
CPSC 312 — Functional and Logic Programming

Assignment 5 is due on Thursday

Midterm #3 next week — more details on web site

“Contrariwise,” continued Tweedledee, “if it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.”

– Lewis Carroll, Through the Looking-Glass

©D. Poole 2024 CPSC 312 — Lecture 23 1 / 12

Since the midterm...

Done:

Syntax and semantics of propositional definite clauses

Model a simple domain using propositional definite clauses

Bottom-up proof procedure computes a consequence set using
modus ponens.

Top-down proof procedure answers a query using resolution.

The box model provides a way to procedurally understand the
top-down proof procedure with depth-first search.

Syntax of Datalog: Predicate symbols, constants, variables,
queries.

Semantics of Datalog: Interpretations, variable assignments,
models, logical consequence.

Functions applied to arguments refer to individuals.
Individuals are described using clauses.
(Function symbols are like Haskell constructors.)

©D. Poole 2024 CPSC 312 — Lecture 23 2 / 12

Writing a Prolog program

To write a Prolog program:

Have a clear intended interpretation – what all predicates,
functions and constants mean

Don’t tell lies.
Make sure all clauses are true given your meaning for the
constants, functions, predicates.

Make sure that the clauses cover all of the cases when a
predicate is true.

Avoid cycles.

Design top-down, build bottom-up.

Debug all predicates as you write them.

To solve a complex problem break it into simpler problems.

©D. Poole 2024 CPSC 312 — Lecture 23 3 / 12

Function Symbols

We extend the notion of term. So that a term can be
▶ a variable
▶ a constant
▶ of form f (t1, . . . , tn) where f is a function symbol and the ti

are terms.

©D. Poole 2024 CPSC 312 — Lecture 23 4 / 12

Syntactic Sugar for Lists (lists.pl)

The empty list is []

The list with first element H and the rest of the list T is
[H | T].

[· · · a · · · | []] written as [· · · a · · ·].
[· · · a · · · | [· · · b · · ·]] written as [· · · a · · · , · · · b · · ·].

Examples

list(L) is true if L is a list

member(X , L) is true if X is an element of list L

append(A,B,C) is true if C contains the elements of A
followed by the elements of B

numeq(X , L,N) is true if N is the number of instances of X in
L.

©D. Poole 2024 CPSC 312 — Lecture 23 5 / 12

Lists examples (lists.pl)

Define sum(L, S) that is true when S is the sum of the
elements of list L.

Define sum3(L,A,S) is true if S is A plus the sum of the
elements of L

Define: reverse(L,R) is true if R has same elements as L in
reverse order.

Define reverse3(L,A,R) is true if R consists of the elements
of L reversed followed by the elements of A

©D. Poole 2024 CPSC 312 — Lecture 23 6 / 12

Lists examples (lists.pl)

Compare

% append(L,A,R) is true if list R contains the

% elements of list L followed by the elements of list A

append([],R,R).

append([H|T],A,[H|R]) :-

append(T,A,R).

% reverse3(L,A,R) is true if R contains the

% elements of L reversed followed by the elements of A

reverse3([],R,R).

reverse3([H|T],A,R) :-

reverse3(T,[H|A],R).

©D. Poole 2024 CPSC 312 — Lecture 23 7 / 12

Clicker Question

% append(L,A,R) is true if R contains the

% elements of L followed by the elements of A

append([],L,L).

append([H|T],A,[H|R]) :-

append(T,A,R).

What is the answer to query

?- append([a,b,c],X,Y).

A There are no proofs

B Y = [a, b, c|X]

C X = [], Y = [a ,b, c]

D X = Y = [a, b ,c]

B Y = [a, b, c, X]

©D. Poole 2024 CPSC 312 — Lecture 23 8 / 12

Clicker Question

% reverse3(L,A,R) is true if list R consists of

% the elements of list L reversed

% followed by the elements of list A

reverse3([],R,R).

reverse3([H|T],A,R) :-

reverse3(T,[H|A],R).

What is the answer to query

?- reverse3([a,b,c],X,Y).

A There are no proofs

B Y = [c, b, a|X]

C Y = [c ,b, a], X=[]

D Y = X = [c, b, a]

E Y = [c, b, a, X]

©D. Poole 2024 CPSC 312 — Lecture 23 9 / 12

Clicker Question

revapp([],R,R).

revapp([H|T],A,[H|R]) :-

revapp(T,[H|A],R).

What is the answer to query

?- revapp([a,b,c],X,Y).

A There are no proofs

B Y = [c, b, a, c, b, a|X]

C Y = [a, b, c, a, b, c|X]

D Y = [c, b, a, a, b, c|X]

E Y = [a, b, c, c, b, a|X]

©D. Poole 2024 CPSC 312 — Lecture 23 10 / 12

Trees (bstree.pl)

A binary search tree can be used as a representation for
dictionaries.

A binary search tree is either
▶ empty or
▶ bnode(Key ,Val ,T0,T1) where Key has value Val and T0 is

the tree of keys less than Key and T1 is the tree of keys
greater than Key

Define val(K ,V ,T) is true if key K has value V in tree T

Define insert(K ,V ,T0,T1) true if T1 is the result of
inserting K = V into tree T0

©D. Poole 2024 CPSC 312 — Lecture 23 11 / 12

Trees (bstreec.pl)

In Prolog, when X < Y is called, both X and Y must be
ground (variable free) numbers

There are constraint solvers that let Prolog act more logically.
X #< Y specifies the constraint that X < Y .

Eg, consider the query

val(K,V,bnode(2,22, bnode(1,57,empty,empty),

bnode(5,105,empty,empty))).

< is much faster as it can be evaluated immediately.

#< requires more sophisticated reasoning.

?- val(K,V,bnode(2,22, bnode(1,57,empty,empty),

bnode(5,105,empty,empty))), V #< 99.

?- V #< 99, val(K,V,bnode(2,22,

bnode(1,57,empty,empty),

bnode(5,105,empty,empty))).

©D. Poole 2024 CPSC 312 — Lecture 23 12 / 12

