CPSC 312 — Functional and Logic Programming

@ Project #2 - should be underway....

o Talk to a TA if you want to change your project, or it has
drifted from what was originally proposed.

“Pascal [Java] is for building pyramids — imposing, breathtaking,
static structures built by armies pushing heavy blocks into place.
Lisp [Haskell /Prolog] is for building organisms — imposing,
breathtaking, dynamic structures built by squads fitting fluctuating
myriads of simpler organisms into place.

the pyramid must stand unchanged for a millennium; the organism
must evolve or perish.”

— Alan J. Perlis, Foreword to “Structure and Interpretation of
Computer Programs”, 1985, 1996

©D. Poole 2024 CPSC 312 — Lecture 29 1/20

Last time

o difference lists

o definite clause grammars

@ natural language interfaces to databases

@ computer algebra and calculus

@ Knowledge graphs, triples, reification, URI, RDF, triple store
Today

@ Semantic web

@ Ontologies

©D. Poole 2024 CPSC 312 — Lecture 29 2/20

Ontologies and Knowledge Sharing

Building large knowledge respoitories:
@ Knowledge often comes from multiple sources.
@ Fields have their own terminology and division of the world.

@ Systems evolve over time and it is difficult to anticipate all
future distinctions that should be made.

@ Designers must agree on what indiviuals, classes and
relationships to represent. The world is not divided into
individuals.

@ It is often difficult to remember what notation means:

» Given a symbol used in the computer, what does it mean?
» Given a concept in someone’s mind, what symbol to use?
» Has the concept already been defined?
> |f already defined, what symbol has been used for it?
> If not already defined, what can it be defined in terms of?

©D. Poole 2024 CPSC 312 — Lecture 29 3/20

Knowledge Sharing

@ |dea: Let's better represent an intended interpretation, so that
computers as well as people can understand it.
@ A conceptualization is a map from the problem domain into
the representation. A conceptualization specifies:
» What sorts of individuals are being modeled
» The vocabulary for specifying individuals, relations and
properties
» The meaning or intention of the vocabulary
@ If more than one person is building a knowledge base, they
must be able to share the conceptualization.
— challenge: inter-operability of separately designed
knowledge bases.

@ An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

©D. Poole 2024 CPSC 312 — Lecture 29 4/20

Mapping from a conceptualization to a symbol

©D. Poole 2024 CPSC 312 — Lecture 29 5/20

@ Ontologies are published on the web in machine readable form.

@ Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

» A symbol defined by an ontology means the same thing across
web sites that obey the ontology.

» |f someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

» Separately developed ontologies can have mappings between
them published.

©D. Poole 2024 CPSC 312 — Lecture 29 6/20

Challenges of building ontologies

@ They can be huge: finding the appropriate terminology for a
concept may be difficult.

@ How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

@ People can fundamentally disagree about an appropriate
structure.

o Different knowledge bases can use different ontologies.

@ To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

@ It has to be in user’s interests to use an ontology.

@ The computer doesn't understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

©D. Poole 2024 CPSC 312 — Lecture 29 7/20

Semantic Web Technologies Revisited

@ RDF the Resource Description Framework is a language of
triples, including the property rdf: type and containers (bags,
lists, etc)

@ RDF-S RDF Schema is RDF plus the class: rdfs:Class, and
properties: rdfs:domain, rdfs:range, rdfs:subClassOf,
rdfs:subProperty0f, ...

@ Lots of alternative syntaxes: XML, Turtle, N-Triples, Json ...

@ OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Uses
multiple alternative syntaxes).

o SPARQL Query Language for RDF
@ SWRL Semantic web rule language

©D. Poole 2024 CPSC 312 — Lecture 29 8/20

Main Components of an Ontology

e Individuals the things / objects in the world (not usually
specified as part of the ontology)

@ Classes sets of individuals

@ Properties between individuals and their values

©D. Poole 2024 CPSC 312 — Lecture 29 9/20

Individuals

@ Individuals are things that can be named.

@ Unique names assumption (UNA): different names refer to
different individuals.

@ The UNA is not an assumption you can universally make:
“Lewis Carroll”, “Charles Lutwidge Dodgson”, “the author of
Alice's Adventures in Wonderland” etc.

@ Without the determining equality, we can't count!
Joe's mother is in the room. Sam'’s cousin is there. Chris's
football coach is there. How many people are in the room?

@ Using OWL:
(i1, 'owl:Samelndividual’, ip)
(i1, 'owl:DifferentIndividuals’, i3)

©D. Poole 2024 CPSC 312 — Lecture 29 10/20

Classes

@ A class is a set of individuals. E.g., house, officeBuilding

@ One class can be a subclass of another
(house, 'rdfs:SubClassOf', building)
(officeBuilding, 'rdfs:SubClassOf’, building)

(or "owl:subClassOf")

@ The most general class is 'owl: Thing'.

@ Classes can be declared to be the same or to be disjoint:
(house, "owl:EquivalentClasses’, singleFamilyDwelling)
(house, "owl:DisjointClasses’, officeBuilding)

o Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.
see http://www.cs.ubc.ca/~poole/cs312/2024/prolog/sem_
web_schema.pl

©D. Poole 2024 CPSC 312 — Lecture 29 11/20

http://www.cs.ubc.ca/~poole/cs312/2024/prolog/sem_web_schema.pl
http://www.cs.ubc.ca/~poole/cs312/2024/prolog/sem_web_schema.pl

Example Concepts in an Ontology

The following are some of the concepts in an ontology for
documents.
http://www.cs.und.edu/projects/plus/DAML/onts/
docmnt1.0.daml

homepage correspondence publication
letter periodical article

book email magazine
journal document communication
workshopPaper journalPaper discussion
newspaper PersonalHomepage speech

©D. Poole 2024 CPSC 312 — Lecture 29 12 /20

http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml
http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml

A property is between an individual and a value.

A property has a domain and a range.
rdfs:domain(/ivesin, person)

rdfs:range(livesin, placeOfResidence)

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:
rdfs:subPropertyOf(/livesin, enclosure)

rdfs:subPropertyOf (principalResidence, livesin)

©D. Poole 2024 CPSC 312 — Lecture 29 13/20

Clicker Question

Suppose we are given the following triple as true:
years_eligibility ’rdfs:domain’ student.
sam years_eligibility 3.
Which is the following can we infer
A Sam is a student
B Sam could a student (but maybe isn't)
C All students have value 3 for years_eligibility

D We can infer nothing about whether Sam is a student

©D. Poole 2024 CPSC 312 — Lecture 29 14 /20

Clicker Question

Suppose we are given the following triples as true:

years_eligibility ’rdfs:domain’ student.
years_eligibility ’rdfs:domain’ athlete.
sam years_eligibility 3.
Which is the following is true

A Sam is both a student and an athlete.

B Sam could be either student or an athlete.

C We can infer nothing about whether Sam is an athlete or a
student

D There are no student athletes.

E The facts are inconsistent, and couldn’t possible all be true

©D. Poole 2024 CPSC 312 — Lecture 29 15/20

Clicker Question

RDF-schema provides a vocabulary for classes and properties.
RDF-schema has a syntax for domain and range of a property.
schema.org does not use rdfs:domain and rdfs:range. Why?

A

B

The scheme.org designers didn't know about it even though
they used other terminology from RDF-schema

The scheme.org designers didn't care about domains and
ranges because they just wanted to define a vocabulary.

schema.org does not define anything, and so does not need
domain and ranges

The scheme.org designers did not want the meaning
associated with RDF-schema's domain and range.

©D. Poole 2024 CPSC 312 — Lecture 29 16 /20

Properties (Cont.)

@ One property can be inverse of another

owl:InverseObjectProperties(/ivesin, hasResident)

@ Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.
(Which of these are only applicable to object properties?)

@ We can also state the minimum and maximal cardinality of a
property.
owl:minCardinality(principalResidence, 1)

owl:maxCardinality(principalResidence, 1)

©D. Poole 2024 CPSC 312 — Lecture 29 17 /20

Property and Class Restrictions

@ We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner C personN{x : 3h € house such that x owns h}

owl:subClassOf(homeOwner,person)
owl:subClassOf (homeOwner,

owl:ObjectSomeValuesFrom(owns, house))

©D. Poole 2024 CPSC 312 — Lecture 29 18 /20

OWL Class Constructors

owl: Thing = all individuals
owl:Nothing = no individuals
owl:ObjectIntersectionOf (Cy,...,C) = G N ---N Ck
owl:ObjectUnionOf(Cy, ..., Cx) = GG U--- U Cy
owl:ObjectComplementOf(C) = Thing \ C
owl:ObjectOneOf(h, ..., Ix) = {h,..., Ik}
owl:ObjectHasValue(P, /) = {x : x P I}
owl:ObjectAllValuesFrom(P,C) = {x: x Py - y € C}
owl:ObjectSomeValuesFrom(P, C) =

{x:3y € C such that x P y}
owl:ObjectMinCardinality(n, P, C) =

{x: #{ylxPy and y € C} > n}
owl:ObjectMaxCardinality(n, P, C) =

{x: #{ylxPy and y € C} < n}

©D. Poole 2024 CPSC 312 — Lecture 29 19/20

OWL Predicates

owl:EquivalentClasses(Cy, () = G = G
owl:DisjointClasses(Cy, &) = G N G = {}
owl:EquivalentObjectProperties(P, P;) = xP1y if and only if xPoy
owl:DisjointObjectProperties(P1, P2) = xP1y implies not xP,y
owl:InverseObjectProperties(P1, P>) = xPyy if and only if yP,x
owl:Samelndividual(h, ..., I,) =VjVk I} = I
owl:DifferentIndividuals(/y, ..., I,) = VjVk j # k implies I; # I;
owl:FunctionalObjectProperty(P) = if xPy; and xPy; then y; = y»
owl:InverseFunctionalObjectProperty(P) =

if x1Py and xoPy then x; = x»
owl: TransitiveObjectProperty(P) = if xPy and yPz then xPz
owl:SymmetricObjectProperty = if xPy then yPx

©D. Poole 2024 CPSC 312 — Lecture 29 20/20

