
CPSC 312 — Functional and Logic Programming

Project #2 - should be underway....

Talk to a TA if you want to change your project, or it has
drifted from what was originally proposed.

“Pascal [Java] is for building pyramids – imposing, breathtaking,
static structures built by armies pushing heavy blocks into place.
Lisp [Haskell/Prolog] is for building organisms – imposing,
breathtaking, dynamic structures built by squads fitting fluctuating
myriads of simpler organisms into place.
. . .
the pyramid must stand unchanged for a millennium; the organism
must evolve or perish.”

– Alan J. Perlis, Foreword to “Structure and Interpretation of
Computer Programs”, 1985, 1996

©D. Poole 2024 CPSC 312 — Lecture 29 1 / 20

Plan

Last time

difference lists

definite clause grammars

natural language interfaces to databases

computer algebra and calculus

Knowledge graphs, triples, reification, URI, RDF, triple store

Today

Semantic web

Ontologies

©D. Poole 2024 CPSC 312 — Lecture 29 2 / 20

Ontologies and Knowledge Sharing

Building large knowledge respoitories:

Knowledge often comes from multiple sources.

Fields have their own terminology and division of the world.

Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

It is often difficult to remember what notation means:
▶ Given a symbol used in the computer, what does it mean?
▶ Given a concept in someone’s mind, what symbol to use?

▶ Has the concept already been defined?
▶ If already defined, what symbol has been used for it?
▶ If not already defined, what can it be defined in terms of?

©D. Poole 2024 CPSC 312 — Lecture 29 3 / 20

Knowledge Sharing

Idea: Let’s better represent an intended interpretation, so that
computers as well as people can understand it.

A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
▶ What sorts of individuals are being modeled
▶ The vocabulary for specifying individuals, relations and

properties
▶ The meaning or intention of the vocabulary

If more than one person is building a knowledge base, they
must be able to share the conceptualization.
−→ challenge: inter-operability of separately designed
knowledge bases.

An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

©D. Poole 2024 CPSC 312 — Lecture 29 4 / 20

Mapping from a conceptualization to a symbol

©D. Poole 2024 CPSC 312 — Lecture 29 5 / 20

Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:
▶ A symbol defined by an ontology means the same thing across

web sites that obey the ontology.
▶ If someone wants to refer to something not defined, they

publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

▶ Separately developed ontologies can have mappings between
them published.

©D. Poole 2024 CPSC 312 — Lecture 29 6 / 20

Challenges of building ontologies

They can be huge: finding the appropriate terminology for a
concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

©D. Poole 2024 CPSC 312 — Lecture 29 7 / 20

Semantic Web Technologies Revisited

RDF the Resource Description Framework is a language of
triples, including the property rdf:type and containers (bags,
lists, etc)

RDF-S RDF Schema is RDF plus the class: rdfs:Class, and
properties: rdfs:domain, rdfs:range, rdfs:subClassOf,
rdfs:subPropertyOf, . . .

Lots of alternative syntaxes: XML, Turtle, N-Triples, Json . . .

OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

SPARQL Query Language for RDF

SWRL Semantic web rule language

©D. Poole 2024 CPSC 312 — Lecture 29 8 / 20

Main Components of an Ontology

Individuals the things / objects in the world (not usually
specified as part of the ontology)

Classes sets of individuals

Properties between individuals and their values

©D. Poole 2024 CPSC 312 — Lecture 29 9 / 20

Individuals

Individuals are things that can be named.

Unique names assumption (UNA): different names refer to
different individuals.

The UNA is not an assumption you can universally make:
“Lewis Carroll”, “Charles Lutwidge Dodgson”, “the author of
Alice’s Adventures in Wonderland” etc.

Without the determining equality, we can’t count!
Joe’s mother is in the room. Sam’s cousin is there. Chris’s
football coach is there. How many people are in the room?

Using OWL:

(i1, ’owl:SameIndividual’, i2)

(i1, ’owl:DifferentIndividuals’, i3)

©D. Poole 2024 CPSC 312 — Lecture 29 10 / 20

Classes

A class is a set of individuals. E.g., house, officeBuilding

One class can be a subclass of another

(house, ’rdfs:SubClassOf’, building)

(officeBuilding , ’rdfs:SubClassOf’, building)

(or ’owl:subClassOf’)

The most general class is ’owl:Thing’.

Classes can be declared to be the same or to be disjoint:

(house, ’owl:EquivalentClasses’, singleFamilyDwelling)

(house, ’owl:DisjointClasses’, officeBuilding)

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

see http://www.cs.ubc.ca/~poole/cs312/2024/prolog/sem_
web_schema.pl

©D. Poole 2024 CPSC 312 — Lecture 29 11 / 20

http://www.cs.ubc.ca/~poole/cs312/2024/prolog/sem_web_schema.pl
http://www.cs.ubc.ca/~poole/cs312/2024/prolog/sem_web_schema.pl

Example Concepts in an Ontology

The following are some of the concepts in an ontology for
documents.
http://www.cs.umd.edu/projects/plus/DAML/onts/

docmnt1.0.daml

homepage correspondence publication
letter periodical article
book email magazine
journal document communication
workshopPaper journalPaper discussion
newspaper PersonalHomepage speech

©D. Poole 2024 CPSC 312 — Lecture 29 12 / 20

http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml

Properties

A property is between an individual and a value.

A property has a domain and a range.

rdfs:domain(livesIn, person)

rdfs:range(livesIn, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

rdfs:subPropertyOf(livesIn, enclosure)

rdfs:subPropertyOf(principalResidence, livesIn)

©D. Poole 2024 CPSC 312 — Lecture 29 13 / 20

Clicker Question

Suppose we are given the following triple as true:

years_eligibility ’rdfs:domain’ student.

sam years_eligibility 3.

Which is the following can we infer

A Sam is a student

B Sam could a student (but maybe isn’t)

C All students have value 3 for years_eligibility

D We can infer nothing about whether Sam is a student

©D. Poole 2024 CPSC 312 — Lecture 29 14 / 20

Clicker Question

Suppose we are given the following triples as true:

years_eligibility ’rdfs:domain’ student.

years_eligibility ’rdfs:domain’ athlete.

sam years_eligibility 3.

Which is the following is true

A Sam is both a student and an athlete.

B Sam could be either student or an athlete.

C We can infer nothing about whether Sam is an athlete or a
student

D There are no student athletes.

E The facts are inconsistent, and couldn’t possible all be true

©D. Poole 2024 CPSC 312 — Lecture 29 15 / 20

Clicker Question

RDF-schema provides a vocabulary for classes and properties.
RDF-schema has a syntax for domain and range of a property.
schema.org does not use rdfs:domain and rdfs:range. Why?

A The scheme.org designers didn’t know about it even though
they used other terminology from RDF-schema

B The scheme.org designers didn’t care about domains and
ranges because they just wanted to define a vocabulary.

C schema.org does not define anything, and so does not need
domain and ranges

D The scheme.org designers did not want the meaning
associated with RDF-schema’s domain and range.

©D. Poole 2024 CPSC 312 — Lecture 29 16 / 20

Properties (Cont.)

One property can be inverse of another

owl:InverseObjectProperties(livesIn, hasResident)

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

We can also state the minimum and maximal cardinality of a
property.

owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

©D. Poole 2024 CPSC 312 — Lecture 29 17 / 20

Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

owl:subClassOf(homeOwner,person)

owl:subClassOf(homeOwner ,

owl:ObjectSomeValuesFrom(owns, house))

©D. Poole 2024 CPSC 312 — Lecture 29 18 / 20

OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

©D. Poole 2024 CPSC 312 — Lecture 29 19 / 20

OWL Predicates

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j ̸= k implies Ij ̸= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

©D. Poole 2024 CPSC 312 — Lecture 29 20 / 20

