
CPSC 312 — Functional and Logic Programming

Project #2 - get started!

“In Prolog, as in most halfway decent programming languages,
there is no tension between writing a beautiful program an writing
an efficient program. If your Prolog code is ugly, the chances are
that you either don’t understand your problem or don’t understand
your programming language, and in neither case does your code
stand much chance of being efficient. In order to ensure your
program is efficient, you need to know what it is doing, and if your
code is ugly, you will find it hard to analyse.”

Richard A. O’Keefe, “The Craft of Prolog”, 1990.

©D. Poole 2024 CPSC 312 — Lecture 26 1 / 18

Plan

Last time

difference lists

definite clause grammars

computer algebra and calculus

To do

natural language interfaces to databases

Semantic web

negation as failure

pragmatic choices of Prolog

proofs with variables and complex terms

©D. Poole 2024 CPSC 312 — Lecture 26 2 / 18

Definite Clause Grammars

A sentence consists of a noun phrase followed by a verb
phrase.

sentence(L,E) is true if (L,E) forms a difference list that is a
sentence

noun phrase(L,E) is true if (L,E) forms a difference list that
is a noun phrase

verb phrase(L,E) is true if (L,E) forms a difference list that
is a verb phrase

sentence(L_0,L_2) :-

noun_phrase(L_0,L_1),

verb_phrase(L_1,L_2).

©D. Poole 2024 CPSC 312 — Lecture 26 3 / 18

Question-answering

How can we get from natural language directly to the answer?

Goal: map natural language to a query that is asked of a
knowledge base.

Add arguments representing the individual

noun phrase(T0,T1,O)

means
▶ T0 − T1 is a difference list forming a noun phrase.
▶ The noun phrase refers to the individual O.

Can be implemented by the parser directly calling the
knowledge base.

©D. Poole 2024 CPSC 312 — Lecture 26 4 / 18

Example natural language to query

see
https://www.cs.ubc.ca/~poole/cs312/2024/prolog/

geography_QA.pl

©D. Poole 2024 CPSC 312 — Lecture 26 5 / 18

https://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA.pl
https://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA.pl

Noun Phrases

% A noun phrase is a determiner followed by adjectives followed

% by a noun followed by an optional modifying phrase:

noun_phrase(L0, L4, Ind) :-

det(L0, L1, Ind),

adjectives(L1, L2, Ind),

noun(L2, L3, Ind),

omp(L3, L4, Ind).

©D. Poole 2024 CPSC 312 — Lecture 26 6 / 18

Adjectives provide properties

% adj(T0,T1,Entity) is true if T0-T1

% is an adjective that is true of Entity

adj(["large" | L], L, Ind) :- large(Ind).

adj([LangName, "speaking" | L], L, Ind) :-

language(Ind, Lang), name(Lang, LangName).

% adjectives(T0,T1,Entity) is true if

% T0-T1 is a sequence of adjectives that true of Entity

adjectives(T0,T2,Entity) :-

adj(T0,T1,Entity),

adjectives(T1,T2,Entity).

adjectives(T,T,_).

©D. Poole 2024 CPSC 312 — Lecture 26 7 / 18

Verbs and propositions provide relations

reln(T0,T1,Subject,Object)

T0− T1 is a verb or preposition that provides

a relation that true between Subject and Object

reln(["borders" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["bordering" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["next", "to" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["the", "capital", "of" | L], L, Sub, Obj) :-

capital(Obj, Sub).

reln(["the", "name", "of" | L], L, Sub, Obj) :-

name(Obj, Sub).

©D. Poole 2024 CPSC 312 — Lecture 26 8 / 18

Verbs and propositions provide relations

% A modifying phrase / relative clause is either

% a relation (verb or preposition)

% followed by a noun_phrase or

% ’that’ followed by a relation then a noun_phrase

mp(L0, L2, Subject) :-

reln(L0, L1, Subject, Object),

aphrase(L1, L2, Object).

mp(["that" | L0], L2, Subject) :-

reln(L0, L1, Subject, Object),

aphrase(L1, L2, Object).

% An optional modifying phrase is either a modifying phrase or nothing

omp(L0,L1,E) :-

mp(L0,L1,E).

omp(L, L, _).

©D. Poole 2024 CPSC 312 — Lecture 26 9 / 18

Clicker Question

What if geography_QA contained this as the definition of
adjectives (where adjectives and adj are in a different order
in the body):

adjectives(L0, L2, Ind) :-

adjectives (L0, L1, Ind),

adj(L1, L2, Ind).

adjectives(L, L, _).

A it would work the same

B it might give incorrect results when the original doesn’t

C it might fail in cases when the original doesn’t

D it might not halt in cases when the original halts

©D. Poole 2024 CPSC 312 — Lecture 26 10 / 18

Real-world queries

Want a tokenizer: mapping from strings to sequence of words.
split_string or readln provides a simple ones.

What should the system do with ungrammatical sentences?

What should the system do with new words?

What about pronoun references?
The student took many courses. Two computer science
courses and one mathematics course were particularly dif-
ficult. The mathematics course. . .
Who was the captain of the Titanic?
Was she tall?

And other tricky and subtle aspects of English?
— program them
— learn them

©D. Poole 2024 CPSC 312 — Lecture 26 11 / 18

Example natural language to query

see
http://www.cs.ubc.ca/~poole/cs312/2024/prolog/

geography_QA.pl

What does it mean if it answers false?
We can’t tell whether it couldn’t parse the question or there
were no answers to the question.

Almost impossible to debug.

Idea: parse the sentence first, building a query that is then
asked of the database.

http://www.cs.ubc.ca/~poole/cs312/2024/prolog/

geography_QA_query.pl

©D. Poole 2024 CPSC 312 — Lecture 26 12 / 18

http://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA.pl
http://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA.pl
http://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA_query.pl
http://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA_query.pl

Building a list of constraints on the entity
(geography QA query.pl)

noun phrase(L0,L4,Entity,C0,C4) is true if

L0 and L4 are list of words, such that
▶ L4 is an ending of L0
▶ the words in L0 before L4 (written L0−L4) form a noun phrase

Entity is an individual that the noun phrase is referring to

C0 is a list such that C4 is an ending of C0 and C0− C4
contains the constraints imposed by the noun phrase

noun_phrase(L0,L4,Entity,C0,C4) :-

det(L0,L1,Entity,C0,C1),

adjectives(L1,L2,Entity,C1,C2),

noun(L2,L3,Entity,C2,C3),

mp(L3,L4,Entity,C3,C4).

©D. Poole 2024 CPSC 312 — Lecture 26 13 / 18

Building a list of constraints on the entity
(geography QA query.pl)

Nouns and adjectives provide constraints:

adj([large | L],L,Entity, [large(Entity)|C],C).

adj([Lang,speaking | L],L,Entity,

[speaks(Entity,Lang)|C],C).

noun([country | L],L,Entity, [country(Entity)|C],C).

noun([city | L],L,Entity, [city(Entity)|C],C).

Verbs and propositions provide relations
reln(T0,T1,Subject,Object,C0,C1)
▶ T0− T1 is a verb or preposition that provides relations in

C0− C1 that is true between individuals Subject and Object

reln([borders | L],L,O1,O2,[borders(O1,O2)|C],C).

reln([the,capital,of | L],L,O1,O2,

[capital(O2,O1)|C],C).

reln([next,to | L],L,O1,O2, [borders(O1,O2)|C],C).

©D. Poole 2024 CPSC 312 — Lecture 26 14 / 18

Clicker Question

If the query for the grammar rule

noun_phrase(["the","cat","on","the","mat","sat","on","the","hat"],

R, Ent, C0, C1).

returns with substitution R=["sat","on","the","hat"]

What do we hope the value of C0 and C1 is:

A C0 = [”the”, ”cat”, ”on”, ”the”, ”mat”|C1]

B C0 = [cat(Ent), on(Ent,A),mat(A)|C1]

C C0 = felix ,C1 = fluffy

D C0 = C1

E we would hope this would fail

©D. Poole 2024 CPSC 312 — Lecture 26 15 / 18

Clicker Question

Which specifies that sat is a verb, than indicates the relation sat:

A
reln([sat | L], L, Sub, Obj, [sat(Sub,Obj) | C], C).

B reln([sat | L], L, Sub, Obj, [sat | C], C).

C reln([sat | L], L, Sub, Obj, sat(Sub,C), C).

D reln([sat | L], L, Sub, Obj, sat(Sub,Obj), C).

E It can’t be done

©D. Poole 2024 CPSC 312 — Lecture 26 16 / 18

Augmenting the Grammar

Two mechanisms can make the grammar more expressive:
extra arguments to the non-terminal symbols
arbitrary conditions on the rules.

We have a Turing-complete programming language at our disposal!

©D. Poole 2024 CPSC 312 — Lecture 26 17 / 18

NLP requires Understanding (Winograd Schemas)

The city councilmen refused the demonstrators a permit
because they feared violence. Who feared violence?

The city councilmen refused the demonstrators a permit
because they advocated violence. Who advocated violence?

Steve follows Fred’s example in everything. He
[admires/influences] him hugely. Who [admires/influences]
whom?

The table won’t fit through the doorway because it is too
[wide/narrow]. What is too [wide/narrow]?

Grace was happy to trade me her sweater for my jacket. She
thinks it looks [great/dowdy] on her. What looks
[great/dowdy] on Grace?

Bill thinks that calling attention to himself was rude [to/of]
Bert. Who called attention to himself?

In a recent competition, the best algorithm got 58% correct!
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html

©D. Poole 2024 CPSC 312 — Lecture 26 18 / 18

https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html

