
CPSC 312 — Functional and Logic Programming

Midterm #3 on Monday! — more details on web site
(yes, it’s like the others, only different questions)

Solution to assignment 5 available.

But what is truly distinctive and valuable about human natural
language is its semantic or representational capacities — the
features of language responsible for how words carry meaning, and
how words can be combined into sentences to make an indefinite
number of distinct, meaningful assertions about the world.

Kevin deLaplante “All the Formal Logic You Need to Know for
Critical Thinking”

https://criticalthinkeracademy.com/courses/2514/

lectures/751606

©D. Poole 2024 CPSC 312 — Lecture 25 1 / 1

https://criticalthinkeracademy.com/courses/2514/lectures/751606
https://criticalthinkeracademy.com/courses/2514/lectures/751606


Since the midterm...

Syntax and semantics of propositional definite clauses

Bottom-up proof procedure computes a consequence set using
modus ponens.

Top-down proof procedure answers a query using resolution.

The box model provides a way to procedurally understand the
top-down proof procedure with depth-first search.

Prolog Syntax: Predicate symbols, constants, variables,
function symbols.

Prolog Semantics: Interpretations, variable assignments,
models, logical consequence.

Functions applied to arguments refer to individuals.
Individuals are described using clauses.
(Prolog’s function symbols are like Haskell constructors.)
Special syntax for lists; internally a binary function ’[|]’.

Today: algebra, calculus, natural language queries...

©D. Poole 2024 CPSC 312 — Lecture 25 2 / 1



Writing a Prolog program

To write a Prolog program:

Have a clear intended interpretation – what all predicates,
functions and constants mean

Don’t tell lies.
Make sure all clauses are true given your meaning for the
constants, functions, predicates.

Make sure that the clauses cover all of the cases when a
predicate is true.

Avoid cycles.

Design top-down, build bottom-up.

Debug all predicates as you write them.

To solve a complex problem break it into simpler problems.

©D. Poole 2024 CPSC 312 — Lecture 25 3 / 1



Computer Algebra (algebra.pl)

Because Prolog does not evaluate expressions, an algebraic
expression can be manipulated. E.g., as in Assignment 5.

Algebraic variables can be treated as Prolog constants.
(Remember Prolog variables mean “for all”).

Derivatives can be defined using
deriv(E ,X ,DE ) is true if DE is the derivative of E with
respect to X

Expressions can be simplified: To simplify A ∗ B: first simplify
A and B, then check for multiplication by 0 or 1 or when both
simplify to numbers.

More sophisticated simplification is possible (but difficult).

Multivariate differentiation just works.

Integration is more difficult (finding when to apply rules is
more complicated)

©D. Poole 2024 CPSC 312 — Lecture 25 4 / 1



Definite Clause Grammars

A sentence consists of a noun phrase followed by a verb
phrase.

sentence(L,E ) is true if (L,E ) forms a difference list that is a
sentence

noun phrase(L,E ) is true if (L,E ) forms a difference list that
is a noun phrase

verb phrase(L,E ) is true if (L,E ) forms a difference list that
is a verb phrase

sentence(L_0,L_2) :-

noun_phrase(L_0,L_1),

verb_phrase(L_1,L_2).

©D. Poole 2024 CPSC 312 — Lecture 25 5 / 1



Question-answering

How can we get from natural language directly to the answer?

Goal: map natural language to a query that is asked of a
knowledge base.

Add arguments representing the individual

noun phrase(T0,T1,O)

means
▶ T0 − T1 is a difference list forming a noun phrase.
▶ The noun phrase refers to the individual O.

Can be implemented by the parser directly calling the
knowledge base.

©D. Poole 2024 CPSC 312 — Lecture 25 6 / 1



Example natural language to query

see
https://www.cs.ubc.ca/~poole/cs312/2024/prolog/

geography_QA.pl

©D. Poole 2024 CPSC 312 — Lecture 25 7 / 1

https://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA.pl
https://www.cs.ubc.ca/~poole/cs312/2024/prolog/geography_QA.pl


Noun Phrases

% A noun phrase is a determiner followed by adjectives followed

% by a noun followed by an optional modifying phrase:

noun_phrase(L0, L4, Ind) :-

det(L0, L1, Ind),

adjectives(L1, L2, Ind),

noun(L2, L3, Ind),

omp(L3, L4, Ind).

©D. Poole 2024 CPSC 312 — Lecture 25 8 / 1



Adjectives provide properties

% adj(T0,T1,Entity) is true if T0-T1

% is an adjective that is true of Entity

adj(["large" | L], L, Ind) :- large(Ind).

adj([LangName, "speaking" | L], L, Ind) :-

language(Ind, Lang), name(Lang, LangName).

% adjectives(T0,T1,Entity) is true if

% T0-T1 is a sequence of adjectives that true of Entity

adjectives(T0,T2,Entity) :-

adj(T0,T1,Entity),

adjectives(T1,T2,Entity).

adjectives(T,T,_).

©D. Poole 2024 CPSC 312 — Lecture 25 9 / 1



Verbs and propositions provide relations

reln(T0,T1,Subject,Object)

T0− T1 is a verb or preposition that provides

a relation that true between Subject and Object

reln(["borders" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["bordering" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["next", "to" | L], L, Sub, Obj) :- borders(Sub, Obj).

reln(["the", "capital", "of" | L], L, Sub, Obj) :-

capital(Obj, Sub).

reln(["the", "name", "of" | L], L, Sub, Obj) :-

name(Obj, Sub).

©D. Poole 2024 CPSC 312 — Lecture 25 10 / 1



Verbs and propositions provide relations

% A modifying phrase / relative clause is either

% a relation (verb or preposition)

% followed by a noun_phrase or

% ’that’ followed by a relation then a noun_phrase

mp(L0, L2, Subject) :-

reln(L0, L1, Subject, Object),

aphrase(L1, L2, Object).

mp(["that" | L0], L2, Subject) :-

reln(L0, L1, Subject, Object),

aphrase(L1, L2, Object).

% An optional modifying phrase is either a modifying phrase or nothing

omp(L0,L1,E) :-

mp(L0,L1,E).

omp(L, L, _).

©D. Poole 2024 CPSC 312 — Lecture 25 11 / 1


