CPSC 312 - Functional and Logic Programming

- Assignment 5 is due on Thursday
- Midterm \#3 next week - more details on web site
"Contrariwise," continued Tweedledee, "if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic."
- Lewis Carroll, Through the Looking-Glass

Since the midterm...

Done:

- Syntax and semantics of propositional definite clauses
- Model a simple domain using propositional definite clauses
- Bottom-up proof procedure computes a consequence set using modus ponens.
- Top-down proof procedure answers a query using resolution.
- The box model provides a way to procedurally understand the top-down proof procedure with depth-first search.
- Syntax of Datalog: Predicate symbols, constants, variables, queries.
- Semantics of Datalog: Interpretations, variable assignments, models, logical consequence.
- Functions applied to arguments refer to individuals.

Individuals are described using clauses.
(Function symbols are like Haskell constructors.)

Writing a Prolog program

To write a Prolog program:

- Have a clear intended interpretation - what all predicates, functions and constants mean
- Don't tell lies.

Make sure all clauses are true given your meaning for the constants, functions, predicates.

- Make sure that the clauses cover all of the cases when a predicate is true.
- Avoid cycles.
- Design top-down, build bottom-up.
- Debug all predicates as you write them.
- To solve a complex problem break it into simpler problems.

Function Symbols

- We extend the notion of term. So that a term can be
- a variable
- a constant
- of form $f\left(t_{1}, \ldots, t_{n}\right)$ where f is a function symbol and the t_{i} are terms.

Syntactic Sugar for Lists (lists.pl)

- The empty list is []
- The list with first element H and the rest of the list T is $[H \mid T]$.
- $[\cdots a \cdots \mid[]]$ written as $[\cdots a \cdots]$.
- $[\cdots a \cdots \mid[\cdots b \cdots]]$ written as $[\cdots a \cdots, \cdots b \cdots]$.

Examples

- list (L) is true if L is a list
- member (X, L) is true if X is an element of list L
- append (A, B, C) is true if C contains the elements of A followed by the elements of B
- numeq (X, L, N) is true if N is the number of instances of X in L.

Lists examples (lists.pl)

- Define $\operatorname{sum}(L, S)$ that is true when S is the sum of the elements of list L.
- Define sum3 (L, A, S) is true if S is A plus the sum of the elements of L
- Define: reverse (L, R) is true if R has same elements as L in reverse order.
- Define reverse3 (L, A, R) is true if R consists of the elements of L reversed followed by the elements of A

Lists examples (lists.pl)

- Compare
$\%$ append(L, A, R) is true if list R contains the
$\%$ elements of list L followed by the elements of list append ([],R,R). append ([H|T], A, [H|R]) :append (T,A,R).
\% reverse3(L,A,R) is true if R contains the
\% elements of L reversed followed by the elements of A reverse3([],R,R).
reverse3([H|T],A,R) :-
reverse3(T, [H|A],R).

Clicker Question

$\%$ append (L, A, R) is true if R contains the
\% elements of L followed by the elements of A append ([],L,L).
append ([H|T],A,[H|R]) :append ($\mathrm{T}, \mathrm{A}, \mathrm{R}$).

What is the answer to query
?- append([a,b, c],X,Y).
A There are no proofs
B $Y=[a, b, c \mid X]$
C $X=[], Y=[a, b, c]$
D $X=Y=[a, b, c]$
B $Y=[a, b, c, X]$

Clicker Question

\% reverse3(L,A,R) is true if list R consists of
\% the elements of list L reversed
\% followed by the elements of list A
reverse3([],R,R).
reverse3([H|T],A,R) :-
reverse3(T, [H|A],R).
What is the answer to query
?- reverse3([a,b, c], X,Y).
A There are no proofs
B $Y=[c, b, a \mid X]$
C $Y=[c, b, a], X=[]$
D $\mathrm{Y}=\mathrm{X}=[\mathrm{c}, \mathrm{b}, \mathrm{a}]$
$E \quad Y=[c, b, a, X]$

Clicker Question

revapp([],R,R).
revapp ([H|T], A, [H|R]) :revapp (T, [H|A],R).
What is the answer to query
?- revapp ([a,b, c] , X,Y).
A There are no proofs
$B \quad Y=[c, b, a, c, b, a \mid X]$
C $Y=[a, b, c, a, b, c \mid X]$
D $Y=[c, b, a, a, b, c \mid X]$
$\mathrm{E} \quad \mathrm{Y}=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{b}, \mathrm{a} \mid \mathrm{X}]$

Trees (bstree.pl)

A binary search tree can be used as a representation for dictionaries.

- A binary search tree is either
- empty or
- bnode(Key, Val, T0, T1) where Key has value Val and T0 is the tree of keys less than Key and T1 is the tree of keys greater than Key
- Define val (K, V, T) is true if key K has value V in tree T
- Define insert $(K, V, T 0, T 1)$ true if $T 1$ is the result of inserting $K=V$ into tree T0

Trees (bstreec.pl)

- In Prolog, when $X<Y$ is called, both X and Y must be ground (variable free) numbers
- There are constraint solvers that let Prolog act more logically. $\mathrm{X} \#<\mathrm{Y}$ specifies the constraint that $X<Y$.
- Eg, consider the query

$$
\begin{aligned}
\operatorname{val}(K, V, \text { bnode }(2,22, & \text { bnode }(1,57, \text { empty, empty }), \\
& \text { bnode }(5,105, \text { empty, empty }))) .
\end{aligned}
$$

- < is much faster as it can be evaluated immediately.
- \#< requires more sophisticated reasoning.
?- val(K,V,bnode(2,22, bnode(1,57,empty,empty),
bnode(5,105,empty,empty))), V \#< 99.
?- V \#< 99, val(K,V,bnode(2,22,
bnode(1,57, empty, empty), bnode(5,105, empty,empty))).

