CPSC 312 — Functional and Logic Programming

@ Assignment 5 is due on Thursday

o Midterm #3 next week — more details on web site

“Contrariwise,” continued Tweedledee, “if it was so, it might be;
and if it were so, it would be; but as it isn't, it ain’t. That's logic.”

— Lewis Carroll, Through the Looking-Glass

©D. Poole 2024 CPSC 312 — Lecture 23 1/12



Since the midterm...

Done:

Syntax and semantics of propositional definite clauses
Model a simple domain using propositional definite clauses

Bottom-up proof procedure computes a consequence set using
modus ponens.

Top-down proof procedure answers a query using resolution.

The box model provides a way to procedurally understand the
top-down proof procedure with depth-first search.

Syntax of Datalog: Predicate symbols, constants, variables,
queries.

Semantics of Datalog: Interpretations, variable assignments,
models, logical consequence.

Functions applied to arguments refer to individuals.
Individuals are described using clauses.

(Function symbols are like Haskell constructors.)

©D. Poole 2024 CPSC 312 — Lecture 23 2/12



Writing a Prolog program

To write a Prolog program:

@ Have a clear intended interpretation — what all predicates,
functions and constants mean

@ Don't tell lies.
Make sure all clauses are true given your meaning for the
constants, functions, predicates.

@ Make sure that the clauses cover all of the cases when a
predicate is true.

Avoid cycles.
Design top-down, build bottom-up.

Debug all predicates as you write them.

To solve a complex problem break it into simpler problems.

©D. Poole 2024 CPSC 312 — Lecture 23 3/12



Function Symbols

@ We extend the notion of term. So that a term can be
» a variable
» a constant
> of form f(t,.

.., t,) where f is a function symbol and the ¢
are terms.

©D. Poole 2024 CPSC 312 — Lecture 23 4/12



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []
@ The list with first element H and the rest of the list T is

[H]T]
o [--a - |[]]writtenas[--a---].
o [-a|[-b-]]writtenas[--a--,---b-].
Examples

o list(L) is true if L is a list
e member(X, L) is true if X is an element of list L

e append(A, B, C) is true if C contains the elements of A
followed by the elements of B

e numeq(X, L, N) is true if N is the number of instances of X in
L.

©D. Poole 2024 CPSC 312 — Lecture 23 5/12



Lists examples (lists.pl)

e Define sum(L,S) that is true when S is the sum of the
elements of list L.

@ Define sum3(L, A, S) is true if S is A plus the sum of the
elements of L

e Define: reverse(L, R) is true if R has same elements as L in
reverse order.

e Define reverse3(L, A, R) is true if R consists of the elements
of L reversed followed by the elements of A

©D. Poole 2024 CPSC 312 — Lecture 23 6/12



Lists examples (lists.pl)

o Compare

% append(L,A,R) is true if list R contains the
% elements of list L followed by the elements of list !
append([],R,R).
append ([HIT],A, [HIR]) :-
append(T,A,R) .

% reverse3(L,A,R) is true if R contains the
% elements of L reversed followed by the elements of A
reverse3([],R,R).
reverse3([H|T],A,R) :-
reverse3(T, [H|A],R).

©D. Poole 2024 CPSC 312 — Lecture 23 7/12



Clicker Question

% append(L,A,R) is true if R contains the
% elements of L followed by the elements of A
append ([],L,L).
append ([H|T],A, [HIR]) :-
append(T,A,R) .

What is the answer to query
7- append([a,b,c],X,Y).
There are no proofs

Y = [a, b, clX]

(1, Y=1[a,b, cl
Y = [a, b ,c]

[a, b, ¢, X]

w O n ™ >

X
X
Y

©D. Poole 2024 CPSC 312 — Lecture 23 8/12



Clicker Question

% reverse3(L,A,R) is true if list R consists of
% the elements of list L reversed
% followed by the elements of list A
reverse3([],R,R).
reverse3([H|T],A,R) :-

reverse3(T, [H|A],R).

What is the answer to query
?- reverse3([a,b,c],X,Y).
There are no proofs

Y = [c, b, alX]

[c ,b, al, X=[]
X = [c, b, al
[c, b, a, X]

m O N W™ >

Y
Y
Y

©D. Poole 2024 CPSC 312 — Lecture 23 9/12



Clicker Question

revapp([],R,R).
revapp ([HIT],A, [HIR]) :-
revapp (T, [HIA],R).

What is the answer to query

?7- revapp([a,b,c],X,Y).

A There are no proofs

B Y=1I[c, b, a, ¢, b, alX]
C Y=1[a, b, c, a, b, cl|X]
D Y= I[c, b, a, a, b, clX]
E Y=1[a, b, c, c, b, alX]

©D. Poole 2024 CPSC 312 — Lecture 23 10/12



Trees (bstree.pl)

A binary search tree can be used as a representation for
dictionaries.
@ A binary search tree is either
> empty or
» bnode(Key, Val, TO, T1) where Key has value Val and TO is
the tree of keys less than Key and T1 is the tree of keys
greater than Key

o Define val(K, V, T) is true if key K has value V in tree T

e Define insert(K, V, T0, T1) true if T1 is the result of
inserting K = V into tree TO

©D. Poole 2024 CPSC 312 — Lecture 23 11/12



Trees (bstreec.pl)

@ In Prolog, when X < Y is called, both X and Y must be
ground (variable free) numbers

@ There are constraint solvers that let Prolog act more logically.
X #< Y specifies the constraint that X < Y.
o Eg, consider the query
val(K,V,bnode (2,22, bnode(1,57,empty,empty),
bnode (5,105, empty,empty))) .
@ < is much faster as it can be evaluated immediately.
@ #< requires more sophisticated reasoning.
7- val(X,V,bnode(2,22, bnode(1,57,empty,empty),
bnode (5,105, empty,empty))), V #< 99.
?7- V #< 99, val(K,V,bnode(2,22,
bnode(1,57,empty,empty),
bnode (5,105, empty,empty))) .

©D. Poole 2024 CPSC 312 — Lecture 23 12 /12



