Announcements

- QA session next week on Zoom (see Piazza)

What is now required is to give the greatest possible development to mathematical logic, to allow to the full the importance of relations... If this can be successfully accomplished, there is every reason to hope that the near future will be as great an epoch in pure philosophy as the immediate past has been in the principles of mathematics. Great triumphs inspire great hopes; and pure thought may achieve, within our generation, such results as will place our time, in this respect, on a level with the greatest age of Greece.

- Bertrand Russell, Mysticism and Logic and Other Essays [1917]

Since Last midterm

- difference lists, definite clause grammars and natural language interfaces to databases
- computer algebra and calculus
- Triples are universal representations of relations, and are the basis for RDF, and knowledge graphs
- URIs/IRIs provide constants that have standard meanings
- Ontologies define the meaning of symbols used in information systems.
- You should know what the following mean: RDF, IRI, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range
- Complete knowledge assumption and negation as failure
- Extra-logical predicates
- Substitutions and Unification

Today

- Proofs and answers. Negation with variables.

Unifiers

- Substitution σ is a unifier of e_{1} and e_{2} if $e_{1} \sigma=e_{2} \sigma$.
- Substitution σ is a most general unifier (mgu) of e_{1} and e_{2} if
- σ is a unifier of e_{1} and e_{2} and
- if substitution σ^{\prime} also unifies e_{1} and e_{2}, then $e \sigma^{\prime}$ is an instance of $e \sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.
- If there are more than one most general unifiers, they only differ in the names of the variables.

Top-down Propositional Proof Procedure (recall)

- Idea: search backward from a query to determine if it is a logical consequence of $K B$.
- An answer clause is of the form:

$$
\text { yes :- } a_{1}, a_{2}, \ldots, a_{m}
$$

- The (SLD) resolution of this answer clause on atom a_{1} with the clause in the knowledge base:

$$
a_{1}:-b_{1}, \ldots, b_{p}
$$

is the answer clause

$$
\text { yes }:-b_{1}, \cdots, b_{p}, a_{2}, \cdots, a_{m}
$$

A fact in the knowledge base is considered as a clause where $p=0$.

Top-down Proof procedure

- A generalized answer clause is of the form

$$
\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right):-a_{1}, a_{2}, \ldots, a_{m}
$$

where t_{1}, \ldots, t_{k} are terms and a_{1}, \ldots, a_{m} are atoms.

- Select atom in body to resolve against, say a_{1}.
- The SLD resolution of this generalized answer clause on a_{1} with the clause

$$
a:-b_{1}, \ldots, b_{p}
$$

where a_{1} and a have most general unifier θ, is

$$
\left(y e s\left(t_{1}, \ldots, t_{k}\right):-b_{1}, \ldots, b_{p}, a_{2}, \ldots, a_{m}\right) \theta
$$

Top-down propositional definite clause interpreter (review)

To solve the query $? q_{1}, \ldots, q_{k}$:

$$
a c:=" y e s:-q_{1}, \ldots, q_{k} "
$$

repeat
select leftmost atom a_{1} from the body of ac choose clause C from $K B$ with a_{1} as head replace a_{1} in the body of $a c$ by the body of C until $a c$ is an answer.

Top-down Proof Procedure

To solve query ? B with variables V_{1}, \ldots, V_{k} :
Set ac to generalized answer clause yes $\left(V_{1}, \ldots, V_{k}\right):-B$ while body of ac is not empty do

Suppose ac is yes $\left(t_{1}, \ldots, t_{k}\right):-a_{1}, a_{2}, \ldots, a_{m}$
select leftmost atom a_{1} in the body of ac
choose clause $a:-b_{1}, \ldots, b_{p}$ in $K B$
Rename all variables in $a:-b_{1}, \ldots, b_{p}$
Let θ be the most general unifier of a_{1} and a.
Fail if they don't unify
Set ac to $\left(\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right):-b_{1}, \ldots, b_{p}, a_{2}, \ldots, a_{m}\right) \theta$
end while
Suppose ac is generalized answer clause yes $\left(t_{1}, \ldots, t_{k}\right):-$
Answer is $V_{1}=t_{1}, \ldots, V_{k}=t_{k}$

Example

live (Y) :- connected_to($Y, Z)$, live (Z). live(outside). connected_to $\left(w_{6}, w_{5}\right)$. connected_to(w_{5}, outside). ?live (A).

```
yes(A) :- live(A).
yes(A) :- connected_to( }A,\mp@subsup{Z}{1}{})\mathrm{ , live( }\mp@subsup{Z}{1}{})\mathrm{ .
yes(w6):- live(w5).
yes(w6) :- connected_to( }\mp@subsup{w}{5}{},\mp@subsup{Z}{2}{})\mathrm{ , live( }\mp@subsup{Z}{2}{})
yes(w6) :- live(outside).
yes(w6):- .
```


Example

```
elem(E, set(E,_,_)).
elem(V, set(E,LT,_)) :-
    V #< E,
    elem(V,LT).
elem(V, set(E,_,RT)) :-
    E #< V,
    elem(V,RT).
?- elem(3,S),elem(8,S).
yes(S) :- elem(3,S),elem(8,S)
yes(set(3,S1,S2)) :- elem(8, set(3,S1,S2))
yes(set(3,S1,S2)) :- 3 #< 8, elem(8,S2)
yes(set(3,S1,S2)) :- elem(8,S2)
yes(set(3,S1,set(8,S3,S4))) :-
Answer is S = set(3,S1, set(8,S3,S4))
```


Clicker Question

What is the resolution of the generalized answer clause:

$$
\operatorname{yes}(B, N):-\operatorname{append}(B,[a, N \mid R],[b, a, c, d])
$$

with the clause append([], L, L).

A yes $([], c):-\operatorname{append}(B, R,[d])$
B yes $([b], c):-$
C $\operatorname{yes}([b \mid T 1], N):-\operatorname{append}(T 1,[a, N \mid R],[a, c, d])$.
D yes $([b], N):-\operatorname{append}([],[a, N \mid R],[a, c, d])$.
E the resolution fails (they do not resolve)

Clicker Question

What is the resolution of the generalized answer clause:

$$
\operatorname{yes}(B, N):-\operatorname{append}(B,[a, N \mid R],[b, a, c, d])
$$

with the clause

$$
\begin{aligned}
& \text { append }([H 1 \mid T 1], A 1,[H 1 \mid R 1]):- \\
& \quad \text { append }(T 1, A 1, R 1) .
\end{aligned}
$$

A yes $([], c):-\operatorname{append}(B, R,[d])$
B yes $([b], c):-$
C $\operatorname{yes}([b \mid T 1], N):-\operatorname{append}(T 1,[a, N \mid R],[a, c, d])$.
D yes $([b], N):-\operatorname{append}([],[a, N \mid R],[a, c, d])$.
E the resolution fails (they do not resolve)

Clicker Question

What is the resolution of the generalized answer clause:

$$
\operatorname{yes}([b \mid T 1], N):-\operatorname{append}(T 1,[a, N \mid R],[a, c, d])
$$

with the clause append ([], L, L).

A yes $([], c):-\operatorname{append}(B, R,[d])$
B yes $([b], c):-$
C $\operatorname{yes}([b \mid T 1], N):-\operatorname{append}([],[a, c, d],[a, c, d])$.
D yes $([b], N):-\operatorname{append}([],[a, N \mid R],[a, c, d])$.
E the resolution fails (they do not resolve)

Unification with function symbols

- Consider a knowledge base consisting of one fact:

$$
I t(X, s(X))
$$

- Should the following query succeed?

$$
\text { ?- } I t(Y, Y)
$$

- What does the top-down proof procedure give?
- Solution: variable X should not unify with a term that contains X inside. "Occurs check"
E.g., X should not unify with $s(X)$.

Simple modification of the unification algorithm, which Prolog does not do!

Equality

Equality is a special predicate symbol with a standard domain-independent intended interpretation.

- Suppose interpretation $I=\langle D, \phi, \pi\rangle$.
- t_{1} and t_{2} are ground terms then $t_{1}=t_{2}$ is true in interpretation l if t_{1} and t_{2} denote the same individual.
That is, $t_{1}=t_{2}$ if $\phi\left(t_{1}\right)$ is the same as $\phi\left(t_{2}\right)$.
- $t_{1} \neq t_{2}$ when t_{1} and t_{2} denote different individuals.
- Example:
$D=\{\sigma<, \overrightarrow{\mathbf{c}}, \vec{s}\}$.
$\phi($ phone $)=\boldsymbol{\mathbf { Z }}, \phi($ pencil $)=\phi($ telephone $)=\mathbf{\Xi}$
What equalities and inequalities hold?
phone $=$ telephone, phone $=$ phone , pencil $=$ pencil,
telephone $=$ telephone
pencil \neq phone, pencil \neq telephone
- Equality does not mean similarity!

Equality

Constants/Terms Individuals

Inequality as a subgoal

- What should the following query return?

$$
?-\quad X \neq 4
$$

- What should the following query return?

$$
?-\quad X \neq 4, X=7
$$

- What should the following query return?

$$
?-\quad X \neq 4, X=4
$$

- Prolog has 3 different inequalities that differ on examples like these:

$$
\backslash==\quad \backslash=\quad \operatorname{dif}()
$$

They differ in cases where there are free variables, and terms unify but are not identical.

3 implementations of not-equals

- Prolog has 3 different inequalities:

$$
\backslash==\quad \backslash=\quad \operatorname{dif}()
$$

which give same answers for variable-free queries, or when both sides are identical

$$
\text { a } \backslash==3, \quad a \quad \backslash=3, \quad \operatorname{dif}(a, 3)
$$

all succceed.

$$
a \backslash==a, \quad a \backslash=a, \quad \operatorname{dif}(a, a)
$$

all fail.

- They give different answers when there is a free variable.
$\backslash==$ means "not identical". a $\backslash==X$ succeeds
$\backslash=$ means "not unifiable". a $\backslash=X$ fails
dif is less procedural and more logical

Implementing dif

- $\operatorname{dif}(X, Y)$
- all instances fail when X and Y are identical
- all instances succeed when X and Y do not unify
- otherwise some instance succeed and some fail
- To implement $\operatorname{dif}(X, Y)$ in the body of a clause:
- Select leftmost clause - unless it is a dif which cannot be determined to fail or succeed (delay dif calls)
- Return the dif calls not resolved.
- Consider the calls:

$$
\begin{aligned}
& \operatorname{dif}(X, 4), X=7 . \\
& \operatorname{dif}(X, 4), X=4 . \\
& \operatorname{dif}(X, 4), \operatorname{dif}(X, 7) .
\end{aligned}
$$

Other predicates, such as \#<, work similarly; but can also include more sophisticaled proof techniques (constraint programming).

