorithm returns a vector of ones of size |∆x0 |. Otherwise, the algorithm first evaluates259
ϕ′ = R1(x0, x1) ∗ R2(x1, x2) ∗ · · · ∗ Rl−1(xl−2, xl−1) using a recursive call to the Eval function. The260
resulting vector is stored in evall−1 such that for aE′ ∈ ∆xl−1 , evall−1[E′] indicates the result of evaluating261
ϕ′ = R1(x0, x1)∗R2(x1, x2)∗ · · · ∗Rl−1(xl−2, E

′). Then in order to evaluate ϕ for some E ∈ ∆xl , we sum262
evall−1[E′]s for any E′ ∈ ∆xl−1 such that Rl(E′, E) holds. canWalk in the algorithm is 1 if Rl(E′, E)263
holds and 0 otherwise, and evall(E) += evall−1(E′) ∗ canWalk(E′, E) adds evall−1[E′] to evall[E] if264
canWalk is 1.265

PROPOSITION 1. Algorithm 2 is correct.266

PROOF. Let ϕ = R1(x0, x1) ∗R2(x1, x2) ∗ · · · ∗Rl(xl−1, xl) ∗ evall(xl) (evall(xl) can be initialized to a267
vector of ones at the beginning of the algorithm). Since by definition of relations chain xl only appears in Rl268
and evall(xl), for any Xl−1 ∈ ∆xl−1 we can evaluate evall−1(Xl−1) =

∑
Xl∈∆xl

Rl(Xl−1, Xl) ∗ evall(Xl)269

separately and replace Rl(xl−1, xl)∗evall(xl) with evall−1(xl−1) thus getting ϕ′ = R1(x0, x1)∗R2(x1, x2)∗270
· · · ∗ Rl−1(xl−2, xl−1) ∗ evall−1(xl−1). The same procedure can compute ϕ′.271

3.2 From PRA to Relation Chains272

PROPOSITION 2. A path relation corresponds to a relations chain.273

PROOF. Let PR = x0
R1−→ x1

R2−→ . . .
Rl−→ xl be a path relation. We create a relation atom Ri(xi−1, xi)274

for any sub-path xi−1
Ri−→ xi resulting in relations R1(x0, x1), R2(x1, x2), . . . , Rl(xl−1, xl). By definition275

of path relations, the second logvar of any relation Ri is the same as the first logvar of the next relation.276
Since by definition the logvars in a path relation are different, the second logvar of any relation Ri is only277
equivalent to the first logvar of the next relation.278
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EXAMPLE 5. Consider the path relation q PubIn−−−→ y
PubIn−1−−−−−→ p′

Cited−−−→ p from Example 2. This path279
relation corresponds to a relations chain with atoms PubIn(q, y),PubIn−1(y, p′) and Cited(p′, p).280

3.3 Row-Wise Count Normalization281

Having a binary predicate V(x, y) and a set of pairs of objects for which V holds, one may consider the282
importance of these pairs to be different. For instance, if a paper has cited only 20 papers, the importance of283
these citations may be more than the importance of citations for a paper citing 100 papers. One way to take284
the importance of the pairs into account is to normalize the relations. A simple way to normalize a relation285
is to normalize it by row-wise counts. For some X ∈ ∆x, let α represent the number of Y ′ ∈ ∆y such286
that V(X, Y ′) holds. When α 6= 0, instead of considering V(X, Y ) = 1 for a pair 〈X, Y 〉, we normalize287
it to V(X, Y ) = 1

α . After this normalization, the citations of a paper with 20 citations are 5 times more288
important than the citations of a paper with 100 citations overall. Note that when α = 0, we do not change289
any values. We refer to this normalization method as row-wise count (RWC) normalization. Fig. 1(b) show290
the result of applying RWC normalization to the relation in Fig. 1(a). Note that there may be several other291
ways to normalize a relation; here we introduced RWC because, as we will see in the upcoming sections, it292
is the normalization method used in PRA.293

3.4 Main Theorem294

THEOREM 1. Any PRA model is equivalent to an RC-RLR model with RWC normalization.295

PROOF. Let Ψ = {〈w0,PR0〉 , . . . , 〈wk,PRk〉} represent a set of WPRs used by a PRA model. We296
proved in Proposition 2 that any path relation PRi in Ψ corresponds to a relations chain. By multiplying297
the relations in the relation chain, one gets a formula ϕi for each PRi and this formula is by construction298
guaranteed to correspond to a relations chain. We construct an RC-RLR model whose WFs are ψ =299
{〈v0, ϕ0〉 , . . . , 〈vk, ϕk〉}. Given that the relations (and their order) used in PRi and ϕi are the same for any300
i, the only differences between the evaluation of PRi and ϕi according to Algorithm 1 and Algorithm 2301
are: 1- Algorithm 1 divides Rl(E′, E) by CRl

(E′) while Algorithm 2 does not, and 2- in the termination302
condition, Algorithm 1 returns a uniform distribution over objects in ∆x0 while Algorithm 2 returns a303
vector of ones of size |∆x0|. Dividing Rl(E′, E) by CRl

(E′) is equivalent to RWC normalization and the304
difference in the constant value of the function in the termination condition gets absorbed in the weights305
that are multiplied to each path relation or formula. Therefore, the RC-RLR model with WFs ψ is identical306
to the PRA model with WPRs Ψ after normalizing the relations using RWC.307

EXAMPLE 6. Consider the PRA model in Example 2. For the four WPRs in that model, we create the308
following corresponding WFs for an RC-RLR model by multiplying the relations in the path relations:309

〈v0,True〉
310 〈

v1,PubIn(q, y1) ∗ ImBef(y1, y2) ∗ PubIn−1(y2, p)
〉

311 〈
v2,PubIn(q, y1) ∗ PubIn−1(y1, p

′) ∗ Cited(y1, p)
〉

312
〈v3,Cited(p1, p2) ∗ Cited(p2, p)〉

Consider computing WillCite(Q,Paper2) according to an RC-RLR model with the above WFs, where313
all existing papers and Q have been published in 2017 and the relations have been normalized using RWC314
normalization (e.g., as in Fig. 1(b) for relation Cited). Then the first formula evaluates to v0. The second315
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WF evaluates to 0. The third WF evaluates to v2 ∗ 1
6 ∗ (1

4 + 1
2) as the values in relation PubIn−1 have been316

normalized to 1
6 for year 2017 and the values in relation Cited have been normalized to 1

4 and 1
2 for Paper5317

and Paper6 as in Fig. 1(b). The last WF evaluates to v3 ∗ (1
2 ∗

1
4 + 1

3 ∗ (1
4 + 1

2) + 1
4 ∗

1
2). The 1

2 ∗
1
4 comes318

from Cited(Paper3, Paper5)∗Cited(Paper5, Paper2), 1
3 ∗ (1

4 + 1
2) comes from Cited(Paper4, Paper5)∗319

Cited(Paper5, Paper2) and Cited(Paper4, Paper6) ∗ Cited(Paper6, Paper2) and 1
4 ∗

1
2 comes from320

Cited(Paper5, Paper6) ∗ Cited(Paper6, Paper2). As it can be viewed from Example 2, after creating the321
equivalent RC-RLR model and normalizing the relations using RWC normalization, all WPRs evaluate to322
the same value as their corresponding WF, except the last WF. The 1

6 before the parenthesis in Example 2323
is missing when evaluating the last WF. This 1

6 , however, is a constant independent of the query (it is the324
constant value of the uniform distribution in the if statement corresponding to the termination criteria in325
Algorithm 1). Assuming v3 = w3 ∗ 1

6 and all other vis are the same as wis, the conditional probability of326
Cited(Q,Paper2) according to the RC-RLR model above will be the same as the PRA model in Example 2.327

3.5 From Random Walk Strategies to Structure Learning328

The restrictions imposed on the formulae by path relations in PRA reduces the number of possible329
formulae to be considered in a model compared to RLR models. However, there may still be many possible330
path relations and considering all possible path relations for a PRA model may not be practical.331

Lao and Cohen (2010b) allow the random walk to follow any path, but restrict the maximum number of332
steps. In particular, they only allow for path relations whose length is less than some l. The value of l can333
be selected based on the number of objects, relations, available hardware, and the amount of time one can334
afford for learning/inference. This strategy automatically gives a (very simple) structure learning algorithm335
for RC-RLR by considering only formulae whose number of relations are less than l.336

Lao et al. (2011) follow a more sophisticated approach for limiting the number of path relations. Besides337
limiting the maximum length of the path relations to l, Lao et al. (2011) impose two more restrictions:338
for any path relation to be included, 1- the probability of reaching the target objects must be non-zero339
for at least a fraction α of the training query objects, and 2- it should at least retrieve one target object340
in the training set. During parameter learning, they impose a Laplacian prior on their weights to further341
reduce the number of path relations. In an experiment on knowledge completion for NELL (Carlson et al.,342
2010), they show that these two restrictions plus the Laplacian prior reduce the number of possible path343
relations by almost 99.6 and 99.99 percents when l = 3 and l = 4 respectively. Therefore, their random344
walk strategy is capable of taking more steps (i.e. selecting a larger value for l) and capture features that345
require longer chains of relations. This random walk strategy is called data-driven path finding.346

Both restrictions in data-driven path finding can be easily verified for RC-RLR formulae and the set of347
possible formulae can be restricted accordingly. Furthermore, during parameter learning, a Laplacian prior348
can be imposed on the weights of the weighted formulae. RC-RLR models learned in this way corresponds349
to PRA models learned using data-driven path finding. Therefore, data-driven path finding can be also350
considered as a structure learning algorithm for RC-RLR. With the same reasoning, several other random351
walk strategies can be considered as structure learning algorithms for RC-RLR, and vice versa. This allows352
for faster development of the two paradigms by leveraging ideas developed in each community in the other.353

4 PRA VS. RLR

An advantage of PRA models over RLR models is their efficiency: there is a smaller search space for WFs354
and all WFs can be evaluated efficiently. Such efficiency makes PRA scale to larger domains where models355
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based on weighted rule learning such as RLR often have scalability issues. It also allows PRA models to356
scale to and capture features that require longer chains of relations. However, the efficiency comes at the357
cost of losing modelling power. In the following subsections, we discuss such costs.358

4.1 Shortcomings of Relations Chains359

Since PRA models restrict themselves to relations chains of a certain type, they lose the chance to leverage360
many other WFs. As an example, in order to predict Cites(p1, p2) for the reference recommendation task,361
suppose we would like to recommend papers published a year before the target paper that have been cited362
by the papers published in the same year as the target paper. Such a feature requires the following formula:363
PubIn(p1, y) ∗Before(y, y′) ∗PubIn(p2, y

′) ∗Cites(p′, p2) ∗PubIn(p′, y). It is straightforward to verify that364
this formula cannot be included in RC-RLR (and consequently in PRA) as p2 (the second logvar of the365
target atom) is appearing twice in the formula, thus violating the last condition in Definition 3. While366
restricting the formulae to the ones that correspond to relations chain may speed up learning and reasoning,367
it reduces the space of features that can be included in a relational learning model, thus potentially368
decreasing accuracy.369

4.2 Non-binary Atoms370

One issue with PRA models is the difficulty in including unary atoms in such models. As an example,371
suppose in Example 2 we would like to treat conference papers and journal papers differently. For an372
RLR model, this can be easily done by including Conference(p) or Journal(p) as an extra atom in the373
formulae. For PRA, however, this cannot be done. The way unary atoms are currently handled in PRA374
models is through isA and isA−1 relations (Lao et al., 2011). For instance, a path relation may contain375

paper
isA−−→ type, but the only next predicate that can be applied to this path is isA−1 giving the other papers376

with the same type as the paper in the left of the arrow. This is, however, limiting and does not allow for,377
e.g., treating conference and journal papers differently.378

Atoms with more than two logvars are another issue for PRA models since they restrict their models to379
binary atoms. While any relation with more than two arguments can be converted into several binary atoms,380
the random walk strategies used for PRA models (and the probabilities for making these random steps)381
make it unclear how atoms with more than two logvars can be leveraged in PRA models.382

4.3 Continuous Atoms383

For any sub-path x R−→ y in a path relation of a PRA model, R typically has a range {0, 1}: for any384
object X ∈ ∆x, this sub-path gives the objects in ∆y participating in relation R with X . PRA models can385
be extended to handle some forms of continuous atoms. For instance for the reference recommendation386
problem, suppose we have an atom Sim(p, p′) indicating a measure of similarity between the titles of two387
papers. The higher the Sim(p, p′), the more similar the titles of the two papers. A sensible WF for an RLR388
model predicting Cites(p1, p2) may be Sim(p1, p

′) ∗Cites(p′, p2). In order to extend PRA models to be able389
to leverage such continuous atoms, one has to change line 8 in Algorithm 1 to sum the values of Rl(E′, E)390
instead of counting how many times the relation holds.391

For many types of continuous atoms, however, it is not straightforward to extend PRA models to leverage392
them. As an example, suppose we have an atom Temperature(r, d) showing the temperature of a region in393
a specific date. It is not clear how a random walk step can be made based on this atom as the temperature394
can, e.g., be positive or negative.395

This is a provisional file, not the final typeset article 12



Kazemi et al. Running Title

4.4 Relational Normalization396

Normalizing the relations is often ignored in models based on weighted rule learning. For the most part,397
this ignorance may be because several of these models cannot handle continuous atoms. Given that PRA is398
a special form of weighted rule learning models such as RLR with RWC normalization, not normalizing399
the relations may be the reason why in Lao et al. (2011)’s experiments, PRA outperforms the weighted rule400
learning method FOIL (Quinlan, 1990) for link prediction in NELL (Carlson et al., 2010).401

The type of normalization used in PRA (RWC) may not be the best option in many applications. As402
an example, suppose for the reference recommendation task we want to find papers similar to the query403
paper in terms of the words they use. Let Contains−1(w, p) show the relation for words in each paper. It404
is well-known in information retrieval that words do not have equal importances and a normalization of405
Contains−1(w, p) is necessary to take such importance into account. PRA models consider the importance406
of each word W as Score1(W ) = 1

f(W ) , where f(W ) is the number of papers containing the word W407
(see e.g., (Lao and Cohen, 2010b)). However, it has been well-known in information retrieval community408
for several decades, and information theoretically justified more than a decade ago (Robertson, 2004),409
that Score2(W ) = log(#papers

f(W ) ) provides a better importance score. Most TF-IDF (Salton and Buckley,410
1988) based information retrieval algorithms currently rely on Score2. It is straightforward to include411
the latter score in an RLR model: one only has to multiply the formulae using word information by412
Score2(W ), without normalizing the Contains−1(w, p) relation (see, e.g., (Fatemi, 2017)). However, it is413
not straightforward how such a score can be incorporated into PRA models as they do not include unary or414
continuous atoms.415

4.5 Evaluating Formulae416

Evaluating the formulae in models based on weighted rule learning is known to be expensive, especially417
for relations with lower sparsities and for longer formulae. In practice, approximations are typically used418
for scaling the evaluations. Since formulae in RC-RLR correspond to path relations, these formulae can be419
approximated efficiently using sampling techniques developed within graph random walk community such420
as fingerprinting (Fogaras et al., 2005; Lao and Cohen, 2010a), weighted particle filtering (Lao and Cohen,421
2010a), and low-variance sampling (Lao et al., 2011), without noticeably affecting the accuracy. Extending422
sampling ideas to other formulae is an interesting future direction.423

5 CONCLUSION

With abundance of relational and graph data, statistical relational learning has gained great amounts of424
attention. Three main relational learning paradigms have been developed during the past decade and more:425
weighted rule learning, graph random walk, and tensor factorization. These paradigms have been mostly426
developed and studied in isolation with few works aiming at understanding the relationship among them427
or combining them. In this paper, we studied the relationship between two relational learning paradigms:428
weighted rule learning and graph random walk. In particular, we studied the relationship between relational429
logistic regression (RLR), one of the recent developments in weighted rule learning paradigm, and path430
ranking algorithm (PRA), one of the most well-known algorithms in graph random walk paradigm. Our431
main contribution was to prove that PRA models correspond to a subset of RLR models after row-wise432
count normalization. We discussed the advantages this proof provides for both paradigms as well as for433
statistical relational AI community in general. Our result sheds light on several issues with both paradigms434
and possible ways to improve them.435
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