CPSC 312 - Functional and Logic Programming

- Project \#2 - should be well underway....
- Practice exam questions on web page.
"Once you replace negative thoughts with positive ones, you'll start having positive results."

Willie Nelson, 2006 in "The Tao of Willie"

Plan

Since Midterm

- difference lists, definite clause grammars and natural language interfaces to databases
- computer algebra and calculus
- Triples are universal representations of relations, and are the basis for RDF, and knowledge graphs
- URIs/IRIs provide constants that have standard meanings
- Ontologies define the meaning of symbols
- You should know what the following mean: RDF, IRI, rdf:type, rdfs:subClassOf, rdfs:domain, rdfs:range
- Complete Knowledge Assumption, Negation as failure, unique names assumption
To do:
- Negation-as-failure (cont)
- Extra-logical predicates
- Proofs

Clark Normal Form

The Clark normal form of the clause

$$
p\left(t_{1}, \ldots, t_{k}\right):-B
$$

is the clause

$$
p\left(V_{1}, \ldots, V_{k}\right):-\exists W_{1} \ldots \exists W_{m} V_{1}=t_{1}, \ldots, V_{k}=t_{k}, B
$$

where

- V_{1}, \ldots, V_{k} are k variables that did not appear in the original clause
- W_{1}, \ldots, W_{m} are the original variables in the clause.
- When the clause is an atomic clause, B is true.
- Often can be simplified by replacing $\exists W V=W \wedge p(W)$ with $P(V)$.

Clark normal form

For the clauses
student(mary).
student(sam).
student (X) :- undergrad (X).
the Clark normal form is
student (V) :- $V=$ mary.
student (V) :- $V=$ sam.
student $(V):-\exists X \quad V=X \wedge$ undergrad (X).

Clark's Completion

Suppose all of the clauses for p are put into Clark normal form, with the same set of introduced variables, giving

$$
\begin{gathered}
p\left(V_{1}, \ldots, V_{k}\right):-B_{1} . \\
\vdots \\
p\left(V_{1}, \ldots, V_{k}\right):-B_{n} .
\end{gathered}
$$

which is equivalent to

$$
p\left(V_{1}, \ldots, V_{k}\right):-B_{1} \vee \ldots \vee B_{n}
$$

Clark's completion of predicate p is the equivalence

$$
\forall V_{1} \ldots \forall V_{k} p\left(V_{1}, \ldots, V_{k}\right) \leftrightarrow B_{1} \vee \ldots \vee B_{n}
$$

If there are no clauses for p, the completion results in

$$
\forall V_{1} \ldots \forall V_{k} p\left(V_{1}, \ldots, V_{k}\right) \leftrightarrow \text { false }
$$

Clark's completion of a knowledge base consists of the completion of every predicate symbol along the unique names assumption.

Clark normal form

For the clauses

```
student(mary).
student(sam).
student(X) :- undergrad(X).
```

the Clark normal form is

$$
\begin{aligned}
& \operatorname{student}(V):-V=\text { mary. } \\
& \operatorname{student}(V):-V=\operatorname{sam} . \\
& \operatorname{student}(V):-\exists X V=X \wedge \text { undergrad }(X) .
\end{aligned}
$$

which is equivalent to
student $(V):-V=\operatorname{mary} \vee V=\operatorname{sam} \vee \exists X V=X \wedge \operatorname{undergrad}(X)$.
The completion of the student predicate is

$$
\begin{aligned}
\forall V \text { student }(V) & \leftrightarrow V=\operatorname{mary} \vee V=\operatorname{sam} \\
\vee & \exists X V=X \wedge \operatorname{undergrad}(X) .
\end{aligned}
$$

Completion Example

Consider the recursive definition:

$$
\begin{aligned}
& \text { passed_each([], St, MinPass). } \\
& \text { passed_each }([C \mid R], \text { St, MinPass }):- \\
& \quad \text { passed }(S t, C, \text { MinPass }), \\
& \text { passed_each(} R, \text { St, MinPass }) .
\end{aligned}
$$

In Clark normal form, this can be written as

$$
\begin{aligned}
& \text { passed_each }(L, S, M):-L=[] \\
& \text { passed_each }(L, S, M):- \\
& \quad \exists C \exists R L=[C \mid R], \text { passed }(S, C, M), \text { passed_each }(R, S, M) .
\end{aligned}
$$

Here we renamed the variables as appropriate. Thus, Clark's completion of passed_each is

$$
\begin{aligned}
& \forall L \forall S \forall M \text { passed_each }(L, S, M) \leftrightarrow L=[] \vee \\
& \quad \exists C \exists R \quad L=[C \mid R], \operatorname{passed}(S, C, M), \text { passed_each }(R, S, M) .
\end{aligned}
$$

Clark's Completion of a KB

- Clark's completion of a knowledge base consists of the completion of every predicate.
- The completion of an n-ary predicate p with no clauses is $p\left(V_{1}, \ldots, V_{n}\right) \leftrightarrow$ false.
- You can interpret negations in the body of clauses.
$\+a$ means a is false under the complete knowledge assumption. $\backslash+a$ is replaced by $\neg a$ in the completion. This is negation as failure.

Defining empty_course

Given database of:

- course (C) that is true if C is a course
- enrolled (S, C) that is true if student S is enrolled in course C.

Define empty_course (C) that is true if there are no students enrolled in course C.

- Using negation as failure, empty_course (C) can be defined by empty_course (C) :- course $(C), \quad \backslash+$ has_enrollment (C). has_enrollment (C) :- enrolled (S, C).
- The completion of this is:

$$
\begin{aligned}
& \forall C \text { empty_course }(C) \Longleftrightarrow \text { course }(C) \text {, } \neg \text { has_enrollment }(C) \text {. } \\
& \forall C \text { has_enrollment }(C) \Longleftrightarrow \exists S \text { enrolled }(S, C) .
\end{aligned}
$$

Problem Cases

- $p:-p$.
- $r:-\backslash+r$.
- $a:-\backslash+b$.
$b:-\backslash+a$.
- $c:-\backslash+d$.
$d:-c$.
- It isn't clear what the semantics should be.

Prolog goes into an infinite loop.
Avoid cycles!

Problematic Cases

$$
\begin{aligned}
& p(X):-\quad \backslash+q(X) \\
& q(X):-\quad \backslash+r(X) \\
& r(a) \\
& ?-\quad p(X) .
\end{aligned}
$$

- What is the answer?
- How can this be implemented?

Asserting and retracting clauses

New clauses can be added using

- assertz (atom) adds atom as the last clause. atom must be declared dynamic.
- assertz ($\mathrm{h}:-\mathrm{b}$)) adds h :- b as the last clause (note double parenthases). h must be declared dynamic.
- asserta adds a clause as the first clause.

These are not undone by backtracking.
Example: count the number of times counthis is called:
:- dynamic countn/1.
countn(0).
countthis :-
retract(countn(N)),
N 1 is $\mathrm{N}+1$,
assertz(countn(N1)).

Cut / commit

cut, or commmit, written as !

- when called, exits
- when retried, fails the atom it is used in

Example: implementing negation as failure mynot(A) :- call(A), !, fail. mynot(A).

bagof, setof, findall

setof(t(Xs),Ys^foo(Xs,Ys,Zs), L)
where $t(X s)$ is a term containing variables $X s$.
$Y s$ is a set of existential variables
$Z s$ is the other variable in $f o o$
is true when $L=\{t(X s) \mid \exists Y$ foo $(X, Y, Z)\} \neq\{ \}$
there is an answer for each Z.
bagof ($\mathrm{t}\left(\mathrm{Xs}\right.$), $\mathrm{Ys}{ }^{\wedge} \mathrm{foo}(\mathrm{Xs}, \mathrm{Ys}, \mathrm{Zs}), \mathrm{L}$) returns a list not a set Try from cs312_2024:
bagof(P, D^S^F^office_hour (P, D, S, F), Bag).
setof(P, D^S^F^office_hour (P, D, S, F), Bag).
bagof(P, S^F^office_hour (P, D, S, F), Bag).
bagof(P, office_hour (P, D, S, F), Bag).
bagof(s(P,S), F^office_hour (P, D, S, F), Bag).
findall(t(Xs),foo(Xs,Ys,Zs), L) like
bagof(t(Xs),Ys^Zs^foo(Xs,Ys,Zs), L)

