
Foundations of model construction in feature-based
semantic science

David Poole

Department of Computer Science,
University of British Columbia,

poole@cs.ubc.ca

Abstract. The aim of what semantic science is to have scientific ontologies, data,
and hypotheses represented and published in machine understandable forms that
enable predictions on new cases. There is much work on developing scientific
ontologies and representing scientific data in terms of these ontologies. The next
step is to publish hypotheses that can make (probabilistic) predictions on the pub-
lished data and can be used for prediction on new cases. The published data can be
used to evaluate hypotheses. To make a prediction in a particular case, hypothe-
ses are combined to form models. This paper considers feature-based semantic
science where the data and new cases are described in terms of features. A pre-
diction for a new case is made by building a model made up of hypotheses that fit
together, are consistent with the ontologies used, and are adequate for the case.
We give some desiderata for such models, and show how the construction of such
models is a form of abduction. We provide a definition for models that satisfies
these criteria and prove that it produces a coherent probability distribution over
the values of interest.

Introduction

If a knowledge-based system makes a prediction, it is reasonable for someone to ask:
what evidence is there for that prediction? The system should be able to provide such
evidence. If a knowledge-based system is to believe something, it should believe it
based on evidence, as not all beliefs are equally valid. The mechanism that has been
developed for constructing and judging knowledge is called science. Science determines
truth based on empirical evidence: what does all of the available evidence lead us to
conclude?

The semantic web (Berners-Lee et al., 2001) is an endeavor to make all of the
world’s knowledge accessible to computers. One of the central concerns of the seman-
tic web is how to trust the information given. Trust in the truth of some information,
or what Gil and Artz (2007) call content trust, has been cast in terms of social trust
relationships. Search engines such as Google base their ranking on measures such as
pagerank (Page et al., 1999) which essentially measure popularity, but these search en-
gines often return authoritative sites. If you are a scientist, popularity and appeal to
authority are not the basis for determining what is true.

We use to term semantic science (Poole et al., 2008) in an anaolgous way to the
semantic web, because the computer should understand the hypotheses and data which



form the foundation of science. Science is used as the basis for trust; we trust scientific
conclusions because they are based on the evidence available.

This paper is about one aspect of semantic science: selecting hypotheses and ap-
plying them to new cases. This is reminiscent of abduction (Poole, 1989; Kakas and
Denecker, 2002) as proposed by Peirce (Burch, 2008), although we take a probabilistic
view, where the predictions are all probabilistic. Note that abduction is usually used
for explaining observations, but it can also be used for prediction (Poole, 1989): to de-
termine whether to predict some proposition, we explain why it is (may be) true and
explain why it is (may be) false, and then consider which explanations would be more
surprising. Probabilistic inference can be cast in these terms (Poole, 1993a). Unlike
the normal definition of abduction (Kakas and Denecker, 2002), we treat abduction as
building a probabilistic explanation of observations.

Semantic Science Overview

The basic idea of semantic science is:

– Information is published using well defined ontologies (Smith, 2003b) to allow
semantic interoperability. The ontologies specify the shared vocabulary.

– Observational data is published (Fox et al., 2006; McGuinness et al., 2007) us-
ing the vocabulary specified in the ontologies. Part of this data includes metadata
about what the data is about and how it was generated. Data repositories include
the Community Data Portal (http://cdp.ucar.edu/) and the Virtual Solar-
Terrestrial Observatory (http://www.vsto.org).

– Scientists publish hypotheses that make predictions on data. These hypotheses make
reference to ontologies, so that they can interoperate with each other and with the
data. As part of each hypothesis is information about what data this hypothesis is
prepared to make predictions about. These predictions can be tested on the pub-
lished data.

– New data can be used to evaluate, and perhaps update, the hypotheses that make
predictions on this data. Predictions on new data can be used to judge the hypothe-
ses as well as find outliers in the data.

– The descriptions of competing hypotheses can be used to devise experiments that
will distinguish the hypotheses (see e.g., King et al., 2004).

– If someone wants to make a prediction for a new case (e.g., predicting the outcome
of a patient in a diagnostic setting, or predicting landslide susceptibility), multiple
hypotheses may need to be combined into a model and to be applied to this special
case. Note that the hypotheses are general in the sense that they can be applied to
multiple cases, but are typically very narrow in that they only make predictions in
narrow contexts. The models are constructed for the specific prediction.

– Given a prediction, a user will be able to find out what hypotheses were used for
the specific prediction, and then ask for what evidence there is for each hypothesis.
In this way, all information will be auditable.

– There is no central authority to vet as to what counts as a legitimate scientific hy-
pothesis. Each of us can choose to make decisions based on whichever criteria we



want. We will be able to judge hypotheses by their predictions on unseen data and
other criteria.

– We expect semantic science search engines to be developed. Given a hypothesis, a
search engine would be able to find data that can be used to evaluate or tune the
hypothesis. Given data, a search engine would be able to find the hypotheses that
make predictions on the data.
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Fig. 1. Role of Ontologies, Data, Hypotheses and Models

The relationship amongst ontologies, data, hypotheses and models is given in Figure
1. The data depend on the world and the ontologies. The hypotheses depend on the
ontologies, indirectly on the world (if a human is designing the hypotheses), and directly
on some of the data (as we would expect that the best hypotheses would be based on as
much data as possible). Given a new case, multiple hypotheses can be used to form a
model to make predictions about that case. These predictions can be used for decision
making. The ontologies, data sets and hypotheses evolve in time.

The term “science” is meant to be as broad as possible. We can have scientific hy-
potheses about any natural or artificial phenomenon. The scientific method is applicable
to any domain. We could have scientific hypotheses about traditional disciplines such
as earth sciences, physics, chemistry, biology, medicine and psychology but we would
also imagine hypotheses as diverse as predicting which companies will be most prof-
itable, predicting where the best parties are, predicting who will win football games, or
even predicting which celebrities are having affairs. The only criterion is that a scientific
hypothesis must put itself at risk by making predictions about observable phenomenon.



Semantic science has no prior prejudice about the source or the inspiration of hy-
potheses; as long as the hypotheses are prepared to make predictions about unseen data,
they can be included. We are not, a priori, excluding religion, astrology, or other areas
that make claim to the truth; if they are prepared to make predictions about what will
be observed, we can test how well their predictions fit the available data, and use their
predictions for new cases.

Semantic science is trying to be broad and bottom-up. It should serve to democra-
tize science in allowing not just the elite to create data and hypotheses. Like scientists
themselves, it should be skeptical of all of the information it is presented with.

We anticipate that the most useful hypotheses will make probabilistic predictions,
however hypotheses can make diverse forms of predictions, such as definitive predic-
tions, qualitative predictions, fuzzy predictions or probability intervals. Users of hy-
potheses can choose to adopt hypotheses based on whatever criteria they like, e.g.,
some combination of fit to the existing data and simplicity or prior plausibility. Users
can also choose to ignore hypotheses that don’t make the sort of predictions they like.

For the foreseeable future virtually all (useful) hypotheses will be a mix of human
generated and machine learned; humans define the structure and parameter space and
the machines optimizes these with respect to fit to data and learning biases. This adds
new challenges to machine learning: cope with multiple persistent heterogenous data
sets that are published with respect to formal ontologies. The hypotheses need to take
into account rich meta-data about observations.

Semantic science provides a mechanism for Bayesian inference, where we should
condition on all relevant information that was not part of building the model. A seman-
tic science search engine should allow us to find all of the relevant data on which to
condition.

The hypotheses here are meant to be general hypotheses that can be applied to new
cases. Hypotheses about a particular case (e.g., hypotheses about what is wrong with a
component for diagnosis) are carried out by the models. The hypotheses in this paper
are ones that can make predictions and be evaluated against multiple data sets.

To make this project manageable, we can define four levels of semantic science:

0. Deterministic semantic science where all of the hypotheses make definitive predic-
tions. This class includes both propositional and first-order hypotheses. This has
been studied under the umbrella of abductive logic programming (Poole, 1989;
Kakas and Denecker, 2002).

1. Feature-based semantic science, with non-deterministic1 predictions about feature
values of data. Learning feature-based representations is the most common form of
machine learning. Such hypotheses can be specified in terms of random variables
that represent the values of features. We assume that the set of possible feature
values are specified as part of the ontology.

2. Relational semantic science, where the predictions are about the properties of indi-
viduals and relationships among individuals. In this case, the values of properties
may be meaningless names of individuals; the structure of the relationships is used

1 Non-deterministic can mean many things. Here we consider just the case where there are prob-
abilistic predictions. But there are many alternatives, such as qualitative predictions, probabil-
ity ranges or fuzzy predictions.



to make predictions. This is what has been studied in inductive logic programming
(Muggleton and De Raedt, 1994) and statistical relational learning (Getoor and
Taskar, 2007; De Raedt et al., 2008).

3. First-order semantic science, where the aim is to make predictions about the exis-
tence of individuals or predictions about universally quantified statements. This is
more challenging as conditioning is not well-defined (Poole, 2007). We may not
know which individual in the world a hypothesis is making a prediction about, as
the hypothesis may refer to the existence of individual filling a role, but we may
not observe which individual fills the role.

In the rest of this paper, we consider the second of these where data and hypotheses
are described in terms of features. Features generalize propositions, as a proposition
can be seen as a Boolean feature. Features can also be seen as properties of a single
individual under consideration. There can also be global features that are not about any
individual. Treating features as properties allow for a correspondence with the work on
ontologies. We use the term attribute for a feature-value (or property-value) pair, for
example that a rock’s age is 50 million years is an attribute of the rock.

Formalizing Feature-based Semantic Science

In this section we give a simple formalization of feature-based semantic science. To
keep the description manageable, we ignore interventions, and only include observa-
tional data. We include a running example on diagnosis that is not meant to be realistic,
but is designed to highlight the issues.

Ontologies

In AI, an ontology (Smith, 2003b; Noy and Hafner, 1997; Gómez-Pérez et al., 2004) is
a specification of the meaning of vocabulary used by an information system. Ontologies
form the backbone of the Semantic Web (Berners-Lee et al., 2001). There has recently
been much work in standardizing ontologies, such as using the Web Ontology Language
OWL (Hitzler et al., 2009). Science is one of the areas where ontology development and
deployment is well under way (Smith et al., 2007).

Ontologies can be very complicated, as would be expected in a world where lan-
guage has evolved to be useful and new terminology is invented to describe what was
not easy to describe using previous terminology.

We have been advocating a structure for ontologies using what are called Aris-
totelian definitions (Smith, 2003a; Poole et al., 2009), based on the idea of Aristotle
(350 B.C.) that each class should be described in terms of a super-class (the genus)
and the attributes (the differentia) that differentiate this class from other subclasses of
the genus. Defining all classes in terms of attributes, as opposed to specifying subclass
relationships directly, simplifies reasoning as we only need to give the values of proper-
ties and the class structure logically follows. It is also a natural way to define concepts
in many cases. Simple Aristotelian definitions often give rise to complicated subclass
relationships, but simple subclass relationships give simple Aristotelian definitions.



For the rest of this paper, we will thus ignore classes, and consider only features
(conflating features and properties as we are only considering feature-based semantic
science). Properties (and so features) have domains; they are only defined in the context
where other properties have particular values. Properties are not defined when their
domain does not hold.

Properties:

Property Domain Range
IsPerson thing boolean
Age person integer
Sex person {male,female}
Coughs person boolean
HasLump person boolean
LumpShape lump {circular, oblong, irregular}
LumpLocn lump {leg,torso,arm,head}
CancLump lump boolean
LumpColour lump {red,pink,brown,. . .}
HasCancer person boolean
HasLungCancer personWithCancer boolean
OutcomeAtYear person {well,sick,dead}
TakenH53 person boolean

Classes:

Class Genus Differentia
person thing IsPerson=true
lump person HasLump=true
personWithCancer person HasCancer=true

Fig. 2. Properties and Classes For Running Example

Example 1. Figure 2 shows an ontology used in the running example. Here, thing is
the top-level class. This can be translated into OWL in a straightforward manner, for
example:

FunctionalDataProperty(HasLump)
DataPropertyDomain(HasLump person)
DataPropertyRange(HasLump xsd:boolean)
EquivalentClasses(lump

DataHasValue(HasLump true))
FunctionalDataProperty(CancLump)
DataPropertyDomain(CancLump lump)
DataPropertyRange(CancLump xsd:boolean)
ObjectPropertyDomain(LumpShape lump)
ObjectPropertyRange(LumpShape

ObjectOneOf(circular oblong irregular))



The ontology can also include axioms that specify that people with cancerous lumps
have cancer by definition:

SubClassOf(DataHasValue(CancLump true)
personWithCancer)

We will use the property PropertyDomain to mean OWL’s DataPropertyDomain
or Ob jectPropertyDomain.

We define a literal to be an assignment of a value to a feature. A proposition is
a formula made of literals and the standard Boolean connectives, with their standard
meaning. A conjunction of literals is a proposition that only includes the logical-and
connective (including the empty conjunction, true, and singleton literals). If c is a con-
junction of literals, let f eatures(c) be the set of features assigned in c.

With Aristotelean definitions, classes are represented as propositions that define
membership in the classes. We assume a top-level class thing that corresponds to the
proposition true.

We write Ontologies |= w to mean proposition w is entailed by the ontologies, for
example, in terms of the OWL 2 direct semantics (Motik et al., 2009) or the OWL 2
RDF semantics (Schneider, 2009). For this paper, we assume that the union of all of the
ontologies used is satisfiable.

Data

We assume that data about observations of the world are published referring to the
ontologies used. For the purpose of this paper2, assume a data set is made up of 〈c,O, t〉
triples where:

– c is a proposition that specifies the context in which the data was collected.
– O is a set of features that were observed. For this paper, we assume3 that the context

c implies the domain of each feature in O. That is, if for any o ∈ O:

Ontologies |= PropertyDomain(o,d)

then

Ontologies |= c→ d.

– t is a table on O which represents the actual observed values; that is, t is a set of
tuples, where each tuple maps each feature f ∈ O into a value in the range of f .

To predict such data, a hypothesis needs to predict the values of the observed variables
given the context.

2 We ignore other metadata. Metadata includes the provenance of the data (Bose and Frew,
2005), when and where it was collected, what sensors were used, what processing was done
on the data, all of which are important for making predictions on the data.

3 The alternative is to allow undefined values for those features for which the domain doesn’t
hold due to the value of other features.



Example 2. Suppose we have data about people who came into a doctor’s office. One
such data set could include:

< person,{Age,Sex,Coughs,HasLump},

Age Sex Coughs HasLump
23 male true true
. . . . . . . . . . . .

〉

We could also have data about those people with lumps:
< lump,
{LumpLocn,LumpShape,LumpColour,CancLump},

LumpLocn LumpShape LumpColour CancLump
leg oblong red f alse
. . . . . . . . . . . .

〉

We could also have data that was only collected for people who have cancer:
< personWithCancer,
{HasLungCancer,TakenH53,Age,OutcomeAtYear},

HasLungCancer TakenH53 Age OutcomeAtYear
true true 77 dead
. . . . . . . . . . . .

〉

Hypotheses

Each hypothesis makes predictions about some feature values.
We assume a hypothesis is made up of 〈c, I,O,P〉 tuples consisting of:

– a context c, which is a proposition that specifies when the hypothesis can be applied
– a set I of input features about which it does not make predictions
– a set O of output features about which it can make a prediction (as a function of the

input features)
– a program P that predicts a distribution over the output features for each combina-

tion of values for the input features.

We assume that the context implies the domains of all of the input and the output fea-
tures. The programs can be arbitrarily complex and use arbitrary computation to make
predictions

If h = 〈c, I,O,P〉, we say that c = context(h), I = inputs(h), O = out puts(h).
For example, the ideal gas law is a hypothesis that makes predictions about the

pressure P, volume V , number of particles n and the temperature in the context of a gas,
namely that PV ∝ nT . It makes predictions that can be judged against data. There are
alternative hypotheses that are more accurate for real gasses, e.g., when the pressure is
very high, or when the gas molecules are heterogeneous.

Hypotheses are not universally applicable. For example, the ideal gas law is not
applicable to rocks or to lung cancer; we can’t use a hypothesis about the prognosis of
people with cancer on rocks or gasses. Hypotheses have preconditions that specify what
they make predictions about. These preconditions are of three different sorts:



– Conditions which define when the hypothesis makes sense. When these conditions
are false, the hypothesis is nonsense. The conditions must imply the domains of the
features used in the hypothesis.

– Conditions which define the intended scope of the hypothesis. These conditions
specify what the hypothesis was designed to predict.

– Conditions which specify when the hypothesis will be used in a particular case.

For example, a hypothesis that makes predictions of the prognosis of patients with lung
cancer may be applicable for arbitrary people. In a particular model, it may only be used
for the patients with lung cancer who have not a eaten particular herb (H53, below), as
the model may use another hypothesis that makes predictions in that case.

One class of hypotheses that is of particular interest is the “null hypothesis”. There is
a null hypothesis for each feature4. This hypothesis says that the feature has randomly
distributed values, with probabilities that are independent of the other features. It is
important as it is always applicable, and gives a base case upon which to compare other
hypotheses.

Example 3. Consider the following hypotheses:

– H1 predicts the prognosis of people with lung cancer:

〈personWithCancer∧HasLungCancer = true,

{},{OutcomeAtYear},P1〉
– H2 predicts the prognosis of people with cancer:

〈personWithCancer,{},{OutcomeAtYear},P2〉
– H3 is a null hypothesis that predicts the prognosis of people in general:

〈person,{},{OutcomeAtYear},P3〉
– H4 predicts whether people with cancer have lung cancer, as a function of coughing:

〈personWithCancer,{Coughs},
{HasLungCancer},P4〉

– H5 predicts whether people have cancer:

〈person,{},{HasCancer},P5〉
– H6 and H7 predict the shape of lumps as a function of whether the patient has

cancer5. We first predict whether the patient has a lump, using H6:

〈person,{HasCancer},{HasLump},P6〉
and then predict the lump shape when there is a lump using H7:

〈lump,{HasCancer},{LumpShape},P7〉
4 There are actually infinitely many null hypotheses, one for each probability distribution, but

we usually only consider the maximum likelihood or maximum apriori probability null hy-
pothesis.

5 If we were to allow null values, we could replace H6 and H7 with H8:

〈person,{HasCancer},{HasLump,LumpShape},P8〉

where we would make sure that LumpShape is undefined when HasLump = f alse.



– H9 predicts coughing of people

〈person,{},{Coughs},P9〉

– H10 predicts coughing of people as a function of whether they will live a year:

〈person,{OutcomeAtYear},{Coughs},P10〉

While this may seem like a peculiar hypothesis, it may be the sort of hypothesis one
would get from a study that selected 1000 people who died after a year and 1000
people who didn’t die, and then checked whether they had reported coughing.

– H11 predicts whether the individual under consideration is a person:

〈thing,{},{person},P11〉

A hypothesis 〈c, I,O,P〉 is a representation of the conditional distribution:

P(O|I,c).

That is, P gives a probability distribution over O as a function of I for context c.
Note that, if a hypothesis makes a prediction on features O, in principle, it can be

used to make predictions on subsets of O. However, it is not always computationally
feasible to sum out the variables needed to compute this.

Models and Predictions

Scientific hypotheses are typically narrow; they don’t make predictions on arbitrary
sets of data. For example, someone may develop a hypothesis for the prognosis of a
particular type of lung cancer. To use this hypothesis for a prediction of a patient, we
first predict whether the patient has this form of lung cancer, then use this hypothesis to
predict the prognosis. We need other hypotheses about the prognosis for the possibility
that the patient has a different form of lung cancer, or doesn’t have lung cancer.

We assume that a new case includes observations and a set of query features that
we want to predict the value of. In particular, a query is a pair 〈obs,Q〉 where obs is a
conjunction of literals and Q is a set of features. This query is asking for a prediction
of P(Q|obs), the distribution of Q given observations obs. We assume that obs does not
assign a value to a feature in Q.

A set of hypotheses that fit together to make a prediction for the query variables
given the observations is called a model. Before giving a definition of a model, we will
give some desiderata of models. Note that we use the term model here in the sense of
scientific models, not in the sense used in logic.

A model M for query 〈obs,Q〉 needs to satisfy the following properties:

– M is coherent: it does not rely on the value of a feature in a context where the
features is not defined (i.e., when the domain of the feature is false). Thus if feature
f has domain d, it has to be used in a context where d is true. For example, always
writing d ∧ f , which is false if d is false, and has the value of f otherwise, would
satisfy coherence.



– M is consistent: it does not make different predictions for any feature in any partic-
ular context.

– M is predictive: it makes a prediction for Q in every context that is possible given
the observations.

– M is minimal: it does not include hypotheses that are not required to be predictive.

For level-0 (deterministic) semantic science, these desiderata correspond to a stan-
dard definition of abduction (Poole, 1989; Kakas and Denecker, 2002). Coherence is
needed when there are ontologies with non-trivial domains of properties. The predic-
tive condition corresponds to being able to prove the goal, and the consistency and
minimality are the same as in the standard definition of abduction.

For level-1 (feature-based) semantic science, ignoring preconditions, one way to
build a model is to construct a Bayesian network (Pearl, 1988). The variables in the
Bayesian network correspond to features. For every variable in the Bayes network, there
is a corresponding hypothesis with that variable in the set of output features of the
hypothesis. Such a Bayesian network needs to include as variables: the observation
variables, the query variables and the inputs for every hypothesis used. The accuracy of
such a Bayesian network depends on the accuracy of the hypotheses used as well as the
appropriateness of the independence assumptions embedded in the Bayesian network.

When hypotheses have preconditions, we need to ensure that the preconditions hold
before being able to use the hypotheses. We want to be able to use some hypotheses in
some contexts and not in other contexts. We do not need a global acyclic assumption,
but we disallow cyclic dependencies. This leads to the following definitions, where we
first define hypothesis instances, which are the building blocks of models.

A hypothesis instance is a tuple of the form 〈h,c, I,O〉 such that:

– h is a hypothesis,
– c is a a conjunction of literals, which specifies a context in which hypothesis h will

be used
– I is a set of input properties used by hypothesis h
– O is a set of output properties which hypothesis h will be used to predict

satisfying the following:

– Ontologies |= c → context(h) — the condition in which the hypothesis is used
must imply the context of the hypothesis h, and so it must imply the domains of the
features used in h

– inputs(h) ⊆ I ∪ f eatures(c) — the inputs to the hypothesis must all be available,
either in c or in I

– O⊆ out puts(h) — not all of the outputs need to be used

A model is a set of hypothesis instances that together define a probability distribu-
tion of a query given observations. To formalize this, satisfying the desiderata above,
and being as general as possible, requires a syntactic construction that allows for differ-
ent orderings and different features to be defined in different contexts. If a hypothesis
instance is applicable in a context it has to be used in that context. This motivates the
following definitions.



A set M of hypothesis instances is structurally consistent if for every pair of differ-
ent hypothesis instances 〈h1,c1, I1,O1〉 and 〈h2,c2, I2,O2〉 in M, if O1 ∩O2 6= {}, then
ontologies |= ¬(c1 ∧ c2). That is, if they make predictions on the same feature, their
contexts must be incompatible. This is called structural consistency as it only takes into
account the structure of the hypothesis instances, and not on the details of the actual
prediction made.

A semantic tree6 is a tree where:

– internal nodes are labelled with features
– there are children of the node for each value of the feature
– a feature appears at most once in any path from the root.

Each path from the root corresponds to a set of feature-value pairs, which we inter-
pret as a proposition made from the conjunction of the corresponding literals. The root
corresponds to the proposition true.

Given a set M of hypothesis instances, a semantic tree built from M must satisfy
the following conditions:

– A node is labelled with feature f only if there is a 〈h,c, I,O〉 ∈M with f ∈ O such
that c is entailed by the path to the node and every feature in I appears as the label
of an ancestor of the node. In this case, 〈h,c, I,O〉 is the hypothesis instance for the
node.

– If 〈h,c, I,O〉 is a hypothesis instance for a node then, for every path from the root
that goes through the node, there must be a node labelled with each element of O.

A semantic tree supports supports query 〈obs,Q〉 if every path from the root either
implies ¬obs or implies obs and every element of Q appears in the path.

A model M for query 〈obs,Q〉 is a structurally consistent set of hypothesis instances
for which there is a semantic tree built from M that supports 〈obs,Q〉.

Example 4. Suppose we have data about a person who coughs and has an irregular
lump, and we want to make predictions about their outcome in a year.

A possible model for P(OutcomeAtYear|person∧ coughs):

– 〈H5, person, {}, {HasCancer}〉
– 〈H3, person∧¬hasCancer, {}, {OutcomeAtYear}〉
– 〈H9, personWithCancer, {}, {Coughs}〉
– 〈H4, personWithCancer, {Coughs}, {HasLungCancer}〉
– 〈H1, personWithCancer∧hasLungCancer, {}, {OutcomeAtYear}〉
– 〈H2, personWithCancer∧¬hasLungCancer, {}, {OutcomeAtYear}〉
– 〈H10, person∧¬hasCancer, {OutcomeAtYear}, {Coughs}〉
– 〈H11, thing, {}, {IsPerson}〉

6 There are many names for such trees, including event trees, decision trees, game trees, or
computation trees (Halpern, 2003), each of which seems to convey a different intuition. There
are no events or time involved in these trees, they just represent assignments of values to
features.



IsPerson

HasCancer

OutcomeAtYear Coughs

HasLungCancerCoughsCoughs

OutcomeAtYear OutcomeAtYear

✘

✔

✘

✘ ✘✔

✔ ✔ ✔ ✔

Coughs

✔✘

✔ ✔

Left branches from a node correspond to f alse and right branches to true, except for nodes
labelled with OutcomeAtYear, where the three children correspond to the values well, sick, dead.
The leaves are labelled by whether the observations are true or not.

Fig. 3. A semantic tree for Example 4

In this model, although H2 can make predictions for anyone with cancer, it is only
used for those without lung cancer. Similarly H3 is only used when the person does not
have cancer.

A semantic tree built from M is shown in Figure 3.
Not all features are defined in all contexts. In particular, HasLungCancer is not

defined in the context person∧¬hasCancer.
There is no global ordering of the features; OutcomeAtYear needs to be above

Coughs in one context and below it in another context.

Semantics of Models

A semantic tree built from a model for 〈obs,Q〉 provides a possible world structure, that
defines P(Q|obs) using only conditional probabilities from the hypotheses of the model
in the context defined by the model.

As we are assuming finitely many features with finite domains, there are only
finitely many possible worlds, so it suffices to give a probability to each world. The
possible world structure is complicated because the worlds are heterogeneous; not all
features have values in all worlds. The proposition obs will be well defined in all worlds,
and in all worlds where obs is true, Q will be defined. The possible world structure is
built from a semantic tree, which in turn depends on the model. Different models can
give different possible world structures, as different features can be defined. We show
that the distribution for P(Q|obs) for a particular model does not depend on which se-
mantic tree is built from the model.

The worlds for a semantic tree correspond to paths from the root in the tree. The
feature-value pairs along the path are all true in the world, the other values for the



features along the path are all false, and all other features are undefined in the world.
Note that our semantics does not include an unde f ined value; we never need to use the
values of an undefined feature.

The probability of a world is the product of the probabilities computed by the pro-
grams of the hypotheses used by the model that are consistent with the world. That is,
the probability of world w for model M is the product of the numbers P(O = o|I = i,c)
such that 〈h,c, I,O〉 ∈ m, the world w entails O = o, I = i,c, and P is the program of h.

Lemma 1 (coherence). What is true in any world can be determined without reference
to any feature that is not defined in the world.

Proof. A hypothesis is only used in a world if its context is true in that world. As its
context is true, this implies the domains of the features used in the hypothesis are true.
As all of the features are defined through hypotheses, for each features that is given a
value in a world, its domain holds in the world.

Lemma 2 (consistency). A world gives a consistent prediction for each feature it de-
fines.

Proof. On each path from the root, by definition, a feature appears at most once, and
so it has a unique value. Those features that do not appear in the path are not defined in
the world.

Lemma 3. A tree gives a probability distribution over worlds.

Proof. We need to show that the probabilities of the words are non-negative and sum to
1. They are all non-negative as they are the product of non-negative numbers. Thus we
need to show that the probabilities of the worlds sum to 1.

First consider the case where there are only single hypotheses in the output sets
of hypothesis instances. For this case, the lemma can be proved by induction over the
size of the tree. If the tree just contains the root, there is one possible world (with no
features defined), with probability 1. Suppose the lemma is true for trees with n ≥ 0
internal nodes, then a tree with n+1 internal nodes has (at least) one internal node with
only leaf children. The probability of the children of that node sum to the probability
of that node (as the hypothesis used gives a distribution over its children), which is the
probability of the world with that internal node as a child. So by induction, the sum of
the probabilities of all worlds sums to 1.

Where there can be multiple hypotheses in the output sets, we can treat the multi-
ple hypotheses as a composite random variable, and the lemma holds. Splitting on the
variables in turn does not change the distribution, neither does moving the splits up and
down the tree.

A maximal semantic tree for model M is a semantic tree that cannot be extended
and still be a semantic tree.

Lemma 4. Given model M, all maximal semantic trees built from M have the same set
of possible worlds, with the same probabilities.



Proof. Suppose T1 and T2 are two maximal semantic tree. For every world w1 from T1
there must be a world w2 from T2 that is consistent with w1; as the worlds in T2 cover all
possible cases (intuitively w1 can be filtered down T2, where for every feature defined
in w1, world w1 goes down the appropriate branch and for every feature not defined in
w1 it goes to an arbitrary child). If there is some feature that is defined in w1 or w2 that
is not defined in the other, it can be consistently added to that world thus contradicting
maximality.

The probabilities of w1 and w2 do not depend on the trees, and so must be the same.

Theorem 1 (predictiveness). All semantic trees for a model for query 〈obs,Q〉 give the
same probability distribution for P(Q|obs).

Proof. A semantic tree T can be extended into a maximal semantic tree T ′ by doing
all possible splits. By the previous lemma, T ′ gives a unique probability distribution for
(Q|obs), that does not depend on T . It is easy to see that by summing out the variables
introduced, T has the same distribution as T ′.

Note that, as all of the semantic trees give the same distribution, we may as well use
the minimal models and the minimal semantic trees.

This construction makes implicit independence assumptions, namely that, for each
context, a variable is independent of its non-descendants, given the input of the hypothe-
ses used for that variable in that context. It is thus making an assumption of context-
specific independence (Boutilier et al., 1996).

Comparison with other proposals

We can view the semantic tree based semantics as a form of abduction, where the paths
from the root correspond to explanations. The probability of each explanation is the
product of the probabilities given by the hypotheses used. This use of abduction to
compute conditional probabilities was first done by Poole (1993b) in probabilistic Horn
abduction. This work generalizes that work by allowing for more general specifications
of conditional probabilities (P in a hypotheses does not need to be specified by a logic
program), allowing for multiple incompatible hypotheses, and allowing the interaction
with ontologies, but is restricted to be feature-based, whereas Poole (1993b) defined a
probabilistic relational language.

This work is also closely related to work on dynamic construction of Bayesian net-
works (Horsch and Poole, 1990; Breese, 1992; Wellman et al., 1992; Laskey, 2008).
The other proposals do not allow for multiple competing hypotheses, but are rather
designed to be flexible ways to define large relational models, where the models can
be defined before the individuals (and thus the random variables) are known. We also
extend the dynamic construction work to include ontologies.

Conclusion

This paper has defined models that can be built from hypotheses to give predictions
in particular cases. This is the first step in bringing the vision of semantic science to
reality.



For feature-based semantic science, the main open problems are how to find the ap-
propriate hypotheses for a query, assemble them efficiently, determine when one model
is better than another for a particular query, and judge the quality of hypotheses. Not
only must the conditional probabilities be accurate, but the independence assumptions
embedded in the model need to be appropriate. We also need to develop relational and
first-order versions of the theory.

The potential of semantic science seems huge, but there are many technical and
social issues that need to be solved before it can become reality. The development of
ontologies and the publishing of data using those ontologies has advanced greatly in
recent years. The main technical issues remaining are to do with the representations
of the hypotheses and models and the infrastructure to publish and search for data and
hypotheses. To bring this vision of semantic science to fruition will require advances in
many fields.
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