
CPSC 312 — Functional and Logic Programming

Assignment 4 is due next Thursday! From last class, you
know enough to do questions 1 and 2.

“Consequently he who wishes to attain to human perfection,
must therefore first study Logic, next the various branches of
Mathematics in their proper order, then Physics, and lastly
Metaphysics.”

Maimonides 1135–1204

©D. Poole 2024 CPSC 312 — Lecture 19 1 / 28



Plan

Logic Programming
▶ Propositional logic programs

▶ Semantics
▶ Bottom-up and top-down proof procedures

▶ Datalog
▶ Logic programs with function symbols
▶ Applications (e.g., natural language processing)
▶ Semantic web

©D. Poole 2024 CPSC 312 — Lecture 19 2 / 28



Propositional Logic Program Syntax

An atom is of the form p, a word that (can contain letters,
digits and underscore ) and starts with a lower-case letter.

A body is either
▶ an atom or
▶ (b1, b2) where b1 and b2 are bodies. (Parentheses are

optional). A comma in a body means “and”.

A definite clause is either
▶ an atomic clause: an atom or
▶ a rule: h :- b where h is an atom and b is a body.

:- means “if”

An atomic clause is treated as a rule with an empty body.
All definite clauses ends with a period “.”

A logic program or knowledge base is a set of definite clauses

A query is a body that is asked at the Prolog prompt (ended
with a period).

comments start with % to end of line

©D. Poole 2024 CPSC 312 — Lecture 19 3 / 28



Datalog Syntax

(Needed for assignment 4)
Syntax is same as for propositional logic programs, with expanded
definition of atom:

An atom is of the form p(t1, . . . , tn) or p

p is a predicate symbol, starts with lower-case letter (e.g.,
mother, parent, instructor, ta)

each ti is a term which is either:
▶ a constant: a number or a word starting with a lower-case

letter (e.g., justin, cs312, 2024)
▶ a logical variable: a word starting with an upper-case letter

In a query a variable X means “for what value of X is the
query a logical consequence”. Another answer can be
obtained using semicolon “;”

See family.pl for example queries.

©D. Poole 2024 CPSC 312 — Lecture 19 4 / 28



Human’s view of semantics

Step 1 Begin with a task domain.

Step 2 Choose atoms in the computer to denote
propositions. These atoms have meaning to the KB
designer.

Step 3 Tell the system knowledge about the domain.

Step 4 Ask the system questions.

— The system gives answers.
— Person can interpret the answer with the meaning associated
with the atoms.

©D. Poole 2024 CPSC 312 — Lecture 19 5 / 28



A progression of logical languages

Propositional logic programs: atoms only have constants as
arguments (no variables).

Datalog: allow for logical variables in clauses.

Pure Prolog: Datalog + function symbols

©D. Poole 2024 CPSC 312 — Lecture 19 6 / 28



Semantics

An interpretation I assigns a truth value to each atom.

True of compound propositions in interpretation is derived
from truth table:

p q p, q p :- q

true true true true
true false false true
false true false false
false false false true

A body (b1, b2) is true in I if b1 is true in I and b2 is true in I .

A rule h :- b is false in I if b is true in I and h is false in I .
The rule is true otherwise.

A knowledge base KB is true in I if and only if every clause in
KB is true in I .

©D. Poole 2024 CPSC 312 — Lecture 19 7 / 28



Models and Logical Consequence

h :- b1, . . . , bk is true unless
h is false and b1 . . . bk are all true.

A model of a set of clauses is an interpretation in which all
the clauses (atomic facts and rules) are true.

If KB is a set of clauses and g is a conjunction of atoms, g is
a logical consequence of KB, written KB |= g , if g is true in
every model of KB.

That is, KB |= g if there is no interpretation in which KB is
true and g is false.

©D. Poole 2024 CPSC 312 — Lecture 19 8 / 28



Clicker Question

Consider the knowledge base KB:

happy :- good . foo :- bar , fun.
happy :- green. bar :- zed .
green. zed .

Which of the following are true
( KB ̸|= g means “g is a not a logical consequence of KB”)

A KB |= happy and KB |= foo

B KB |= happy and KB ̸|= foo

C KB ̸|= happy and KB |= foo

D KB ̸|= happy and KB ̸|= foo

E I’m not sure, please explain it again.

©D. Poole 2024 CPSC 312 — Lecture 19 9 / 28



Clicker Question

Consider the knowledge base KB:

happy :- good . foo :- bar , fun.
happy :- green. bar :- zed .
green. zed .

What is the set of all atoms that are logical consequences of KB?

A {happy , good , green, foo, bar , fun, zed}
B {happy , good , green, foo, bar , zed}
C {happy , green, bar , zed}
D {green, bar , zed}
E None of the above

©D. Poole 2024 CPSC 312 — Lecture 19 10 / 28



User’s view of Semantics

1. Choose a task domain: intended interpretation.

2. Associate an atom with each proposition you want to
represent.

3. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

4. Ask questions about the intended interpretation.

5. If KB |= g , then g must be true in the intended interpretation.

6. Users can interpret the answer using their intended
interpretation of the symbols.

©D. Poole 2024 CPSC 312 — Lecture 19 11 / 28



Computer’s view of semantics

The computer doesn’t have access to the intended
interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical
consequence of KB.

If KB |= g then g must be true in the intended interpretation.

If KB ̸|= g then there is a model of KB in which g is false.
This could be the intended interpretation.

©D. Poole 2024 CPSC 312 — Lecture 19 12 / 28



Proofs

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure, KB ⊢ g means g can be derived
from knowledge base KB.

Recall KB |= g means g is true in all models of KB.

A proof procedure is sound if KB ⊢ g implies KB |= g .
▶ If a sound proof procedure produces a result, the result is

correct.

A proof procedure is complete if KB |= g implies KB ⊢ g .
▶ A complete proof procedure can produce all results.

©D. Poole 2024 CPSC 312 — Lecture 19 13 / 28



Aside: Gödel’s incompleteness theorem

Gödel’s incompleteness theorem [1930]:
No proof system for a sufficiently rich logic can be both sound and
complete.
sufficiently rich = can represent arithmetic
Proof sketch:
Consider the statement “this statement cannot be proven”.

If it is true then system is incomplete.

If it is false then system is unsound.

The alternative is that statement cannot be represented.

the state of a computer can be seen as a (big) integer, and all
operations as arithmetic operations

We can write a proof system that can represent that
statement in a computer.

©D. Poole 2024 CPSC 312 — Lecture 19 14 / 28



Bottom-up Proof Procedure for propositional definite
clauses

One rule of derivation, a generalized form of modus ponens:
If “h :- b1, . . . , bm” is a clause in the knowledge base,
and each bi has been derived, then h can be derived.

This is forward chaining on this clause.
(An atomic fact is treated as a clause with empty body (m = 0).)

©D. Poole 2024 CPSC 312 — Lecture 19 15 / 28



Bottom-up proof procedure

KB ⊢ g if g ∈ C at the end of this procedure:

C := {};
repeat

select fact h or a rule“h :- b1, . . . , bm” in KB such that
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
until no more clauses can be selected.

©D. Poole 2024 CPSC 312 — Lecture 19 16 / 28



Example

a :- b, c .

a :- e, f .

b :- f , k.

c :- e.

d :- k.

e.

f :- j , e.

f :- c .

j :- c.

©D. Poole 2024 CPSC 312 — Lecture 19 17 / 28



Clicker Question

Consider the knowledge base KB:

happy :- good . foo :- bar , fun.
happy :- green. bar :- zed .
green. zed .

What is the final consequence set in the bottom-up proof
procedure run on KB?

A {happy , good , green, foo, bar , fun, zed}
B {happy , good , green, foo, bar , zed}
C {happy , green, bar , zed}
D {green, bar , zed}
E None of the above

©D. Poole 2024 CPSC 312 — Lecture 19 18 / 28



Soundness of bottom-up proof procedure

If KB ⊢ g then KB |= g .

Suppose there is a g such that KB ⊢ g and KB ̸|= g .

Then there must be a first atom added to C that isn’t true in
every model of KB. Call it h.
Suppose h isn’t true in model I of KB.

h was added to C , so there must be a clause in KB

h :- b1, . . . , bm

where each bi is in C , and so true in I .
h is false in I (by assumption)
So this clause is false in I .
Therefore I isn’t a model of KB.

Contradiction. Therefore there cannot be such a g .

©D. Poole 2024 CPSC 312 — Lecture 19 19 / 28



Fixed Point

The C generated at the end of the bottom-up algorithm is
called a fixed point.

Let I be the interpretation in which every element of the fixed
point is true and every other atom is false.

Claim: I is a model of KB.
Proof: suppose h :- b1, . . . , bm in KB is false in I .
Then h is false and each bi is true in I .
Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.

©D. Poole 2024 CPSC 312 — Lecture 19 20 / 28



Completeness

If KB |= g then KB ⊢ g .

Suppose KB |= g . Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus KB ⊢ g .

©D. Poole 2024 CPSC 312 — Lecture 19 21 / 28



Clicker Question

Suppose there at some atom aaa such that
KB ⊢ aaa and
KB ̸|= aaa.
What can be inferred?

A The proof procedure is not sound

B The proof prodecure is not complete

C The proof procedure is sound and complete

D The proof procedure is either sound or complete

E None of the above

©D. Poole 2024 CPSC 312 — Lecture 19 22 / 28



Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a
logical consequence of KB.

An answer clause is of the form:

yes :- a1, a2, . . . , am

The (SLD) resolution of this answer clause on atom a1 with
the clause in the knowledge base:

a1 :- b1, . . . , bp

is the answer clause

yes :- b1, · · · , bp, a2, · · · , am.

An atomic fact in the knowledge base is considered as a clause
where p = 0.

©D. Poole 2024 CPSC 312 — Lecture 19 23 / 28



Derivations

An answer is an answer clause with m = 0. That is, it is the
answer clause yes :- .

A derivation of query “?q1, . . . , qk” from KB is a sequence
of answer clauses γ0, γ1, . . . , γn such that
▶ γ0 is the answer clause yes :- q1, . . . , qk
▶ γi is obtained by resolving γi−1 with a clause in KB
▶ γn is an answer.

©D. Poole 2024 CPSC 312 — Lecture 19 24 / 28



Top-down definite clause interpreter

To solve the query ?q1, . . . , qk :

ac := “yes :- q1, . . . , qk”
repeat

select leftmost atom a1 from the body of ac
choose clause C from KB with a1 as head
replace a1 in the body of ac by the body of C

until ac is an answer.

©D. Poole 2024 CPSC 312 — Lecture 19 25 / 28



Nondeterministic Choice

Don’t-care nondeterminism If one selection doesn’t lead to a
solution, there is no point trying other alternatives.
“select”

Don’t-know nondeterminism If one choice doesn’t lead to a
solution, other choices may.
“choose”

©D. Poole 2024 CPSC 312 — Lecture 19 26 / 28



Example: successful derivation

a :- b, c . a :- e, f . b :- f , k.
c :- e. d :- k. e.
f :- j , e. f :- c . j :- c.

Query: ?a

γ0 : yes :- a γ4 : yes :- e
γ1 : yes :- e, f γ5 : yes :-

γ2 : yes :- f
γ3 : yes :- c

©D. Poole 2024 CPSC 312 — Lecture 19 27 / 28



Example: failing derivation

a :- b, c . a :- e, f . b :- f , k.
c :- e. d :- k. e.
f :- j , e. f :- c . j :- c.

Query: ?a

γ0 : yes :- a γ4 : yes :- e, k , c
γ1 : yes :- b, c γ5 : yes :- k , c
γ2 : yes :- f , k , c
γ3 : yes :- c , k, c

©D. Poole 2024 CPSC 312 — Lecture 19 28 / 28


