CPSC 312 - Functional and Logic Programming

- Project \#2 - due today. Demos this week!
- Last week!
- Practice exam questions on web page.
"In Prolog, as in most halfway decent programming languages, there is no tension between writing a beautiful program an writing an efficient program. If your Prolog code is ugly, the chances are that you either don't understand your problem or don't understand your programming language, and in neither case does your code stand much chance of being efficient. In order to ensure your program is efficient, you need to know what it is doing, and if your code is ugly, you will find it hard to analyse."

Richard A. O'Keefe, "The Craft of Prolog", 1990.

Since Last midterm

- difference lists, definite clause grammars and natural language interfaces to databases
- computer algebra and calculus
- Triples are universal representations of relations, and are the basis for RDF, and knowledge graphs
- URIs/IRIs provide constants that have standard meanings
- Ontologies define the meaning of symbols used in information systems.
- You should know what the following mean: RDF, IRI, rdf:type, rdfs:subClassOf, rdfs:domain, rdfs:range
- Complete knowledge assumption and negation as failure
- Extra-logical predicates

Today

- Unification and Proofs.

Prolog has an "or" written as ;
Defined by
(A ; _) :- call(A).
(_ ; B) :- call(B).

Reasoning with Variables

- An instance of an atom or a clause is obtained by uniformly substituting terms for variables. Every instance of the same variable is replaced by the same term.
- A substitution is a finite set of the form $\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$, where each V_{i} is a distinct variable and each t_{i} is a term.
- The application of a substitution $\sigma=\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$ to an atom or clause e, written $e \sigma$, is the instance of e with every occurrence of V_{i} replaced by t_{i}.

Application Examples

The following are substitutions:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}
\end{aligned}
$$

The following shows some applications:

$$
\begin{aligned}
& p(A, b, C, D) \sigma_{1}=p(A, b, C, e) \\
& p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e) \\
& p(A, b, C, D) \sigma_{2}=p(X, b, Z, e) \\
& p(X, Y, Z, e) \sigma_{2}=p(X, b, Z, e) \\
& p(A, b, C, D) \sigma_{3}=p(V, b, W, e) \\
& p(X, Y, Z, e) \sigma_{3}=p(V, b, W, e)
\end{aligned}
$$

Application Examples

Given the substitution:

$$
\sigma=\{X / A, Y / b, Z / C, D / e\}
$$

foo $(D, Z, C, A) \sigma$ is
A foo (D, Z, C, A)
B foo (e, C, C, A)
C foo (D, C, C, X)
D foo (e, C, C, X)
E foo (e, C, Z, A)

Application Examples

Given the substitution:

$$
\sigma=\{X / A, Y / b, Z / C, D / e\}
$$

foo $(W, b, C, A) \sigma$ is
A foo (X, Y, Z, D)
B foo (b, b, C, Y)
C foo (W, Y, C, X)
D foo (W, b, C, A)
E foo (W, Y, C, A)

Unifiers

- Substitution σ is a unifier of e_{1} and e_{2} if $e_{1} \sigma=e_{2} \sigma$.
- Substitution σ is a most general unifier (mgu) of e_{1} and e_{2} if
- σ is a unifier of e_{1} and e_{2}; and
- if substitution σ^{\prime} also unifies e_{1} and e_{2}, then $e \sigma^{\prime}$ is an instance of $e \sigma$ for all atoms e.
- If two atoms have a unifier, they have a most general unifier.
- If there are more than one most general unifiers, they only differ in the names of the variables.

Unification Example

A yes
B no
C I'm not sure
Is the substitution a unifier of $p(A, b, C, D)$ and $p(X, Y, Z, e)$:

$$
\begin{aligned}
& \sigma_{1}=\{X / A, Y / b, Z / C, D / e\} \\
& \sigma_{2}=\{Y / b, D / e\} \\
& \sigma_{3}=\{X / A, Y / b, Z / C, D / e, W / a\} \\
& \sigma_{4}=\{A / X, Y / b, C / Z, D / e\} \\
& \sigma_{5}=\{X / a, Y / b, Z / c, D / e\} \\
& \sigma_{6}=\{A / a, X / a, Y / b, C / c, Z / c, D / e\} \\
& \sigma_{7}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\} \\
& \sigma_{8}=\{X / A, Y / b, Z / A, C / A, D / e\}
\end{aligned}
$$

yes

Which are most general unifiers?

1: procedure unify $\left(t_{1}, t_{2}\right)$
2: $\quad E:=\left\{t_{1}=t_{2}\right\}$
3: $\quad S:=\{ \}$
\triangleright Returns mgu of t_{1} and t_{2} or \perp. \triangleright Set of equality statements
\triangleright Substitution

4: \quad while $E \neq\{ \}$ do select and remove $x=y$ from E if y is not identical to x then
if x is a variable then replace x with y in E and S $S:=\{x / y\} \cup S$
else if y is a variable then replace y with x in E and S $S:=\{y / x\} \cup S$
else if x is $p\left(x_{1}, \ldots, x_{n}\right)$ and y is $p\left(y_{1}, \ldots, y_{n}\right)$ then $E:=E \cup\left\{x_{1}=y_{1}, \ldots, x_{n}=y_{n}\right\}$
else return $\perp \quad \triangleright t_{1}$ and t_{2} do not unify
17: return S
$\triangleright S$ is mgu of t_{1} and t_{2}

Examples

- unify $p(A, b, C, D)$ and $p(X, Y, Z, e)$ $\{A / X, Y / b, C / Z, D / e\}$
- unify $p(A, b, A, D)$ and $p(X, X, Z, Z)$ $\{A / b, X / b, Z / b, D / b\}$
- unify $p(A, b, A, d)$ and $p(X, X, Z, Z)$
\perp
- unify $n([$ sam, likes, prolog], $L 2, I, C 1, C 2)$ and $n([P \mid R], R, P,[$ person $(P) \mid C], C)$
$\{P /$ sam, $R /[$ likes, prolog], L2/[likes, prolog], I/sam, $C 1 /[$ person(sam) $\mid C 2], C / C 2\}$

Top-down Propositional Proof Procedure (recall)

- Idea: search backward from a query to determine if it is a logical consequence of $K B$.
- An answer clause is of the form:

$$
\text { yes :- } a_{1}, a_{2}, \ldots, a_{m}
$$

- The (SLD) resolution of this answer clause on atom a_{1} with the clause in the knowledge base:

$$
a_{1}:-b_{1}, \ldots, b_{p}
$$

is the answer clause

$$
\text { yes }:-b_{1}, \cdots, b_{p}, a_{2}, \cdots, a_{m}
$$

A fact in the knowledge base is considered as a clause where $p=0$.

