
Announcements

QA session next week on Zoom (see Piazza)

What is now required is to give the greatest possible de-
velopment to mathematical logic, to allow to the full the
importance of relations... If this can be successfully ac-
complished, there is every reason to hope that the near
future will be as great an epoch in pure philosophy as the
immediate past has been in the principles of mathematics.
Great triumphs inspire great hopes; and pure thought may
achieve, within our generation, such results as will place
our time, in this respect, on a level with the greatest age
of Greece.

– Bertrand Russell, Mysticism and Logic and Other Essays [1917]

©D. Poole 2024 CPSC 312 — Lecture 33 1 / 18

Since Last midterm

difference lists, definite clause grammars and natural language
interfaces to databases

computer algebra and calculus

Triples are universal representations of relations, and are the
basis for RDF, and knowledge graphs

URIs/IRIs provide constants that have standard meanings

Ontologies define the meaning of symbols used in information
systems.

You should know what the following mean: RDF, IRI, rdf:type,
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range

Complete knowledge assumption and negation as failure

Extra-logical predicates

Substitutions and Unification

Today

Proofs and answers. Negation with variables.

©D. Poole 2024 CPSC 312 — Lecture 33 2 / 18

Unifiers

Substitution σ is a unifier of e1 and e2 if e1σ = e2σ.

Substitution σ is a most general unifier (mgu) of e1 and e2 if
▶ σ is a unifier of e1 and e2 and
▶ if substitution σ′ also unifies e1 and e2, then eσ′ is an instance

of eσ for all atoms e.

If two atoms have a unifier, they have a most general unifier.

If there are more than one most general unifiers, they only
differ in the names of the variables.

©D. Poole 2024 CPSC 312 — Lecture 33 3 / 18

Top-down Propositional Proof Procedure (recall)

Idea: search backward from a query to determine if it is a
logical consequence of KB.

An answer clause is of the form:

yes :- a1, a2, . . . , am

The (SLD) resolution of this answer clause on atom a1 with
the clause in the knowledge base:

a1 :- b1, . . . , bp

is the answer clause

yes :- b1, · · · , bp, a2, · · · , am

A fact in the knowledge base is considered as a clause where
p = 0.

©D. Poole 2024 CPSC 312 — Lecture 33 4 / 18

Top-down Proof procedure

A generalized answer clause is of the form

yes(t1, . . . , tk) :- a1, a2, . . . , am

where t1, . . . , tk are terms and a1, . . . , am are atoms.

Select atom in body to resolve against, say a1.

The SLD resolution of this generalized answer clause on a1
with the clause

a :- b1, . . . , bp

where a1 and a have most general unifier θ, is

(yes(t1, . . . , tk) :- b1, . . . , bp, a2, . . . , am)θ

©D. Poole 2024 CPSC 312 — Lecture 33 5 / 18

Top-down propositional definite clause interpreter (review)

To solve the query ?q1, . . . , qk :

ac := “yes :- q1, . . . , qk”
repeat

select leftmost atom a1 from the body of ac
choose clause C from KB with a1 as head
replace a1 in the body of ac by the body of C

until ac is an answer.

©D. Poole 2024 CPSC 312 — Lecture 33 6 / 18

Top-down Proof Procedure

To solve query ?B with variables V1, . . . ,Vk :

Set ac to generalized answer clause yes(V1, . . . ,Vk) :- B
while body of ac is not empty do

Suppose ac is yes(t1, . . . , tk) :- a1, a2, . . . , am
select leftmost atom a1 in the body of ac
choose clause a :- b1, . . . , bp in KB
Rename all variables in a :- b1, . . . , bp
Let θ be the most general unifier of a1 and a.

Fail if they don’t unify
Set ac to (yes(t1, . . . , tk) :- b1, . . . , bp, a2, . . . , am)θ

end while

Suppose ac is generalized answer clause yes(t1, . . . , tk) :-
Answer is V1 = t1, . . . ,Vk = tk

©D. Poole 2024 CPSC 312 — Lecture 33 7 / 18

Example

live(Y) :- connected to(Y ,Z), live(Z). live(outside).

connected to(w6,w5). connected to(w5, outside).

?live(A).

yes(A) :- live(A).

yes(A) :- connected to(A,Z1), live(Z1).

yes(w6) :- live(w5).

yes(w6) :- connected to(w5,Z2), live(Z2).

yes(w6) :- live(outside).

yes(w6) :- .

©D. Poole 2024 CPSC 312 — Lecture 33 8 / 18

Example

elem(E, set(E,_,_)).

elem(V, set(E,LT,_)) :-

V #< E,

elem(V,LT).

elem(V, set(E,_,RT)) :-

E #< V,

elem(V,RT).

?- elem(3,S),elem(8,S).

yes(S) :- elem(3,S),elem(8,S)

yes(set(3,S1,S2)) :- elem(8, set(3,S1,S2))

yes(set(3,S1,S2)) :- 3 #< 8, elem(8,S2)

yes(set(3,S1,S2)) :- elem(8,S2)

yes(set(3,S1,set(8,S3,S4))) :-

Answer is S = set(3, S1, set(8, S3, S4))

©D. Poole 2024 CPSC 312 — Lecture 33 9 / 18

Clicker Question

What is the resolution of the generalized answer clause:

yes(B,N) :- append(B, [a,N|R], [b, a, c , d]).
with the clause

append([], L, L).

A yes([], c) :- append(B,R, [d])

B yes([b], c) :-

C yes([b|T1],N) :- append(T1, [a,N|R], [a, c , d]).
D yes([b],N) :- append([], [a,N|R], [a, c , d]).
E the resolution fails (they do not resolve)

©D. Poole 2024 CPSC 312 — Lecture 33 10 / 18

Clicker Question

What is the resolution of the generalized answer clause:

yes(B,N) :- append(B, [a,N|R], [b, a, c , d]).
with the clause

append([H1 | T1],A1, [H1 | R1]) :-
append(T1,A1,R1).

A yes([], c) :- append(B,R, [d])

B yes([b], c) :-

C yes([b|T1],N) :- append(T1, [a,N|R], [a, c , d]).
D yes([b],N) :- append([], [a,N|R], [a, c , d]).
E the resolution fails (they do not resolve)

©D. Poole 2024 CPSC 312 — Lecture 33 11 / 18

Clicker Question

What is the resolution of the generalized answer clause:

yes([b|T1],N) :- append(T1, [a,N|R], [a, c , d]).
with the clause

append([], L, L).

A yes([], c) :- append(B,R, [d])

B yes([b], c) :-

C yes([b|T1],N) :- append([], [a, c , d], [a, c , d]).

D yes([b],N) :- append([], [a,N|R], [a, c , d]).
E the resolution fails (they do not resolve)

©D. Poole 2024 CPSC 312 — Lecture 33 12 / 18

Unification with function symbols

Consider a knowledge base consisting of one fact:

lt(X , s(X)).

Should the following query succeed?

?- lt(Y ,Y).

What does the top-down proof procedure give?

Solution: variable X should not unify with a term that
contains X inside. “Occurs check”
E.g., X should not unify with s(X).
Simple modification of the unification algorithm, which Prolog
does not do!

©D. Poole 2024 CPSC 312 — Lecture 33 13 / 18

Equality

Equality is a special predicate symbol with a standard
domain-independent intended interpretation.

Suppose interpretation I = ⟨D, ϕ, π⟩.
t1 and t2 are ground terms then t1 = t2 is true in
interpretation I if t1 and t2 denote the same individual.
That is, t1 = t2 if ϕ(t1) is the same as ϕ(t2).

t1 ̸= t2 when t1 and t2 denote different individuals.

Example:
D = {✂,☎,✎}.
ϕ(phone) = ☎, ϕ(pencil) = ✎, ϕ(telephone) = ☎
What equalities and inequalities hold?
phone = telephone, phone = phone, pencil = pencil ,
telephone = telephone
pencil ̸= phone, pencil ̸= telephone

Equality does not mean similarity!

©D. Poole 2024 CPSC 312 — Lecture 33 14 / 18

Equality

a
Constants/Terms Individuals

b
c

d

ef(a)

©D. Poole 2024 CPSC 312 — Lecture 33 15 / 18

Inequality as a subgoal

What should the following query return?

?− X ̸= 4.

What should the following query return?

?− X ̸= 4, X = 7.

What should the following query return?

?− X ̸= 4, X = 4.

Prolog has 3 different inequalities that differ on examples like
these:

\== \= dif()

They differ in cases where there are free variables, and terms
unify but are not identical.

©D. Poole 2024 CPSC 312 — Lecture 33 16 / 18

3 implementations of not-equals

Prolog has 3 different inequalities:

\== \= dif()

which give same answers for variable-free queries, or when
both sides are identical

a \== 3, a \= 3, dif(a,3)

all succceed.

a \== a, a \= a, dif(a,a)

all fail.

They give different answers when there is a free variable.
\== means “not identical”. a \== X succeeds
\= means “not unifiable”. a \= X fails
dif is less procedural and more logical

©D. Poole 2024 CPSC 312 — Lecture 33 17 / 18

Implementing dif

dif (X ,Y)
▶ all instances fail when X and Y are identical
▶ all instances succeed when X and Y do not unify
▶ otherwise some instance succeed and some fail

To implement dif (X ,Y) in the body of a clause:
▶ Select leftmost clause — unless it is a dif which cannot be

determined to fail or succeed (delay dif calls)
▶ Return the dif calls not resolved.

Consider the calls:

dif(X,4), X=7.

dif(X,4), X=4.

dif(X,4), dif(X,7).

Other predicates, such as #<, work similarly; but can also include
more sophisticaled proof techniques (constraint programming).

©D. Poole 2024 CPSC 312 — Lecture 33 18 / 18

