
CPSC 312 — Functional and Logic Programming

Project #2 - should be well underway....

Practice exam questions on web page.

“Once you replace negative thoughts with positive ones, you’ll
start having positive results.”

Willie Nelson, 2006 in “The Tao of Willie”
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Plan

Since Midterm

difference lists, definite clause grammars and natural language
interfaces to databases

computer algebra and calculus

Triples are universal representations of relations, and are the
basis for RDF, and knowledge graphs

URIs/IRIs provide constants that have standard meanings

Ontologies define the meaning of symbols

You should know what the following mean: RDF, IRI,
rdf:type, rdfs:subClassOf, rdfs:domain, rdfs:range

Complete Knowledge Assumption, Negation as failure, unique
names assumption

To do:

Negation-as-failure (cont)

Extra-logical predicates

Proofs
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Clark Normal Form

The Clark normal form of the clause

p(t1, . . . , tk) :- B.

is the clause

p(V1, . . . ,Vk) :- ∃W1 . . . ∃Wm V1 = t1, . . . , Vk = tk , B.

where

V1, . . . ,Vk are k variables that did not appear in the original
clause

W1, . . . ,Wm are the original variables in the clause.

When the clause is an atomic clause, B is true.

Often can be simplified by replacing ∃W V = W ∧ p(W )
with P(V ).
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Clark normal form

For the clauses

student(mary).

student(sam).

student(X ) :- undergrad(X ).

the Clark normal form is

student(V ) :- V = mary .

student(V ) :- V = sam.

student(V ) :- ∃X V = X ∧ undergrad(X ).
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Clark’s Completion

Suppose all of the clauses for p are put into Clark normal form,
with the same set of introduced variables, giving

p(V1, . . . ,Vk) :- B1.
...

p(V1, . . . ,Vk) :- Bn.

which is equivalent to

p(V1, . . . ,Vk) :- B1 ∨ . . . ∨ Bn.

Clark’s completion of predicate p is the equivalence

∀V1 . . . ∀Vk p(V1, . . . ,Vk) ↔ B1 ∨ . . . ∨ Bn

If there are no clauses for p, the completion results in

∀V1 . . . ∀Vk p(V1, . . . ,Vk) ↔ false

Clark’s completion of a knowledge base consists of the completion
of every predicate symbol along the unique names assumption.
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Clark normal form

For the clauses

student(mary).

student(sam).

student(X ) :- undergrad(X ).

the Clark normal form is

student(V ) :- V = mary .

student(V ) :- V = sam.

student(V ) :- ∃X V = X ∧ undergrad(X ).

which is equivalent to

student(V ) :- V = mary ∨ V = sam ∨ ∃X V = X ∧ undergrad(X ).

The completion of the student predicate is

∀V student(V ) ↔ V = mary ∨ V = sam

∨ ∃X V = X ∧ undergrad(X ).
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Completion Example

Consider the recursive definition:

passed each([ ], St,MinPass).

passed each([C |R], St,MinPass) :-

passed(St,C ,MinPass),

passed each(R, St,MinPass).

In Clark normal form, this can be written as

passed each(L,S ,M) :- L = [ ].

passed each(L,S ,M) :-

∃C ∃R L = [C |R], passed(S ,C ,M), passed each(R,S ,M).

Here we renamed the variables as appropriate. Thus, Clark’s
completion of passed each is

∀L ∀S ∀M passed each(L, S ,M) ↔ L = [ ] ∨
∃C ∃R L = [C |R], passed(S ,C ,M), passed each(R,S ,M).
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Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every predicate.

The completion of an n-ary predicate p with no clauses is
p(V1, . . . ,Vn) ↔ false.

You can interpret negations in the body of clauses.
\+ a means a is false under the complete knowledge

assumption. \+ a is replaced by ¬a in the completion.
This is negation as failure.
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Defining empty course

Given database of:

course(C ) that is true if C is a course

enrolled(S ,C ) that is true if student S is enrolled in course C .

Define empty course(C ) that is true if there are no students
enrolled in course C .

Using negation as failure, empty course(C ) can be defined by

empty course(C ) :- course(C ), \+ has enrollment(C ).

has enrollment(C ) :- enrolled(S ,C ).

The completion of this is:

∀C empty course(C ) ⇐⇒ course(C ), ¬has enrollment(C ).

∀C has enrollment(C ) ⇐⇒ ∃S enrolled(S ,C ).
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Problem Cases

p :- p.

r :- \+ r .

a :- \+ b.
b :- \+ a.

c :- \+ d .
d :- c .

It isn’t clear what the semantics should be.
Prolog goes into an infinite loop.
Avoid cycles!
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Problematic Cases

p(X ) :- \+ q(X )

q(X ) :- \+ r(X )

r(a)

?- p(X ).

What is the answer?

How can this be implemented?
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Asserting and retracting clauses

New clauses can be added using

assertz(atom) adds atom as the last clause.
atom must be declared dynamic.

assertz((h :- b)) adds h :- b as the last clause
(note double parenthases). h must be declared dynamic.

asserta adds a clause as the first clause.

These are not undone by backtracking.

Example: count the number of times counthis is called:

:- dynamic countn/1.

countn(0).

countthis :-

retract(countn(N)),

N1 is N+1,

assertz(countn(N1)).
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Cut / commit

cut, or commmit, written as !

when called, exits

when retried, fails the atom it is used in

p
!

…

…

Example: implementing negation as failure

mynot(A) :- call(A), !, fail.

mynot(A).

©D. Poole 2024 CPSC 312 — Lecture 31 13 / 14



bagof, setof, findall

setof(t(Xs),Ys^foo(Xs,Ys,Zs), L)

where t(Xs) is a term containing variables Xs.
Ys is a set of existential variables
Zs is the other variable in foo
is true when L = {t(Xs) | ∃Y foo(X ,Y ,Z )} ≠ {}
there is an answer for each Z .
bagof(t(Xs),Ys^foo(Xs,Ys,Zs), L) returns a list not a set
Try from cs312_2024:

bagof(P, D^S^F^office_hour(P, D, S, F), Bag).

setof(P, D^S^F^office_hour(P, D, S, F), Bag).

bagof(P, S^F^office_hour(P, D, S, F), Bag).

bagof(P, office_hour(P, D, S, F), Bag).

bagof(s(P,S), F^office_hour(P, D, S, F), Bag).

findall(t(Xs),foo(Xs,Ys,Zs), L) like
bagof(t(Xs),Ys^Zs^foo(Xs,Ys,Zs), L)
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