CPSC 312 — Functional and Logic Programming

@ Assignment 5 is available
@ A solution to Assignment 4 is posted.

What is now required is to give the greatest possible development
to mathematical logic, to allow to the full the importance of
relations, and then to found upon this secure basis a new
philosophical logic, which may hope to borrow some of the
exactitude and certainty of its mathematical foundation. If this can
be successfully accomplished, there is every reason to hope that
the near future will be as great an epoch in pure philosophy as the
immediate past has been in the principles of mathematics. Great
triumphs inspire great hopes; and pure thought may achieve,
within our generation, such results as will place our time, in this
respect, on a level with the greatest age of Greece.

— Bertrand Russell, Mysticism and Logic and Other Essays [1917]

©D. Poole 2024 CPSC 312 — Lecture 22 1/18



Since the midterm...

Done:

Syntax and semantics of propositional definite clauses
Model a simple domain using propositional definite clauses

Bottom-up proof procedure computes a consequence set using
modus ponens.

Top-down proof procedure answers a query using resolution.

The box model provides a way to procedurally understand the
top-down proof procedure with depth-first search.

Syntax of Datalog: Predicate symbols, constants, variables,
queries.

Semantics of Datalog: Interpretations, variable assignments,
models, logical consequence.

©D. Poole 2024 CPSC 312 — Lecture 22 2/18



Features of Automated Reasoning

@ Users can have meanings for symbols in their head.

@ The computer doesn't need to know these meanings to derive
logical consequence.

@ Users can interpret any answers according to their meaning.

©D. Poole 2024 CPSC 312 — Lecture 22 3/18



Semantics: General |dea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:
@ what objects (individuals) are in the world

@ the correspondence between symbols in the computer and
objects and relations in world

P constants denote individuals
» predicate symbols denote relations

©D. Poole 2024 CPSC 312 — Lecture 22 4/18



Formal Semantics

An interpretation is a triple | = (D, ¢, ), where

@ D, the domain, is a nonempty set. Elements of D are
individuals.

©D. Poole 2024 CPSC 312 — Lecture 22 5/18



Formal Semantics

An interpretation is a triple | = (D, ¢, ), where

@ D, the domain, is a nonempty set. Elements of D are
individuals.

@ ¢ is a mapping that assigns to each constant an element of
D. Constant ¢ denotes individual ¢(c).

©D. Poole 2024 CPSC 312 — Lecture 22 5/18



Formal Semantics

An interpretation is a triple | = (D, ¢, ), where

@ D, the domain, is a nonempty set. Elements of D are
individuals.

@ ¢ is a mapping that assigns to each constant an element of
D. Constant ¢ denotes individual ¢(c).

@ 7 is a mapping that assigns to each n-ary predicate symbol a
relation: a function from D" into {true, false}.

©D. Poole 2024 CPSC 312 — Lecture 22 5/18



Clicker Question

Suppose we have an interpretation / with
domain D = {5<,T & QN
and ¢(c) =¥ and ¢(d) ="F.

Which of the following is not true:
A Every statement that is true about d is true about c.
B ¢ and d refer to two things with the same name
C There is one individual with two different names

D ¢ could be replaced by d in all clauses and the same
clauses would be true in /

©D. Poole 2024 CPSC 312 — Lecture 22 6/18



Clicker Question

Given a knowledge base KB, if an answer that is false in the
intended interpretation is returned (given a sound and complete
proof procedure). Which of the following is true

A One of the clauses in KB must be false in the
intended interpretation

B There are too many irrelevant facts that confused the
system

C The intended interpretation is a model of KB.
D None of the above.

©D. Poole 2024 CPSC 312 — Lecture 22 7/18



Clicker Question

Given a knowledge base KB, if g is true in the intended
interpretation, and g is not given as an answer (assuming a sound
and complete proof procedure that halts), which of the following is
true

A One of the clauses in KB must be false in the
intended interpretation

B g is false in another model of KB
C The intended interpretation is not a model of KB
D All of the above

E None of the above.

©D. Poole 2024 CPSC 312 — Lecture 22 8/18



A ous variable

@ In Prolog, _is the anonymous variable.

@ It is a logical variable where all instances are a different
variable.
@ _in queries means we don't care about the value of a variable

@ Singleton variables in a clause are often an error. Use _
instead.

©D. Poole 2024 CPSC 312 — Lecture 22 9/18



Function Symbols

@ Often we want to refer to individuals in terms of components.

@ Examples: 4:55 p.m. English sentences. A classlist.

©D. Poole 2024 CPSC 312 — Lecture 22 10/18



Function Symbols

@ Often we want to refer to individuals in terms of components.

@ Examples: 4:55 p.m. English sentences. A classlist.
@ We extend the notion of term. So that a term can be

>
>
| 4

a variable
a constant

of form f(ty,...,t,) where f is a function symbol and the t;
are terms.

©D. Poole 2024 CPSC 312 — Lecture 22 10/18



Function Symbols

@ Often we want to refer to individuals in terms of components.

@ Examples: 4:55 p.m. English sentences. A classlist.

@ We extend the notion of term. So that a term can be
> 3 variable
P> a constant

» of form f(t,...,t,) where f is a function symbol and the t;
are terms.

Prolog functions are like Haskell constructors (defined with data in
Haskell), but don't need to be declared.

©D. Poole 2024 CPSC 312 — Lecture 22 10/18



Semantics: General |dea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:
e what objects (individuals) are in the world

@ the correspondence between symbols in the computer and
objects and relations in world

» constants denote individuals (specified by ¢)
> predicate symbols denote relations (specified by 7)

©D. Poole 2024 CPSC 312 — Lecture 22 11/18



Semantics: General |dea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:

e what objects (individuals) are in the world

@ the correspondence between symbols in the computer and
objects and relations in world
» constants denote individuals (specified by ¢)
> predicate symbols denote relations (specified by 7)
P in an interpretation and with a variable assignment, term
f(t1,...,t,) denotes an individual in the domain.

©D. Poole 2024 CPSC 312 — Lecture 22 11/18



Semantics: General |dea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:

e what objects (individuals) are in the world

@ the correspondence between symbols in the computer and
objects and relations in world
» constants denote individuals (specified by ¢)
> predicate symbols denote relations (specified by 7)
P in an interpretation and with a variable assignment, term
f(t1,...,t,) denotes an individual in the domain.
Also specified by ¢ (constant is just a special case).

The semantics is otherwise unchanged.

©D. Poole 2024 CPSC 312 — Lecture 22 11/18



Semantics: General |dea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:

e what objects (individuals) are in the world

@ the correspondence between symbols in the computer and
objects and relations in world
» constants denote individuals (specified by ¢)
> predicate symbols denote relations (specified by 7)
P in an interpretation and with a variable assignment, term
f(t1,...,t,) denotes an individual in the domain.
Also specified by ¢ (constant is just a special case).

The semantics is otherwise unchanged.

©D. Poole 2024 CPSC 312 — Lecture 22 11/18



Example: dates (dates.pl)

@ Suppose we want to refer to dates, e.g., December 25, 1971

©D. Poole 2024 CPSC 312 — Lecture 22 12 /18



Example: dates (dates.pl)

@ Suppose we want to refer to dates, e.g., December 25, 1971

e Use ce(Y, M, D) where Y is the year, M is the month and D
is the day of the month. (ce is for “common era").

©D. Poole 2024 CPSC 312 — Lecture 22 12 /18



Example: dates (dates.pl)

@ Suppose we want to refer to dates, e.g., December 25, 1971

e Use ce(Y, M, D) where Y is the year, M is the month and D
is the day of the month. (ce is for “common era").

@ ce(-) can only be used as part of an atom:
% born(Person, Date) is true if Person was born on Date
born(justin,ce(1971,dec,25)).
born(pierre,ce(1919,0ct,18)).
born(ella_mai,ce(1994,nov,3)).
born(shawn_mendez, ce(1998,aug,8)).

©D. Poole 2024 CPSC 312 — Lecture 22 12 /18



Example: dates (dates.pl)

@ Suppose we want to refer to dates, e.g., December 25, 1971

e Use ce(Y, M, D) where Y is the year, M is the month and D
is the day of the month. (ce is for “common era").

@ ce(-) can only be used as part of an atom:
% born(Person, Date) is true if Person was born on Date
born(justin,ce(1971,dec,25)).
born(pierre,ce(1919,0ct,18)).
born(ella_mai,ce(1994,nov,3)).
born(shawn_mendez, ce(1998,aug,8)).

e Define before(D1, D2) which is true when date D1 is before

date D2. (You may use infix predicate < where X < Y is true
if X is less than Y).

©D. Poole 2024 CPSC 312 — Lecture 22 12 /18



Example: dates (dates.pl)

@ Suppose we want to refer to dates, e.g., December 25, 1971

e Use ce(Y, M, D) where Y is the year, M is the month and D
is the day of the month. (ce is for “common era").

@ ce(-) can only be used as part of an atom:
% born(Person, Date) is true if Person was born on Date
born(justin,ce(1971,dec,25)).
born(pierre,ce(1919,0ct,18)).
born(ella_mai,ce(1994,nov,3)).
born(shawn_mendez, ce(1998,aug,8)).

e Define before(D1, D2) which is true when date D1 is before
date D2. (You may use infix predicate < where X < Y is true
if X is less than Y).

e Add bce(y, m,d) for before common era, e,g,.
bce(55, mar, 15) is the ides of March, 55BCE.

©D. Poole 2024 CPSC 312 — Lecture 22 12 /18



Example: dates (dates.pl)

@ Suppose we want to refer to dates, e.g., December 25, 1971

e Use ce(Y, M, D) where Y is the year, M is the month and D
is the day of the month. (ce is for “common era").

@ ce(-) can only be used as part of an atom:
% born(Person, Date) is true if Person was born on Date
born(justin,ce(1971,dec,25)).
born(pierre,ce(1919,0ct,18)).
born(ella_mai,ce(1994,nov,3)).
born(shawn_mendez, ce(1998,aug,8)).

e Define before(D1, D2) which is true when date D1 is before

date D2. (You may use infix predicate < where X < Y is true
if X is less than Y).

e Add bce(y, m,d) for before common era, e,g,.
bce(55, mar, 15) is the ides of March, 55BCE.

e Given born(Person, Date) information, write older(P1, P2).

©D. Poole 2024 CPSC 312 — Lecture 22 12 /18



Clicker Question

foo(a, X, X

~—

must be an atom
must be a term

Prolog cannot tell if it is a term or atom

O n ® >

Prolog can tell if it is a term or an atom by where it
appears in a clause.

©D. Poole 2024 CPSC 312 — Lecture 22 13/18



Clicker Question

If foo(a, X, X) appears as
foo(a, X, X) := bar(X).

For an interpretation /
A foo(a, X, X) denotes an individual in /
B foo(a, X, X) is true or false in /

C foo(a, X, X) denotes an individual in / only given a
variable assignment

D foo(a, X, X) is true or false in | only given a variable
assignment

©D. Poole 2024 CPSC 312 — Lecture 22 14 /18



Clicker Question

If foo(a, X, X) appears as
noon(foo(a, X, X),17) :- bar(X).

For an interpretation /
A foo(a, X, X) denotes an individual in /
B foo(a, X, X) is true or false in /

C foo(a, X, X) denotes an individual in / only given a
variable assignment

D foo(a, X, X) is true or false in | only given a variable
assignment

©D. Poole 2024 CPSC 312 — Lecture 22 15/18



Working with terms (myis.pl)

@ Prolog has a predicate 'is’, so that
is(N, E)
usually written
Nis E

is true when expression E evaluates to number N.
E must not contain variables when called.

©D. Poole 2024 CPSC 312 — Lecture 22 16 /18



Working with terms (myis.pl)

@ Prolog has a predicate 'is’, so that
is(N, E)
usually written
Nis E

is true when expression E evaluates to number N.
E must not contain variables when called.

e Prolog has predicate number(N) that is true if N is a number.

©D. Poole 2024 CPSC 312 — Lecture 22 16 /18



Working with terms (myis.pl)

@ Prolog has a predicate 'is’, so that
is(N, E)
usually written
Nis E

is true when expression E evaluates to number N.
E must not contain variables when called.

e Prolog has predicate number(N) that is true if N is a number.

o Define myis(N, E) that is true if arithmetic expression E has
value the number N.

©D. Poole 2024 CPSC 312 — Lecture 22 16 /18



Working with terms (myis.pl)

@ Prolog has a predicate 'is’, so that
is(N, E)
usually written
Nis E

is true when expression E evaluates to number N.
E must not contain variables when called.

e Prolog has predicate number(N) that is true if N is a number.

o Define myis(N, E) that is true if arithmetic expression E has
value the number N.

@ 'myis’ can be made into an infix operator by declaring:

:-= op(700, xfx, myis).

©D. Poole 2024 CPSC 312 — Lecture 22 16 /18



Lists (mylist.pl)

@ A list is an ordered sequence of elements.
@ Let's use

» the constant empty to denote the empty list, and
» the function cons(H, T) to denote the list with first element H
and rest-of-list T.

©D. Poole 2024 CPSC 312 — Lecture 22 17 /18



Lists (mylist.pl)

@ A list is an ordered sequence of elements.
@ Let's use

» the constant empty to denote the empty list, and
» the function cons(H, T) to denote the list with first element H
and rest-of-list T.

These are not built-in.

©D. Poole 2024 CPSC 312 — Lecture 22 17 /18



Lists (mylist.pl)

@ A list is an ordered sequence of elements.
@ Let's use

» the constant empty to denote the empty list, and
» the function cons(H, T) to denote the list with first element H
and rest-of-list T.

These are not built-in.

@ The list containing jan, feb and mar is

©D. Poole 2024 CPSC 312 — Lecture 22 17 /18



Lists (mylist.pl)

@ A list is an ordered sequence of elements.
@ Let's use

» the constant empty to denote the empty list, and
» the function cons(H, T) to denote the list with first element H
and rest-of-list T.

These are not built-in.

@ The list containing jan, feb and mar is

cons(jan, cons(feb, cons(mar, empty)))

©D. Poole 2024 CPSC 312 — Lecture 22 17 /18



Lists (mylist.pl)

@ A list is an ordered sequence of elements.
@ Let's use

» the constant empty to denote the empty list, and
» the function cons(H, T) to denote the list with first element H
and rest-of-list T.

These are not built-in.

@ The list containing jan, feb and mar is
cons(jan, cons(feb, cons(mar, empty)))

member(E, L) is true if E is and element of list L.

©D. Poole 2024 CPSC 312 — Lecture 22 17 /18



Lists (mylist.pl)

A list is an ordered sequence of elements.
Let's use

» the constant empty to denote the empty list, and
» the function cons(H, T) to denote the list with first element H
and rest-of-list T.

These are not built-in.

The list containing jan, feb and mar is
cons(jan, cons(feb, cons(mar, empty)))

member(E, L) is true if E is and element of list L.

append(X,Y,Z) is true if list Z contains the elements of list
X followed by the elements of list Y.

©D. Poole 2024 CPSC 312 — Lecture 22 17 /18



Lists (mylist.pl)

A list is an ordered sequence of elements.
Let's use

» the constant empty to denote the empty list, and
» the function cons(H, T) to denote the list with first element H
and rest-of-list T.

These are not built-in.

The list containing jan, feb and mar is
cons(jan, cons(feb, cons(mar, empty)))

member(E, L) is true if E is and element of list L.

append(X,Y,Z) is true if list Z contains the elements of list
X followed by the elements of list Y.

append(empty, Z, 7).
append(cons(A, X), Y, cons(A, Z)) :- append(X, Y, Z).

©D. Poole 2024 CPSC 312 — Lecture 22 17 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []

@ The list with first element H and the rest of the list T is
[H|T].

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []

@ The list with first element H and the rest of the list T is
[H|T].

® [--a---|[]] writtenas [---a---].

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []

@ The list with first element H and the rest of the list T is
[H]T].

o [--a - |[]]writtenas[--a---].

o [-a|[-b-]]writtenas[--a---, - b---].

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []
@ The list with first element H and the rest of the list T is

[H]T]
o [--a - |[]]writtenas[--a---].
o [-a|[-b-]]writtenas[--a - ,---b--].
Examples

e member(X, L) is true if X is an element of list L

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []
@ The list with first element H and the rest of the list T is

[H]T]
o [--a - |[]]writtenas[--a---].
o [-a|[-b-]]writtenas[--a - ,---b--].
Examples

e member(X, L) is true if X is an element of list L

e append(A, B, C) is true if C contains the elements of A
followed by the elements of B

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []
@ The list with first element H and the rest of the list T is

[H]T]
o [--a - |[]]writtenas[--a---].
o [-a|[-b-]]writtenas[--a - ,---b--].
Examples

e member(X, L) is true if X is an element of list L

e append(A, B, C) is true if C contains the elements of A
followed by the elements of B

e numeq(X, L, N) is true if N is the number of instances of X in
L.

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []
@ The list with first element H and the rest of the list T is

[H]T]
o [--a - |[]]writtenas[--a---].
o [-a|[-b-]]writtenas[--a - ,---b--].
Examples

e member(X, L) is true if X is an element of list L

e append(A, B, C) is true if C contains the elements of A
followed by the elements of B

e numeq(X, L, N) is true if N is the number of instances of X in
L.

e sum(L, N) is true if N is the sum of the elements of L

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



Syntactic Sugar for Lists (lists.pl)

@ The empty list is []
@ The list with first element H and the rest of the list T is

[H]T]
o [--a - |[]]writtenas[--a---].
o [-a|[-b-]]writtenas[--a - ,---b--].
Examples

e member(X, L) is true if X is an element of list L

e append(A, B, C) is true if C contains the elements of A
followed by the elements of B

e numeq(X, L, N) is true if N is the number of instances of X in
L.

e sum(L, N) is true if N is the sum of the elements of L

o reverse(L, R) is true if R is the reverse of list L.

©D. Poole 2024 CPSC 312 — Lecture 22 18 /18



